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ON A LIU-YAU TYPE INEQUALITY FOR SURFACES

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL, AND SIMON RAULOT

Abstract. Let Ω be a compact and mean-convex domain with smooth
boundary Σ := ∂Ω, in an initial data set (M3, g,K), which has no
apparent horizon in its interior. If Σ is spacelike in a spacetime (E4, gE)
with spacelike mean curvature vector H such that Σ admits an isometric
and isospin immersion into R

3 with mean curvature H0, then:∫
Σ

|H|dΣ ≤

∫
Σ

H2
0

|H|
dΣ.

If equality occurs, we prove that there exists a local isometric immersion
of Ω in R

3,1 (the Minkowski spacetime) with second fundamental form
given by K. In Theorem 3, we also examine, under weaker conditions,
the case where the spacetime is the (n+2)-dimensional Minkowski space
R

n+1,1 and establish a stronger rigidity result.

1. Introduction

Let (E4, gE ) be a spacetime satisfying the Einstein field equations, that is
(E4, gE) is a 4-dimensional time-oriented Lorentzian manifold such that

RicE −
1

2
REgE = T ,

where RE (resp. RicE) denotes the scalar curvature (resp. the Ricci cur-
vature) of (E , gE ) and T is the energy-momentum tensor which describes
the matter content of the ambient spacetime. We also assume that (E4, gE )
satisfies the dominant energy condition that is its energy-momentum tensor
T has the property that, for every future directed causal vector η ∈ Γ(TE),
the vector field dual to the one form −T (η, .) is a future directed causal
vector of TE .

Let M3 be an immersed spacelike hypersurface of (E4, gE ) with induced
Riemannian metric g. Assume that T is the future directed timelike normal
vector to M and denote by K the associated second fundamental form de-
fined by K(X,Y ) = gE(∇

E
XT, Y ), for all X,Y ∈ Γ(TM). Here ∇E denotes
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the Levi-Civita connection of the spacetime. Then the Gauss, Codazzi and
Einstein equations provide constraint equations on M given by

{
µ = 1

2

(
R− |K|2M + (TrM (K))2

)

J = −δ
(
K − TrM (K)g

)

where R is the scalar curvature of (M3, g), |K|2 and Tr(K) denote the
squared norm and the trace of K with respect to g and δ is the divergence
on M . Here µ (resp. J) is the energy (resp. the momentum) density of the
matter fields given by

µ = T (T, T ) and Ji = T (ei, T )

for 1 ≤ i ≤ 3 and where {e1, e2, e3} is a local basis of the spatial tangent
space of M . The dominant energy condition for the spacetime implies that
µ ≥ |J |, as functions on M . A triplet (M3, g,K) which satisfies the domi-
nant energy condition is called an initial data set.

Now we consider a codimension two spacelike orientable surface Σ2 in the
spacetime E4. We will represent by H the mean curvature vector field on
Σ2, defined as

H = tr II,

where II is the second fundamental form of this immersion. Since the normal
space at each point of Σ2 is a Lorentzian plane, it can be spanned by two
future-directed null normal vector fields N+ and N− normalized in such
a way that 〈N+,N−〉 = −1

2
. We denote by θ+ and θ− the components

of H with respect to N+ and N−. They are the so-called future-directed
null expansions of H and measure the area growth when Σ2 varies in the
corresponding directions. It is clear that

|H|2 = −θ+θ−.

If θ+ and θ− are both negative, the surface will be called a trapped surface. A
surface with θ+ = 0 or θ− = 0 is called an apparent horizon (or a marginally
trapped surface). Remark that if Σ2 is trapped or marginally trapped, then
the mean curvature vector H is a causal vector at each point. This is why,
the fact that the mean curvature fieldH is spacelike everywhere is equivalent
to that Σ is an untrapped surface.

In the case where Σ2 spans a spacelike hypersurface in the spacetime, that
is, when there exists a spacelike hypersurface Ω3 immersed in E4 such that
∂Ω3 = Σ2, the normal null vector fields N+ and N− may be ordered in such
a way that they project onto directions tangent to Ω3 which are respectively
outer and inner normal at each point of Σ2. In other words, if N is the inner
normal unit vector field on Σ2 tangent to Ω3 and T is the future-directed
timelike normal to Ω3 in E4, we put

N+ =
1

2
(T −N), N− =

1

2
(T +N).
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The second fundamental form of Σ2 in E4 is given in terms of the Lorentzian
basis of the normal bundle provided by the hypersurface Ω by

II(X,Y ) = g(AX,Y )N + g(BX,Y )T,

for all X,Y ∈ Γ(TΣ), where AX := −∇XN denotes the shape operator of
Σ2 in Ω3 and ∇ is the Levi-Civita connection of the Riemannian metric g
on M . The mean curvature vector field H of Σ in E can be reexpressed by:

H = θ+N− + θ−N+ = HN + trΣ (K)T,

where H = trA is the mean curvature of Σ2 in Ω3 and trΣ (K) is the trace
on Σ2 of the shape operator K of Ω3 in E4. The norm of H can be also
reexpressed:

|H|2 = H2 − trΣ (K)2 = −θ+θ−, (1)

with θ± = trΣ (K) ± H are the future-directed null expansions of H. The
spacelike surfaces with θ+ < 0 (respectively, θ− < 0) are referred to as
outer (respectively, inner) trapped surfaces. It is easy to see that untrapped
submanifolds, that is, codimension two spacelike submanifolds of a spacetime
with spacelike mean curvature vector field, naturally divide into two disjoint
classes.

Lemma 1. Let Σ2 be a compact spacelike codimension two submanifold
embedded in a spacetime E4. Suppose that its mean curvature vector field H
is spacelike and that Σ2 is the boundary of a spacelike hypersurface Ω3 in
E4. Then Ω3 is either mean-convex or mean-concave.

Proof : It suffices to take into account that, if (θ+, θ−) are the future-
directed null expansions of the mean curvature vector field H associated to
the embedding of Σ2 in the domain Ω3, we have from (1)

0 < |H|2 = −θ+θ−, θ+ − θ− = 2H,

where H is the inner mean curvature function of Σ2 in Ω3. The first of these
two equalities implies that θ+ and θ− have opposite signs everywhere on Σ2.
Then, from the second one, we have that either H > 0 or H < 0 on the
whole of Σ2. q.e.d.

