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Abstract— Although the IEEE 802.11e standard including
Quality of Service support in WiFi networks was recently
approved, it does not increase wireless capacity. In order to
optimize wireless resources, it is necessary to model the behavior
of the system to assist network planning and deployment. In
this article, we propose a Markov chain model for the EDCA
access scheme described in IEEE 802.11e. Contrary to existing
IEEE 802.11 models, our contribution studies more realistic
assumptions since we consider a non-ideal channel moreover in
unsaturated mode. The benefits of our model are manifold: we
calculate the throughput more precisely, we can study various
traffic loads, and finally we can examine various transmission
environments.
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I. INTRODUCTION

Since the first IEEE 802.11 standard in 1997 [1] , research
laboratories kept on trying to model the behavior of access
mechanisms to the medium.

Indeed, the difficulty to model DCF [1], which is the main
access mechanism of IEEE 802.11, relies in the number of
parameters that change during the transmission by a station
(denoted STA in the following). A relevant and efficient model
would constitute a key to assist the deployment of wireless
networks, which is currently done in a quasi empirical way. As
far as we know, there exists no software to evaluate the exact
capacity of a cell where users have very different requirements
in quality of service (QoS).

Thus, it is necessary to calculate the probability of colli-
sion, errors over the channel, and also the average time in
contention period. These events being by nature random, the
model will only approximate reality, but will not constitute
an exact model. Many models have already been proposed
in the literature, each one having its own specificities and
its approximations. The model that we propose is closer to
reality since it unveils two major approximations that are
common to all former models, namely the assumptions that
the channel is ideal and saturated. In section 2, we present
existing models, their advantages, drawbacks, and limits. After
having presented our model in section 3, we will present the
results provided by our model in section 4 and conclude by
proposing improvements for our model.

II. STATE OF THE ART

We distinguish two main categories of models. Since 1996,
the CSMA/CA mechanism used by the DCF and its perfor-
mances were studied by Bianchi [2] . This model which is
based on Markov chains was published in 1998 [3]-[4] . In
parallel, Cali et al. [5] developed a model based on geometric
distributions. The so-called Bianchi model is based on a two
dimensional Markov chain. The first dimension s(t) indicates
the backoff stage which represents the number of transmission
attempts which failed. The second dimension b(t), indicates the
value of the backoff timer, which corresponds to the number of
time slots to wait before being able re-initialize a transmission
after a failure. This model fits well to a saturated medium
because it assumes that the STA have permanently data to
transmit. This implies that the results represent the maximum
throughput offered by a WiFi cell. However, this model uses
several approximations. Firstly, the channel is supposed to be
ideal, i.e., it does not introduce any error. Moreover, the limited
number of retransmissions allowed in the standard is not taken
into account in the model.

Cali’s model also permits to compute the maximum flow
offered in saturated mode for the DCF, but this time, the
backoff time is evaluated as the average of a geometric
distribution. Cali’s model uses the same approximations as
Bianchi’s model. The major difference between those two
models lies in the way the probability is computed for a station
transmitting at a time t (the computation being easier in Cali’s
model). In order to enrich these two models, several papers
were published that tried to improve one of the approximations
listed previously.

Using the model of Cali, [6] developed a model in un-
saturated traffic context with an error-prone channel. Several
improvements of Bianchi’s model have also been proposed.
[8] improves Bianchi’s model by taking into account the
error probability directly in the calculation of the flow, while
keeping the approximation of the saturated mode only for
the DCF. [9] examined unsaturated networks, by introducing
an additional state into the Markov chain. This state takes
into account the possibility of having an empty buffer after
a transmission. The model deals with an additional problem,
which is that of the multi-rate STA. However, this work was
carried out within the framework of an ideal channel, and does
not take into account several significant characteristics of the
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DCF such as the frozen time when the channel is busy. The
IEEE 802.11e standard [10] including mechanisms for QoS
management, has been already designed, for use in saturated
mode [11], [12] . These models are both based on Markov
chains and assume that the system is in unsaturated mode and
that the channel is ideal.