Note that this fact obviously holds for higher dimensional initial data sets.
In the following, an untrapped surface (resp. a codimension two untrapped
submanifold) which bounds a compact, connected and mean-convex space-
like hypersurface will be referred to as an outer untrapped surface (resp. an
outer untrapped submanifold). It is worth noting that round spheres in Eu-
clidean slices are untrapped surfaces. The same occurs in general for large
radial spheres in asymptotically flat spacelike hypersurfaces.

We now give the precise statement of our main result:

Theorem 1. Let Ω be a compact domain with an outer untrapped boundary
surface Σ := ∂Ω in an initial data set (M3, g,K). If Ω has no apparent
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horizon in its interior, then for all ϕ ∈ Γ(S/Σ) we have:
∫

Σ

( 1

|H|
|D/ϕ|2 −

|H|

4
|ϕ|2

)
dΣ ≥ 0, (2)

where S/Σ is the extrinsic spinor bundle on Σ and D/ is the extrinsic Dirac
operator (see Section 2). Moreover, if equality occurs then there exists a
local isometric immersion of Ω in R

3,1 with K as second fundamental form.

As a direct application, we prove the following result

Theorem 2. Under the same conditions of Theorem 1, assume further-
more that Σ admits an isometric and isospin immersion into R

3 with mean
curvature H0. Then we have:

∫

Σ

|H|dΣ ≤

∫

Σ

H2
0

|H|
dΣ. (3)

Moreover, if equality occurs then Σ is connected and there exists a local
isometric immersion of Ω in R

3,1 with second fundamental form given by K
and mean curvature vector of Σ satisfying |H| = H0.

If we consider the case of codimension two outer untrapped submanifolds
in the (n + 2)-dimensional Minkowski spacetime R

n+1,1, we prove that we
can remove the assumption on the non-existence of apparent horizons (see
Theorem 5). Moreover in this situation, we completely characterize the
equality case. Namely we have

Theorem 3. Let Σ be a codimension two outer untrapped submanifold in
R
n+1,1. If Σ admits an isometric and isospin immersion into R

n+1 with
mean curvature H0, then Inequality (3) holds and equality is achieved if and
only if Σ lies in a hyperplane in R

n+1,1 and Σ is connected.

Remark 2. In Theorem 2 and Theorem 3, we assumed that the bound-
ary hypersurface of a compact domain in a certain spin manifold admits an
isospin immersion in a Euclidean space. In general, an (n+ 1)-dimensional
spin manifold induces a spin structure on each of its orientable immersed hy-
persurfaces through their corresponding immersions (see Section 2.2 below).
Two distinct immersions of an orientable manifold Σn into two (possibly
different) (n + 1)-dimensional spin manifolds are said to be isospin when
the spin structures induced on Σn from the corresponding ambient mani-
folds coincide (up to an equivalence). Recall that spin structures on Σn are
parametrized by the cohomology group H1(Σn,Z2). Thus, for example, if
Σn is a simply-connected manifold, any two immersions of Σn in two arbi-
trary (n + 1)-dimensional spin manifolds must be isospin. Consequently, if
the surface Σ in Theorem 2 has genus zero or the hypersurface Σ in Theorem
3 is simply-connected, we only need to suppose that they are mean-convex
in their initial data sets and that they can be immersed as hypersurfaces in
a Euclidean space.
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Also, it is clear that, when the two immersions defined on Σn lie in a
same ambient space and are regularly homotopic, the associated induced spin
structures are equivalent. In fact, two immersions are said to be regularly
homotopic (isotopic, according to Pinkall and others, see [Pi]) if we may
pass continuously from one to the other through a family of immersions.
Consequently, they determine the same class in H1(Σn,Z2). Indeed, in
the case n = 2, two spin structures induced from the spin structure of
the 3-dimensional spin ambient space through two different embeddings are
equivalent if and only if they are regularly homotopic (besides of [Pi], see
[HH, pp. 104–105] and [BeS, p. 656]).

Then, take any compact mean-convex surface Σ embedded in R
3. This

surface bounds a compact domain in the three-dimensional Euclidean space
which is a totally geodesic initial data set in the Minkowski space R3,1. If we
slightly deform this surface the positivity of the mean curvature is preserved
by continuity and, from the arguments above, the same holds for the induced
spin structure. So, there are examples of mean-convex boundaries in initial
data sets of spacetimes admitting isospin immersions in Euclidean spaces.
Many of them are non-convex. In fact, take Σ to be, for instance, a right
cylinder with two half-spheres closing its extremes (after smoothing) or a
torus of revolution thin enough (if we want to have some point with negative
Gauß curvature).

Note that, if Σ is not convex, we cannot use the Weyl theorem and so we
do not know whether it is possible to immerse Σ isometrically in Euclidean
space R

3 or not. This is why, in this case, Theorem 2 and Theorem 3
should be viewed as a comparison theorems for the mean curvatures of
two immersions in the spirit of a classical result by Herglotz. Indeed, in
1934, Herglotz [He] gave a succinct proof of Cohn-Vossen’s rigidity result
for convex surfaces based on an integral inequality involving the second
fundamental forms of two embedding (see, for example, [MR, Section 7.4]).
Our Theorem 2 provides an inequality of this type which could be a first
step in order to enlarge the Cohn-Vossen theorem to include Euclidean mean-
convex compact surfaces.

In this direction, one can easily see that Theorem 3 implies that the
integral of the mean curvature is preserved through bendings of compact
mean-convex hypersurfaces embedded in a Euclidean space. This was first
proved by Almgren and Rivin ([AR], see also [RS]).

Recall that, in [LY2] (see also [LY1]), Liu and Yau proved the follow-
ing positivity result: Let (Ω3, g,K) be an initial data set for the Einstein
equation. Suppose that the boundary ∂Ω has finitely many components Σi,
1 ≤ i ≤ l, each of which has positive Gauss curvature and spacelike mean
curvature vector in the spacetime. Then for all i:

∫

Σi

|H|dΣ ≤

∫

Σi

H0dΣ. (4)
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Moreover if equality occurs for some i ∈ {1, ..., l}, then ∂Ω is connected and
the spacetime is flat along Ω.

The proof of this result relies on a generalized version of the Positive
Mass Theorem and on the resolution of the Jang equation. One of the key
ingredients in their proof is provided by the Weyl embedding theorem [We]
which asserts that Σ embeds isometrically as a strictly convex hypersurface
in R

3 is equivalent to the fact that Σ has positive Gauss curvature. Note
that by the Cauchy-Schwarz inequality, Inequality (4) implies (3).

More recently, Eichmair, Miao and Wang [EMW] generalized Inequality
(4) for time-symmetric initial data under weaker convexity assumptions for
the embedding of Σ in R

3. We point out that, in contrast to Liu-Yau’s
result, we do not assume that the immersion is a strictly convex embedding.
In particular, the mean curvature H0 is not assumed to be positive.

2. The Riemannian setting

2.1. Preliminaries on Spin Manifolds. Let (M,g) be an (n+1)-dimen-
sional Riemannian Spin manifold, which we will suppose from now on to be
connected, and denote by∇ the Levi-Civita connection on its tangent bundle
TM . We choose a Spin structure on M and consider the corresponding

spinor bundle SM , a rank 2[
n+1

2 ] complex vector bundle. Denote by γ the
Clifford multiplication

γ : Cℓ(M) −→ End(SM) (5)

which is a fiber preserving algebra morphism. Then SM becomes a bundle
of complex left modules over the Clifford bundle Cℓ(M) over the manifold
M . When (n+1) is even, the spinor bundle splits into the direct sum of the
positive and negative chiral subbundles

SM = SM+ ⊕ SM−, (6)

where SM± are defined to be the ±1-eigenspaces of the endomorphism

γ(ωn+1), with ωn+1 = i[
n+2

2 ]e1 · e2 · · · en+1, the complex volume form.
On the spinor bundle SM , one has (see [LM]) a natural Hermitian metric,

denoted by 〈 , 〉, and the spinorial Levi-Civita connection ∇ acting on spinor
fields. It is well-known that the Hermitian scalar product, the Levi-Civita
connection ∇ and the Clifford multiplication (5) satisfy, for any spinor fields
ψ,ϕ ∈ Γ(SM) and any tangent vector fields X,Y ∈ Γ(TM), the following
compatibility conditions:

〈γ(X)ψ, γ(X)ϕ〉 = |X|2〈ψ,ϕ〉 (7)

X〈ψ,ϕ〉 = 〈∇Xψ,ϕ〉 + 〈ψ,∇Xϕ〉 (8)

∇X

(
γ(Y )ψ

)
= γ(∇XY )ψ + γ(Y )∇Xψ. (9)
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Since ∇ωn+1 = 0, for (n+ 1) even, the decomposition (6) is orthogonal and
∇ preserves this decomposition.

The Dirac operator D on SM is the first order elliptic differential operator
locally given by

D =

n+1∑

i=1

γ(ei)∇ei ,

where {e1, . . . , en+1} is a local orthonormal frame of TM . When (n + 1)
is even, the Dirac operator interchanges positive and negative spinor fields,
that is,

D : Γ(SM±) 7−→ Γ(SM∓).

2.2. Hypersurfaces and induced Structures. In this section, we com-
pare the restriction S/Σ of the spinor bundle SM of a Spin manifold M to
an orientable hypersurface Σ immersed into M and its Dirac-type operator
D/ to the intrinsic spinor bundle SΣ of the induced Spin structure on Σ and
its fundamental Dirac operator DΣ. A fundamental case will be when the
hypersurface Σ is just the boundary ∂M of a manifold M . These facts are
in general well-known (see for example [Bu, Tr, Bä, BFGK, HMZ1, HMZ2,
HMZ3, HM1]). For completeness, we introduce the notations and the key
facts.

Denote by ∇/ the Levi-Civita connection associated with the induced Rie-
mannian metric on Σ. The Gauß formula says that

∇/XY = ∇XY − g(AX,Y )N, (10)

where X,Y are vector fields tangent to the hypersurface Σ, the vector field
N is a global unit field normal to Σ and A stands for the shape operator
corresponding to N , that is,

∇XN = −AX, ∀X ∈ Γ(TΣ). (11)

We have that the restriction

S/Σ := SM |Σ

is a left module over Cℓ(Σ) for the induced Clifford multiplication

γ/ : Cℓ(Σ) −→ End(S/Σ)

given by

γ/(X)ψ = γ(X)γ(N)ψ (12)

for every ψ ∈ Γ(S/Σ) and X ∈ Γ(TΣ) (note that a spinor field on the ambient
manifold M and its restriction to the hypersurface Σ will be denoted by the
same symbol). Consider on S/Σ the Hermitian metric 〈 , 〉 induced from
that of SM . This metric immediately satisfies the compatibility condition
(7) if one considers on Σ the Riemannian metric induced from M and the
Clifford multiplication γ/ defined in (12). Now the Gauss formula (10) implies
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that the Spin connection ∇/ on S/Σ is given by the following spinorial Gauss
formula

∇/Xψ = ∇Xψ −
1

2
γ/(AX)ψ = ∇Xψ −

1

2
γ(AX)γ(N)ψ (13)

for every ψ ∈ Γ(S/Σ) andX ∈ Γ(TΣ). Note that the compatibility conditions
(7), (8) and (9) are satisfied by (S/Σ, γ/, 〈 , 〉,∇/ ).