III. SYSTEM MODEL

Our article is placed in the context of IEEE 802.11e. We
reuse the methodology presented in [11] . Our work is an
improves IEEE 802.11 and IEEE 802.11e existing models
Indeed, our objective is to provide a more realistic and ex-
tensive model. Thus, we propose the following improvements:
we consider a non-ideal channel (i.e., which introduces errors
into the packets, according to a fixed probability of error),
we consider that stations do not always have a packet to
transmit (i.e., the emission buffer of the network card can be
empty). These two enhancements are motivated by the fact
that the assumption of an ideal channel is (as in many quoted
models) a rather coarse simplification in the field of wireless.
Moreover, the saturated medium which is usually considered
to evaluate the capacity of the network only indicates the
maximum capacity of the link. To our knowledge, there is
no EDCA model that takes into account a non-ideal channel,
under finite load. We estimate that the introduction into the
model of these two elements is necessary to obtain more
precise models that are closer to reality.

A. Four dimensional Markov Chain

The Markov chain, fig.2 and more detailled on fig.4, models
the behavior of an access category (AC) managed by EDCA,
for a given station. In order to simplify the diagram, we did
not represent all the transition probabilities from one state
to another. They will all be described in section III-D. Our
model comprises a great number of indexes and variables,
which are summarized in the following table:

Variable’s Explanation
name

s(t) Number of retry at time t
b(t) Backoff timer at time t
υ(t) Timer in transmission, collision, error

or frozen period
e(t) If error occurs e(t)=1 else 0

j Value of s(t)
k Value of b(t) ∈

[0,Wj]
d Value of υ(t)
e Value of e(t)
i Index of the Access Category ACi i=

0, 1, 2,or 3
Ai Value of AIFSi decreased by 1
N Value of the initial frozen timer
Wj Maximal value of the backoff timer
m Number of maximum retry with Wj

increasing

m + h Number of maximum retry before discarding
the packet

Pi Collision probability for ACi
Pb Probability that the channel is busy
q Probability that the buffer isn’t empty
γ Propagation time
Te Average time to detect an error
Ts Average time for a successful transmission
Tc Average time to detect a collision

Table 1: Variables and constants of the model

The first dimension has been explained in the state of
art. The second dimension b(t), is a stochastic process
indicating the state of the backoff timer, for a given AC at
time t. The initial value of the timer is drawn among an
interval [0, Wj], where Wj depends on the backoff stage j
with

Wj+1 = 2Wj + 1

The third dimension introduced by [11] is a variable which
have various meanings according to the context. During the
frozen period, it indicates the remaining time before being
able to carry on decreasing the timer fig.3. In transmission or
collision period, it indicates the remaining time before the end
of the period, fig.1.

In our model, we introduced a fourth dimension, denoted
e(t). This variable may have two values:

1. e(t) = 1 the transmission is corrupted but did not undergo
a collision

2. e(t) = 0 in all the other cases

This variable was introduced in order to make the difference
between, a transmission failed because of a collision and that
which fails because of an error. This difference is fundamental
since the objective of our model is to provide the collision
probability in the most precise way, without using an any other
factor such as the influence of the errors on channel. .There
isn’t this dimension in the previous models for the simple
reason that the channel is generally considered as being ideal.
Let Pi be the collision probability and Pb probability that
the channel is busy. Beside, Pi, is made up of two parts: a
probability of external collision, due to the transmissions of
the other STA and a probability of internal collision, due to
the virtual contention which takes place between ACi of the
same STA. Thus:

Pi = Piint + Piext

At time t, a state of a given AC is fully determined by the
quadruplet (j, k, d, e) which corresponds to the values taken
respectively by each dimension.

Let’s describe the chain through some specific states fig.2 .
The system is in the state:
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- j = -1, if a new packet, following a past transmission
(either successful or not), is in the queue.