Denote by D/ : Γ(S/Σ) → Γ(S/Σ) the Dirac operator associated with the
Dirac bundle S/Σ over the hypersurface. It is a well-known fact that D/ is a
first order elliptic differential operator which is formally L2-selfadjoint. By
(13), for any spinor field ψ ∈ Γ(SM), we have

D/ψ =
n∑

j=1

γ/(ej)∇/ ejψ =
1

2
Hψ − γ(N)

n∑

j=1

γ(ej)∇ejψ,

where {e1, . . . , en} is a local orthonormal frame of TΣ and H = traceA is
the mean curvature of Σ corresponding to the orientation N . Using (13)
and (11), it is straightforward to see that the skew-commutativity rule

D/
(
γ(N)ψ

)
= −γ(N)D/ψ (14)

holds for any spinor field ψ ∈ Γ(S/Σ). It is important to point out that,
from this fact, the spectrum of D/ is always symmetric with respect to zero,
while this is the case for the Dirac operator DΣ of the intrinsic spinor bundle
only when n is even. Indeed, in this case, we have an isomorphism of Dirac
bundles

(S/Σ, γ/,D/ ) ≡ (SΣ, γΣ,DΣ)

and the decomposition S/Σ = S/Σ+⊕S/Σ−, given by S/Σ± := {ψ ∈ S/Σ | iγ(N)ψ =
±ψ}, corresponds to the chiral decomposition of the spinor bundle SΣ.
Hence D/ interchanges S/Σ+ and S/Σ−.

When n is odd the spectrum of DΣ is not necessarily symmetric. In fact,
in this case, the spectrum of D/ is just the symmetrization of the spectrum
of DΣ. This is why the decomposition of SM into positive and negative
chiral spinors induces an orthogonal and γ/,D/ -invariant decomposition S/Σ =
S/Σ+ ⊕ S/Σ−, with S/Σ± := (SM±)|Σ, in such a way that

(S/Σ±, γ/,D/ |S/Σ±
) ≡ (SΣ,±γΣ,±DΣ).

Moreover, γ(N) interchanges the decomposition and both maps γ(N) :
S/Σ± −→ S/Σ∓ are isomorphisms.

Consequently, to study the spectrum of the induced operator D/ is equiv-
alent to study the spectrum of the Dirac operator DΣ of the Riemannian
Spin structure induced on the hypersurface Σ.

2.3. A spinorial Reilly type Inequality for Manifolds with Bound-

ary. In this section, we prove a spinorial Reilly type inequality ([LY1],[R]).
Recall that, on a compact (n+1)-dimensional Riemannian Spin manifold

M with boundary Σ = ∂M , for any spinor field ψ ∈ Γ(SM), the fundamental
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Schrödinger-Lichnerowicz formula is given by:
∫

Σ

(
〈D/ψ,ψ〉 −

H

2
|ψ|2

)
dΣ =

∫

M

(
1

4
R|ψ|2 + |∇ψ|2 − |Dψ|2

)
dM (15)

where R is the scalar curvature of M . Note that, the assumption R ≥ 0
is quite natural and has been used intensively to get, in particular, lower
bounds on both D and D/ . However, in our situation (see Section 3.1),
we have a weaker assumption on the scalar curvature. More precisely, we
assume that there exits a smooth vector field X ∈ Γ(TM) such that:

R ≥ 2|X|2 + 2δ(X) (16)

where |X|2 = g(X,X) and δ is the divergence of X =
∑n

j=1X
jej ∈ Γ(TM),

locally given by

δ(X) = −
n+1∑

i=1

ei(X
i).

Then we prove an adapted Reilly type inequality. Namely:

Proposition 3. LetM a compact Riemannian Spin manifold with boundary
Σ such that there exists a smooth vector field X ∈ Γ(TM) satisfying (16),
then∫

Σ

〈D/ψ −
1

2

(
H + g(X,N)

)
ψ,ψ〉 dΣ ≥

∫

M

(1
2
|∇ψ|2 − |Dψ|2

)
dM. (17)

Moreover equality occurs if and only if the spinor field ψ satisfies

∇Y ψ = −g(X,Y )ψ (18)

for all Y ∈ Γ(TM).

Proof : First note that, since

δ(|ψ|2X) = −X(|ψ|2) + |ψ|2δ(X),

Stokes formula gives
∫

M

R

4
|ψ|2dM =

∫

M

(R
4
−

1

2
δ(X)

)
|ψ|2dM +

1

2

∫

M
δ(X)|ψ|2dM

=
1

4

∫

M

(
R− 2δ(X)

)
|ψ|2dM +

1

2

∫

M
X(|ψ|2)dM

+
1

2

∫

Σ

g(X,N)|ψ|2dΣ.

Inserting this identity in (15) leads to:
∫

Σ

〈D/ψ −
1

2

(
H + g(X,N)

)
, ψ〉dΣ =

∫

M

(1
4

(
R− 2δ(X)

)
|ψ|2 +

1

2
X(|ψ|2)

)
dM +

∫

M

(
|∇ψ|2 − |Dψ|2

)
dM
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and using (16), we conclude that:
∫

Σ

〈D/ψ −
1

2

(
H + g(X,N)

)
, ψ〉dΣ ≥

∫

M

(1
2
|X|2|ψ|2 +

1

2
X(|ψ|2)

)
dM

+

∫

M

(
|∇ψ|2 − |Dψ|2

)
dM. (19)

If we let ∇̃Y ψ := ∇Y ψ + g(X,Y )ψ, it is straightforward to compute

|∇̃ψ|2 = |∇ψ|2 + |X|2|ψ|2 + 2Re〈∇Xψ,ψ〉

and since 2Re〈∇Xψ,ψ〉 = X(|ψ|2), we get:

1

2
X(|ψ|2) ≥ −

1

2
|∇ψ|2 −

1

2
|X|2|ψ|2

with equality if and only if ∇̃ψ = 0. Combining this last inequality with
(19) finishes the proof. q.e.d.

2.4. A Local Boundary Elliptic Condition for the Dirac Operator.

As before, Σ is the boundary of an (n + 1)-dimensional Riemannian Spin
compact manifold M . We define two pointwise projections

P± : S/Σ −→ S/Σ

on the induced Dirac bundle over the hypersurface, as follows

P± =
1

2

(
IdS/Σ ± iγ(N)

)
. (20)

It is a well known fact that these two orthogonal projections P± acting on
the spin bundle S/Σ provide local elliptic boundary conditions for the Dirac
operator D of M . The ellipticity of these boundary conditions and that of
the Dirac operator D, allow to solve boundary-value problems for D on M
by prescribing on the boundary Σ, the corresponding P±-projections of the
solutions. Namely we have:

Proposition 4. [HM1] Let M be a compact Riemannian Spin manifold
with boundary, a hypersurface Σ. If ϕ ∈ Γ(S/Σ) is a smooth spinor field of
the induced Dirac bundle, then the following boundary-value problem for the
Dirac operator {

Dψ = 0 on M
P±(ψ|Σ) = P±ϕ on Σ

has a unique smooth solution ψ ∈ Γ(SM).

For a more general discussion on boundary conditions for the Dirac op-
erator, we refer to [BW], [BäBa] or [BC].
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2.5. A Holographic Principle for the Existence of Parallel Spinors.

It is by now standard (see [HMZ2, HMZ3]) to make use of (15) for a com-
pact Riemannian Spin manifold M with non-negative scalar curvature R,
together with the solution of an appropriate boundary-value problem for the
Dirac operator D of M , in order to establish a certain integral inequality
for the induced Dirac operator D/ of the boundary hypersurface ∂M = Σ.
In [R], the third author uses such arguments for compact manifolds whose
scalar curvature satisfies (16). In this section, we generalize the holographic
principle for the existence of parallel spinors proved by the first two authors
in [HM1] in the context studied in [R].

First, we need to recall the following fact:

Lemma 5. [HMZ3] For any smooth spinor field ψ ∈ Γ(S/Σ) we have
∫

Σ

〈D/ψ,ψ〉 dΣ = 2

∫

Σ

〈D/P+ψ,P−ψ〉 dΣ.

The proof simply relies on the self-adjointness of the Dirac operator D/
and on the identities

D/P± = P∓D/ (21)

which are obtained using (14) and (20).

Proposition 6. Let M be a compact Riemannian Spin manifold with scalar
curvature satisfying (16) and such that

F := H + g(X,N) > 0.

For any ϕ ∈ Γ(S/Σ), one has

0 ≤

∫

Σ

( 1
F
|D/P+ϕ|

2 −
F

4
|P+ϕ|

2
)
dΣ. (22)

Moreover, equality holds if and only if there exists a parallel spinor field
ψ ∈ Γ(SM) such that P+ψ = P+ϕ along the boundary hypersurface Σ and
the vector field X vanishes identically on M .

Proof : Take any spinor field ϕ ∈ Γ(S/Σ) of the induced spinor bundle on
the hypersurface and consider the following boundary-value problem

{
Dψ = 0 on M
P+ψ = P+ϕ on Σ

for the Dirac operator D and the boundary condition P+. The existence
and uniqueness of a smooth solution ψ ∈ Γ(SM) for this boundary problem
is ensured by Proposition 4. This solution ψ inserted in Inequality (17),
translates to

0 ≤
1

2

∫

M
|∇ψ|2dM ≤

∫

Σ

(
〈D/ψ,ψ〉 −

F

2
|ψ|2

)
dΣ. (23)

Note that if equality is achieved, then ψ is a parallel spinor field satisfying
(18). Since such a spinor field has no zeros, the vector field X vanishes
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identically on the whole of M . Inequality (23) combined with Lemma 5
together with the fact that the decomposition

ψ = P+ψ + P−ψ

is pointwise orthogonal, imply

0 ≤

∫

Σ

(
2〈D/P+ψ,P−ψ〉 −

F

2
|P+ψ|

2 −
F

2
|P−ψ|

2

)
dΣ. (24)

The function F being assumed positive on Σ, it follows

0 ≤
∣∣
√

2

F
D/P+ψ −

√
F

2
P−ψ

∣∣2 =
2

F
|D/P+ψ|

2 +
F

2
|P−ψ|

2 − 2〈D/P+ψ,P−ψ〉.

In other words, we have

2〈D/P+ψ,P−ψ〉 −
F

2
|P−ψ|

2 ≤
2

F
|D/P+ψ|

2,

which, when combined with Inequality (24), implies Inequality (22). Now if
equality holds, we already noticed that the spinor field ψ must be parallel
with P+ψ = P+ϕ and X ≡ 0.

Conversely, if we assume that there is a parallel spinor field ψ on M and
X ≡ 0 then we are in the situation covered in [HM1]. q.e.d.

With this, we are ready to state the main result of this section:

Theorem 4. Let M be a compact Riemannian Spin (n + 1)-dimensional
manifold and X ∈ Γ(TM) such that

R ≥ 2|X|2 + 2δ(X) and F := H + g(X,N) > 0.

Then, for any spinor field ϕ ∈ Γ(S/Σ), one has

0 ≤

∫

Σ

( 1
F
|D/ϕ|2 −

F

4
|ϕ|2

)
dΣ. (25)

Equality holds if and only if there exist two parallel spinor fields Ψ+,Ψ− ∈
Γ(SM) such that P+Ψ

+ = P+ϕ and P−Ψ
− = P−ϕ on the boundary and

X ≡ 0.

Proof : From the symmetry between the two boundary conditions P+ and
P− for the Dirac operator on M (see Proposition 4 and Lemma 5), one can
repeat the proof of Proposition 6 to get the inequality corresponding to (22)
where the positive projection P+ is replaced by the negative one P−. Hence,
for any spinor field ϕ ∈ Γ(S/Σ), we also have

0 ≤

∫

Σ

( 1
F
|D/P−ϕ|

2 −
F

4
|P−ϕ|

2
)
dΣ. (26)

Taking into account the relation (21) and the pointwise orthogonality of the
projections P±, the sum of the two inequalities (22) and (26) yields (25).
The equality case is a consequence of Proposition 6. q.e.d.
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Remark 7. Note that, as observed in [HM1], equality in (25), does not
imply that the two parallel spinors in Theorem 4 coincide.

We should also mention that Inequality (25) has a nice interpretation in
terms of the first eigenvalue of the boundary Dirac operator D/ F associated
with the conformal metric gF = F 2g. More precisely, we have:

Corollary 8. Let (Mn+1, g) be an (n + 1)-dimensional compact connected
Riemannian Spin manifold satisfying the assumptions of Theorem 4. Then,
the first non-negative eigenvalue λ1(D/ F ), of the Dirac operator correspond-
ing to the conformal metric gF = F 2g, satisfies

λ1(D/ F ) ≥
1

2

and equality holds if and only if M admits a non trivial parallel spinor (and
X ≡ 0). In this case, the eigenspace corresponding to λ1(D/ F ) =

1
2
consists

of restrictions to Σ of parallel spinor fields on M multiplied by the function

F−n−1

2 . Furthermore, the boundary hypersurface Σ has to be connected.