- j = -2 indicates that the AC is in the transmission period,
after having reached the channel successfully, without having
meeting collision, nor errors.
The following states are specific to our model. Here lies
one of the model’s keys: the unsaturated buffer. Indeed, we
consider the possibility of the arrival of a new packet, j = -4,
as well as the possibility of not having a standby packet in
the buffer j = -5.

- j = -4 indicates that AC tries to transmit a packet lately
arrived at the buffer and not just following a transmission.

- j = -5, indicates that the buffer of the AC is empty

Fig. 1. Collisions and Errors

B. Markov Chain

We will now describe the chain starting from a given state
and will observe the possible path through the chain. Let us
suppose that AC is in the state (j, 1, 0, 0).

AC met thus j collisions and/or corrupted transmissions
and undergoes its jth backoff. This is indicated by the first
dimension of this state. Its backoff timer is equal to 1 (shown
by the second dimension of the state) and is decreasing, as
the value of the third dimension indicates it to 0. Beside,
knowing that the j-th transmission did not begin yet, the
4th dimension is by default equal to 0. From that state, two
possibilities arise at ACi. If ACi observes that the channel
is busy, the backoff timer is frozen, which involves the
beginning of the frozen period, and brings ACi to the state
(j, 1, N+A, 0). If not, then go to (j, 0, 0, 0). This cycle is
repeated until AC can reactivate its timer and be able to
finally reach the channel. At this time, if no other ACj of
higher priority within the same STA and no other STA tries
to transmit at the same time, ACi will be able to reach the
channel and transmit its packet. However, if a collision or an
error occurs on the packet, a certain time respectively Tc or
Te will run out before AC becomes aware of this collision or
respectively of this error, and passes to state j+1 for a new

attempt.

Fig. 2. Simplified Markov Chain

C. Characteristic of our model:
the unsaturated mode

After a successful transmission, if the buffer has already a
new packet on standby (with a probability q), then ACi enters
state j = -1. In the case of an empty buffer (with a probability
1-q), ACi enters a waiting state noted (-5, 0, 0, 0). In each
Time Slot, ACi, checks its buffer, if it still does not contain a
new packet to be transmitted it loops on the same state (-5, 0,
0, 0). On the other hand, if a new packet arrives in the queue,
the ACi moves to state (-4, 0, A, 0), which allows it to access
the channel directly after having checked that it remained free
for a certain time (AIFS).

This is a major difference with the saturated models that
assume a STA always has a packet to transmit, in other
words, that its buffer is never empty. Therefore, when a
new packet arrives, it has to wait and initiate a backoff,
instead of being sent directly after an AIFS. In our model,
we introduced (-4,0,d,0) d=0..A to correct this approximation.
The introduction of this state (-5,0,0,0) is fundamental, since a
STA does not always have data to transmit. Thanks to our state,
we can consider the possibility of having an empty buffer.
We can in addition, via the parameter q, represent different
load scenarios, which is a significant added value to existing
models.

D. Transitions probabilities

We will now describe the transition probabilities from a
state to an other.

1) For states (-2, 0, d, 0), d = 1,2,..., [Ts],

• P{(−2, 0, d− 1, 0)/(−2, 0, d, 0)} = 1
2 ≤ d ≤ [Ts]

Account for the fact that, during the transmission, time
is decremented.
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• P{(−1, 0, Ai0)/(−2, 0, 1, 0)} = q

After a successful transmission, when a new packet is
already waiting in the buffer

• P{(−5, 0, 0, 0)/(−2, 0, 1, 0)} = 1− q

When the buffer is empty

2) For states (j, 0, 0, 0), j = 0, 1,..., m+h,

• Successful transmission if no collision occurs nor
error.