The proof is omitted since it is similar to that of Theorem 1 in [HM1].

2.6. A Discussion on Quasi-Local Masses. In this section, we consider
a 3-dimensional compact connected Riemannian manifold (M3, g) with non-
negative scalar curvature whose boundary Σ2 has positive mean curvature
H. Note that, since M is a 3-dimensional manifold, it is necessary Spin.
Moreover, we also assume that there exits an immersion ι0 of the surface Σ
in R

3 with mean curvature H0.

One of the fundamental results in classical general relativity is certainly
the proof of the positivity of the total energy by Schoen-Yau [SY2] and
Witten [Wi]. This led to the more ambitious claim to associate energy to
extended, but finite, spacetime domains, i.e., at the quasi-local level. Ob-
viously, the quasi-local data could provide a more detailed characterization
of the states of the gravitational field than the global ones, so they are
interesting for their own right. For a complete review of these topics, we
refer to [Sz]. It is currently required that a quasi-local mass satisfies natural
properties, among which:

(I) Non-negativity: M(Σ) ≥ 0;
(II) Rigidity: M(Σ) = 0 if and only if Σ is in the Minkowski spacetime;
(III) Monotonicity: If Σ1 = ∂M1 and Σ2 = ∂M2 with M1 ⊂ M2, then

M(Σ1) ≤ M(Σ2);
(IV) ADM limit: If (Σk) is a sequence of surfaces that exhaust an asymp-

totically flat manifold (N3, g) then

lim
k→∞

M(Σk) = mADM(g)

where mADM(g) is the ADM mass of (N, g).
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(V) Black hole limit: If Σ is a horizon in an asymptotically flat manifold
(N3, g), then

M(Σ) =

√
A

16π

where A is the area of Σ.

In [BY], Brown and York proposed the following definition for the quasi-
local mass of a surface Σ (now called the Brown-York mass):

mBY (Σ) :=
1

8π

∫

Σ

(H0 −H)dΣ.

The non-negativity of mBY (Σ) is proved in [ST] under additional assump-
tions. Indeed, they impose that ι0 is a strictly convex isometric embedding
which by the Weyl embedding theorem [We] is equivalent to the fact that Σ
has positive Gauss curvature. Moreover in this situation, the embedding ι0
is unique up to an isometry of R3.

Recently, Lam [L] proposed in his thesis the following definition:

mL(Σ) :=
1

16π

∫

Σ

1

H0

(H2
0 −H2)dΣ.

He proves that mL(Σ) has several interesting properties for certain surfaces
in complete asymptotically flat Riemannian manifolds that are the graphs of
smooth functions over R3 (see [L] for a precise description). More precisely,
it satisfies Properties (I), (III), (IV) and (V). Moreover, using the Cauchy-
Schwarz inequality it is straightforward to check that mBY (Σ) ≥ mL(Σ).

From the work of the first two authors [HM1], we can define a quasi-local
mass similar to Brown-York and Lam and prove its non-negativity in the
more general context described in the beginning of this section. Indeed, if
we let

m(Σ) :=
1

16π

∫

Σ

1

H
(H2

0 −H2)dΣ

then from the immersion ι0, there exists a spinor field Ψ0 ∈ Γ(S/Σ) satisfying
the following Dirac equation

D/Ψ0 =
H0

2
Ψ0, |Ψ0| = 1.

It is obtained by taking the restriction to Σ of a parallel spinor field on R
3.

Now taking Ψ0 in Inequality (25) with X ≡ 0 and F = H gives m(Σ) ≥ 0.
Moreover, from [HM1], m(Σ) = 0 if and only if M is a Euclidean domain
and the embedding of Σ in M and its immersion in R

3 are congruent. In
other words, Properties (I) and (II) are satisfied.

Note that if we assume that Σ has positive Gauss curvature (which is
a stronger assumption) then using the Cauchy-Schwarz inequality implies
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that m(Σ) ≥ mBY (Σ) and the nonnegativity of m(Σ) follows from the non-
negativity of the Brown-York mass. On the other hand, it is also proved in
[HM1] (see the proof of Corollary 10) that (IV) holds. However it is clear
from the definition that the mass m(Σ) is not defined for minimal surfaces
(and so for apparent horizons). Moreover, the monotonicity Property (III)
is not satisfied in general. Take for example the 3-dimensional Schwarzschild
manifold (N3, g) = (R3 \ {0}, u4geucl) where u := 1 + M

2r , M > 0 and geucl
is the Euclidean metric. For a sphere S

2
r in N3, its isometric image in R

3 is
S2ru2 . Thus H0 =

2
ru2 and since the Schwarzschild metric is conformal to the

Euclidean metric, we have

H = u−2
(2
r
+

4

u

∂u

∂r

)
.

A direct computation gives

m(S2r) =M
r + M

2

r − M
2

and so m(S2r) is monotonically decreasing to the ADM mass M as r goes to
infinity.

3. Spacelike surfaces in initial data sets

3.1. The Jang Equation. In this section, we recall some well-known facts
on the Jang equation (for more details, we refer to [SY2], [Y] or [AEM]). This
equation first appears in [Ja] in his attempt to prove the positive mass the-
orem using the inverse mean curvature flow. However, as shown by Schoen
and Yau [SY2], this equation can be used to reduce the proof of the gen-
eral positive mass theorem to the case of time-symmetric initial data sets
(that is Kij = 0) previously obtained by the same authors in [SY1]. More
recently, Liu and Yau ([LY1],[LY2]) defined a quasi-local mass, generalizing
the Brown-York quasi-local mass, and proved its positivity using the Jang
equation. Other similar applications of the Jang equation can be found
[WY1] and [WY2] for example.