P{(−2, 0, [Ts], 0)/(j, 0, 0, 0)} = (1− Pi)(1− Pe)
0 ≤ j ≤ m + h

• If a collision occurs then AC enter the collision
period

P{(j, 0, [Tc], 0)/(j, 0, 0, 0)} = Pi,

0 ≤ j ≤ m + h

• If no collision occurs but there is an error

P{(j, 0, [Te], 1)/(j, 0, 0, 0)} = (1− Pi)× Pe

0 ≤ j ≤ m + h

3) For state ( m+h, 0, 0, 0),
• If no collision and no error occurs, then the trans-
mission succeed

Fig. 3. A Frozen Period

P{(−2, 0, [Ts], 0)/(m + h, 0, 0, 0)} =
(1− Pi)(1− Pe)

• If a collision or an error occurs after the collision
or error period, the packet is discarded because m+h
retries have been exhausted. Then the AC checks his
buffer. If a new packet is already waiting:

• After an error:

P{(−1, 0, Ai, 0)/(m + h, 0, 1, 1)} =
(1− Pi)Pe × q

• After a collision:

P{(−1, 0, Ai, 0)/(m + h, 0, 1, 0)} = Pi × q

Let: Pi + (1− Pi)Pe = Pfi

If the buffer is empty:

• After an error:

P{(−5, 0, 0, 0)/(m + h, 0, 1, 1)} =
(1− Pi)Pe × (1− q)

• After a collision:

P{(−5, 0, 0, 0)/(m + h, 0, 1, 0)} = Pi × (1− q)

4) For states (j, 0, d, 0), j= 0, 1 ... m+h and d ≥ 1, when a
collision occurs, time is decremented by 1 for each time
slot elapsed, till the AC exit the collision period:

P{(j, 0, d− 1, 0)/(j, 0, d, 0)} = 1
0 ≤ j ≤ m + h; 2 ≤ d ≤ [Tc]

When the collision period finishes, the AC doubles the
size of the Contention Window (CW), except when CW
had already reached the maximum value CWmax, and
chooses a random number from the uniformly distributed
set [0, Wj+1] and then enters the next backoff stage

P{(j + 1, k, 0, 0)/(j, 0, 1, 0)} =
1

(Wj+1 + 1)
0 ≤ k ≤ Wj+1; 0 ≤ j ≤ m + h

5) For states (j, 0, d, 1), j = 0, 1...m + h and d ≥ 1,
it is similar to the collision period and time is still
decremented by 1:

P{(j, 0, d− 1, 1)/(j, 0, d, 1)} = 1
0 ≤ j ≤ m + h; 2 ≤ d ≤ [Te]
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P{(j + 1, k, 0, 0)/(j, 0, 1, 1)} =
1

(Wj+1 + 1)
0 ≤ k ≤ Wj+1; 0 ≤ j ≤ m + h

6) For states (j, k, 0, 0), j = 0, 1,..., m+h and k ≥ 1, the
backoff timer is decremented by 1 if the channel is idle,

P{(j, k − 1, 0, 0)/(j, k, 0, 0)} = 1− Pb

1 ≤ k ≤ Wj; 0 ≤ j ≤ m + h

It is frozen if the channel is buzy and has to wait N+A
Time Slots

P{(j, k,N + A, 0)/(j, k, 0, 0)} = Pb

1 ≤ k ≤ Wj ; 0 ≤ j ≤ m + h

7) For states (j, k, d, 0), j = 0, 1, ...,m + h, k ≥ 1 and
d ≥ 1, when a time slot elapsed during the frozen period,
the remaining frozen time is decremented by 1

P{(j, k, d− 1, 0)/(j, k, d, 0)} = 1
1 ≤ k ≤ Wj ; 0 ≤ j ≤ m+h; Ai+1 ≤ d ≤ N+Ai

After the frozen period, if the channel is idle, the backoff
time is further decremented

P{(j, k, d− 1, 0)/(j, k, d, 0)} = 1− Pb

1 ≤ k ≤ Wj ; 0 ≤ j ≤ m + h; 2 ≤ d ≤ Ai

P{(j, k − 1, 0, 0)/(j, k, 1, 0)} = 1− Pb;
1 ≤ k ≤ Wj ; 0 ≤ j ≤ m + h.

But if the channel is still busy, then the frozen time
returns to its initial value, i.e., N + Ai.

P{(j, k,N + A, 0)/(j, k, d, 0)} = Pb

1 ≤ k ≤ Wj ; 0 ≤ j ≤ m + h; 1 ≤ d ≤ Ai,

8) For states (-1, 0, d, 0), d = 0, 1... N + Ai, before
transmitting the packet, the channel has to be idle during
an AIFSi time. If it is still idle, then the backoff process
is started, and if not the frozen period is initiated.

P{(−1, 0, d− 1, 0)/(−1, 0, d, 0)} = 1
Ai + 1 ≤ d ≤ N + Ai

P{(−1, 0, d− 1, 0)/(−1, 0, d, 0)} = 1− Pb

1 ≤ d ≤ Ai

P{(−1, 0, N + A, 0)/(−1, 0, d, 0)} = Pb

0 ≤ d ≤ Ai

P{(0, k, 0, 0)/(−1, 0, 0, 0)} =
1− Pb

W0 + 1
0 ≤ k ≤ W0

9) For states (-4, 0, d, 0), d = 0,..., Ai, the new packet is
already available. If the channel is idle, the packet is
directly transmitted without going through the backoff
process, since it is a new packet which is not following a
last transmission. In case of a busy channel, the backoff
process is initiated

P{(−4, 0, d− 1, 0)/(−4, 0, d, 0)} = 1− Pb

1 ≤ d ≤ Ai

P{(−2, 0, T s, 0)/(−4, 0, 0, 0)} = 1 − Pfi

P{(0, 0, T c, 0)/(−4, 0, 0, 0)} = Pi

P{(0, 0, T e, 0)/(−4, 0, 0, 0)} = (1− Pi)Pe

10) For states (-5, 0, 0, 0), if the buffer is empty, then the
AC waits until a packet arrives, and then initiates the
regular contention process through state (-4, 0, Ai, 0).

P{(−5, 0, 0, 0)/(−5, 0, 0, 0)} = 1− q

P{(−4, 0, A, 0)/(−5, 0, 0, 0)} = q

E. Probability in steady state and equation systems

Let bj,k,d,e be the probability to be in state (j,k,d,e), when
the system is steady (in other words when t → +∞). As
mentioned previously, Pfi stands for the probability of a
failed transmission, because of collision or error.

We calculated those probabilities using the same
methodology as [4] and [10], but it was naturally necessary
to adapt to the requirements and states of our model.

We obtained:

bj,0,0,0 = (Pfi)j × b0,0,0,0 (1)
0 ≤ j ≤ m + h

b0,k,0,0 =
W0 − k + 1

W0 + 1
× (1− (1− q)(1− Pb)A+1)
× b0,0,0,0

1 ≤ k ≤ Wj

(2)
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bj,k,0,0 =
Wj + 1− k

Wj + 1
.bj,0,0,0 (3)

1 ≤ j ≤ m + h; 0 ≤ k ≤ Wj

For the third dimension, due to the regularity of the Markov
chain, we get:

bj,k,d,0 =
Pb

(1− Pb)A
× bj,k,0,0 (4)

Ai ≤ d ≤N + Ai; 0 ≤ j ≤ m + h; 1 ≤ k ≤ Wj

bj,k,d,0 =
Pb

(1− Pb)d
× bj,k,0,0, (5)

1 ≤ d ≤Ai − 1; 0 ≤ j ≤ m + h; 1 ≤ k ≤ Wj

bj,0,d,0 = Pi × bj,0,0,0, (6)
1 ≤d ≤ [Tc]; 0 ≤ j ≤ m + h

bj,0,d,1 = (1− Pi)× Pe × bj,0,0,0 (7)
1 ≤d ≤ [Te]; 0 ≤ j ≤ m + h

b−2,0,d,0 = (1− Pfi)(m+h+1) × b0,0,0,0 (8)