The problem can be stated as follows: let (M3, g,K) be an initial data set
for the Einstein equation and consider the four dimensional manifoldM ×R

equipped with the Riemannian metric 〈 , 〉 := g ⊕ dt2. The problem is to

find a smooth function u :M → R such that the hypersurface M̂ of M ×R

obtained by taking the graph of u over M , satisfies the equation

H
M̂

= Tr
M̂
(K)

where H
M̂

denotes the mean curvature of M̂ in (M ×R, 〈 , 〉) and Tr
M̂
( . ) is

the trace on M̂ with respect to the induced metric. This geometric problem
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is equivalent to solve the non-linear second order elliptic equation

3∑

i,j=1

(
gij −

uiuj

1 + |∇u|2

)( (∇2u)ij√
1 + |∇u|2

−Kij

)
= 0 (27)

where ∇ (resp. ∇2) denotes the Levi-Civita connection (resp. the Hessian)
of the metric g, ui = gijuj and uj = ej(u). Note that the metric induced by

〈 , 〉 on M̂ is

ĝij = gij + uiuj

and can be viewed as a deformation of the metric g on M . In the following,

we adopt the convention thatM and M̂ denote respectively the Riemannian
manifolds (M,g) and (M, ĝ). Analogously, if ∇ denotes the Levi-Civita

connection for M , then ∇̂ denotes that on M̂ and so on. Since we assume
that the initial data set (M3, g,K) comes from a spacetime satisfying the

dominant energy condition, we have that the following relation holds on M̂ :

0 ≤ 2(µ − |J |) ≤ R̂− 2|X|2ĝ − 2δ̂(X) (28)

where

X = ω − ∇̂ log(f), (29)

ω is the tangent part of the vector field dual to −K( . , ν̂), f = −〈∂t, ν̂〉 and

ν̂ denotes the unit normal vector field to M̂ in M × R. All the quantities
Kij, µ and J are defined on M ×R by parallel transport along the R-factor.
Moreover, equality occurs in (28) if and only if µ = |J | and the second fun-

damental form of M̂ in M × R is K.

It is important to note here that in Theorem 1, we assume that there is
no apparent horizon in the interior of Ω so that there exists a global solution
of the Jang equation which does not blow-up.

3.2. Proof of Theorem 1. From the work [Y] and since we assumed that
Ω has no apparent horizon in its interior, there exists a smooth solution u on
Ω of the Jang Equation (27), defined with the Dirichlet boundary condition

u|Σ ≡ 0.

This boundary condition ensures that the metrics ĝ and g coincide on the

boundary Σ so that the Dirac operators D/ acting on S/Σ and D̂/ on Ŝ/Σ also
coincide. Moreover, from a calculation in [Y], we have:

Ĥ − ĝ(X, N̂ ) = f−1H − σ|∇u|TrΣ(K)

where N̂ denotes the unit outward normal vector field of Σ in Ω̂ and σ ∈
{±1}. From this equality and since f = −〈∂t, ν̂〉 = 1/

√
1 + |∇u|2, we easily

see that

F := Ĥ − ĝ(X, N̂ ) ≥ |H| =
√
H2 − TrΣ(K)2. (30)
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Since we assume that Σ has a spacelike mean curvature vector H, this implies
that the function F is positive on Σ. From the discussion of Section 3.1, we

also have that the resulting Riemannian manifold Ω̂ satisfies the condition
(16) because of (28), the vector field X being defined here by (29). Clearly,
all the assumptions of Theorem 4 are fulfilled and we deduce that for all
ϕ ∈ Γ(S/Σ):

0 ≤

∫

Σ

( 1
F
|D/ϕ|2 −

F

4
|ϕ|2

)
dΣ,

which by Inequality (30), implies Inequality (2).
Now assume that equality is achieved. Once again we apply Theorem 4

and then Ω̂ has at least a parallel spinor field Φ. In particular, Ω̂ is Ricci
flat and since it is a 3-dimensional domain, it is flat. Moreover, if we have

equality in (28), then the second fundamental form of Ω̂ in M × R is Kij .
So we can choose a coordinates system x̂ = (x̂1, x̂2, x̂3) in a neighborhood U
of a point p ∈ Ω such that ĝij = δij . In this chart, we have:

gij = δij −
∂u

∂x̂i

∂u

∂x̂j

and this shows that if (x̂1, x̂2, x̂3, t) denotes coordinates in the Minkowski
spacetime, the graph of u over U isometrically embeds in R

3,1 with second
fundamental form given by Kij. Then it is clear that Ω locally embeds in
the Minkowski spacetime with K as second fundamental form as asserted.
q.e.d.

As a first consequence, we have the estimate proved by the third author
in [R] for the first eigenvalue of the Dirac operator on Σ.

Corollary 9. Under the same conditions of Theorem 1, the first eigenvalue
λ1(DΣ) of the Dirac operator satisfies

λ1(DΣ)
2 ≥

1

4
inf
Σ

|H|2.

Moreover, if equality occurs then Σ is connected and there exists a local
isometric embedding of Ω as a spacelike hypersurface in R

3,1 with K as
second fundamental form.

Proof : The inequality on λ1(DΣ) follows directly by taking ϕ = Φ ∈
Γ(S/Σ) in (2) where Φ is an eigenspinor for the Dirac operator D/ associated
with the eigenvalue λ1(D/ ) (= λ1(DΣ)). On the other hand, the second part
of the equality case follows directly from Theorem 1. For the connectedness
of Σ, it is enough to remark that, from [HMZ1], the eigenspace associated to
λ1(D/ ) corresponds to the restriction on Σ of the space of parallel spinor fields

on the domain Ω̂ obtained by solving the Jang equation. Then, assuming
that Σ has several connected components, we fix one of them, say Σ0, and
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define a spinor field on Σ by

Φ̃ =

{
Φ0 on Σ0

0 on Σ− Σ0,

where Φ0 is an eigenspinor for the extrinsic Dirac operator D/ associated to

the eigenvalue λ1(D/ ). It is then straightforward to check that Φ̃ is also an
eigenspinor associated to λ1(D/ ) so that it comes from the restriction of a

parallel spinor on Ω̂. However since such a spinor field has constant norm,
it is impossible unless Σ is connected. q.e.d.

Proof of Theorem 2 : In order to establish Inequality (3) it is sufficient
to apply Inequality (2) to the restriction to Σ of a parallel spinor field on
R
3. From the equality case of Theorem 1, we deduce that Ω locally embeds

in the Minkowski spacetime with K as a second fundamental form. On the

other hand, we have equality in (30) so that Ĥ = |H| and then equality in
(3) now reads

∫

Σ

(
Ĥ −

H2
0

Ĥ

)
dΣ = 0.

We conclude by applying the rigidity part of Theorem 3 in [HM1] to the

compact Ricci-flat manifold Ω̂ to deduce that Σ is connected and |H| = H0.
q.e.d.

3.3. 2-codimensional outer untrapped submanifolds in the Minkowski

Spacetime. In this section, we prove that Inequality (2) holds in the case
of codimension two outer untrapped submanifolds of the Minkowski space-
time without any assumption on the existence of apparent horizon. More
precisely, we prove:

Theorem 5. Let Σn be a codimension two outer untrapped submanifold of
the (n+ 2)-dimensional Minkowski spacetime (Rn+1,1, 〈 , 〉), then Inequality
(2) holds. Moreover, equality holds if and only if Σ lies in a hyperplane of
R
n+1,1.

Proof : First we note that by assumption Σ factorizes through a compact
and connected spacelike hypersurface Ω of Rn+1,1. This factorization pro-
vides a Lorentzian orthonormal reference {T,N} for the normal plane of Σ
in R

n+1,1 and since Σ is the boundary of a mean-convex domain Ω and has
spacelike mean curvature vector, we deduce that the corresponding future-
directed null expansions satisfy θ+ > 0 and θ− < 0. On the other hand,
from the work of Bartnik-Simon [BS] and a straightforward generalization
of Lemma 4.1 in [MST], the submanifold Σ spans a compact, smoothly im-
mersed, maximal hypersurface Ω′ in R

n+1,1. This means that Σ factorizes
through another spacelike hypersurface Ω′ of Rn+1,1. The new factorization
provides a different Lorentzian orthonormal reference {T ′, N ′} for the nor-
mal plane of Σ in R

n+1,1. In fact, it is obvious that there must be a function
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f ∈ C∞(Σ), such that

T ′ = (cosh f)T − (sinh f)N, N ′ = −(sinh f)T + (cosh f)N.

It is clear that this new reference determines a new pair of null vectors
T ′ ±N ′ and a new future-directed null expansion of H:

θ′+ = efθ+, θ′− = e−fθ− (31)

which satisfies θ′+ > 0 and θ′− < 0. In particular, we get that 2H ′ =
θ′+ − θ′− > 0. Moreover, since Ω′ is maximal we have Tr(K ′) = 0 and the
Gauss formula gives R′ = |K ′|2 ≥ 0. Here R′ is the scalar curvature of Ω′

equipped with the metric induced by the Minkowski spacetime and K ′ is
the associated second fundamental form. On the other hand, since Σ has a
spacelike mean curvature vector, we deduce

0 < |H| =
√

−θ′+θ
′
− =

√
H ′2 − TrΣ(K ′)2 ≤ H

′

(32)

so that we conclude that Ω′ is such that R′ ≥ 0 and H ′ > 0. Now we can
apply Theorem 4 to Ω′ with X ≡ 0 and then for all ϕ ∈ Γ(S/Σ), we have:

0 ≤

∫

Σ

( 1

H ′
|D/ϕ|2 −

1

4
H ′|ϕ|2

)
dΣ. (33)

Inequality (2) follows using Inequality (32). Assume now that equality
is achieved. From the equality case of (33), we deduce that Ω′ has at least
a parallel spinor so that Ω′ is Ricci flat. In particular, it has zero scalar
curvature and since R′ = |K ′|2 = 0, Ω′ has to be totally geodesic in R

n+1,1

hence Σ lies in a hyperplane of Rn+1,1. Conversely, if Σ is 2-codimensional
submanifold with spacelike mean curvature vector which lies in a hyperplane
R
n+1,1, then its second fundamental form K is zero since a hyperplane Pn+1

is totally geodesic. In particular, the squared norm of the mean curvature
vector of Σ satisfies

|H|2 = H2 − TrΣ(K)2 = H2, (34)

where H is the mean curvature of Σ in the hyperplane P . Note that |H| > 0
sinceH > 0. Consider now a parallel spinor field Φ0 on R

n+1,1. The spinorial
Gauss formula from the totally geodesic immersion of the hyperplane Pn+1

in R
n+1,1 and then the one from Σn into Pn+1 tell us that Φ0 satisfies for

all Y ∈ Γ(TΣ):

∇/ Y Φ0 = −
1

2
γ/(AY )Φ0

where A is the Weingarten map of Σn in Pn+1. Taking the trace of this
identity gives

D/Φ0 =
1

2
HΦ0 =

1

2
|H|Φ0

where the last equality comes from (34). It is now straightforward to check
that equality holds in (2) for ϕ = Φ0. q.e.d.
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Note that Theorem 3 is obtained as a direct application of the previ-
ous result. As an application we obtain the n-dimensional counterpart of
Corollary 9 in the Minkowski spacetime with an optimal rigidity statement:

Corollary 10. Let Σn be a codimension two outer untrapped submanifold
in R

n+1,1, then

|λ1(DΣ)| ≥
1

2
inf
Σ

|H|.

Moreover, equality occurs if and only if Σ is a totally umbilical round sphere
in a spacelike hyperplane of Rn+1,1.

Proof : It is enough to apply the previous theorem to an eigenspinor
for D/ associated with the eigenvalue λ1(D/ ) and we directly have the result.
From Theorem 5, Σ lies in a totally geodesic spacelike hyperplane Pn+1 with
constant positive mean curvature H. Then the Alexandrov theorem allows
to conclude that Σ is a totally umbilical sphere in Pn+1. The converse is
clear by taking the restriction of a parallel spinor of the Minkowski space to
Σ via the totally geodesic immersion of Rn+1 in R

n+1,1. q.e.d.
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Wiss., 1 (1936), 33–76.
[EMW] M. Eichmair, P. Miao, X. Wang, Extension of a theorem of Shi and Tam, Calc.

Var. Part. Diff. Eq., 43, no. 1-2 (2012), 45–56.



ON A LIU-YAU TYPE INEQUALITY 21

[HH] J. Hass, J. Hughes, Immersions of surfaces in 3-manifolds, Topology, 24 (1985),
97–112.
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