1 ≤d ≤ [Ts]

b−1,0,d,0 =
q × b0,0,0,0

(1− Pb)d+1
(9)

0 ≤d ≤ Ai

b−1,0,d,0 = q × b0,0,0,0 ×
1− (1− Pb)Ai+1

(1− Pb)Ai+1
(10)

Ai+1 ≤ d ≤ N + Ai

And for states (-5, 0, 0, 0)

b−5,0,0,0 =
(1− q)× b0,0,0,0

q
(11)

b−4,0,d,0 = (1− Pb)Ai−d × (1− q)× b0,0,0,0 (12)
0 ≤d ≤ Ai

By substituting (1) into (3),and (3) into (4)-(7), all the
probabilities bj,k,d,e can be derived from Pbi, Pi, Pe, q, which
respectively stand for the probability that the channel is busy,
the probability of collision for ACi, the packet error rate, and
the probability that the buffer is not empty.

Finally we derive b0,0,0,0i from the normalization condition:

b0,0,0,0i =



1−q
q + [Ts](1− (Pfi)m+h+1)

+(1− q)
(

1−(1−Pb)
A+1

Pb

)
+q (1+NPb)

Pb

1−(1−Pb)
A+1

(1−Pb)A+1 + ([Tc]Pi + 1)(
1−P m+h

fi

1−Pfi
)

+([Te](1− Pi)Pe)(
1−P m+h

fi

1−Pfi
)

+ 1+NPb

2(1−Pb)A

([
1− (1− q) (1− Pb)

A+1
]
×W0

)
+

m+h∑
j=1

WjP
j
fi

+Pm+h
fi



−1

Thus, to derive b0,0,0,0i we have must get the values of
Ts, Tc, Te, Pb, Pi, Pe,m, h, Wj , A, N, and q.
The derivation of Ts, Tc, and Te will be explained further.
They depend on the considered ACi but also on the packet
size. The parameters m,h,A, N, Wj are characteristics of the
ACi. For example, Wj depends on its initial value W0 (also
denoted CWmin), which is a variable that differs from an ACi

to another one. The values of Pe depends on the transmission
environment.
Let τ be the probability that an ACi accesses a channel. It
corresponds to the sum of the probabilities to be in one of
the final state of backoff, which allows transmitting on the
medium, then:

τi =
m+h∑
j=0

bj,0,0,0i =
m+h∑
j=0

P i
fi × b0,0,0,0i

=
1− Pm+h+1

fi

1− Pfi
× b0,0,0,0i

Giving that a STA includes 4 ACi, the probability that a STA
transmits equals the probability that at least one of the ACi

transmits, so:

τ = 1−
3∏

i=1

(1− τi) (13)

Considering that the channel is occupied by the ACi, if the
transmission, collision or error is related to this ACi. Let υi

be the probability that the channel is occupied by ACi

υi =
[Ts]∑
d=1

b−2,0,d,0 +
m+h∑
j=0

[Tc]∑
d=1

bj,0,d,0 +
m+h∑
j=0

[Te]∑
d=1

bj,0,d,1 (14)

Then :

υi = b0,0,0,0i × (1− Pm+h+1
fi )

× (Ts +
Pi × Tc + (1− Pi)pe × Te + 2

1− Pfi
) (15)

And υ the probabilility that the channel is occupied by a
station
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υ = 1−
3∏

i=1

(1− υi). (16)

The probability that the channel is busy is given by:

Pb = 1− (1− υ)M (17)

M stands for the total number of active stations. The
collision probability is given by the probability that at least one
other STA transmits at the same time (called external collision)
or an other ACi’ in the same STA (virtual internal collision).

Pi = 1− (1− τ)M−1 ×
∏
i′>i

(1− τi′) (18)

where i’ means that ACi′ has a higher priority than ACi.

IV. PERFORMANCE EVALUATION:
THE THROUGHPUT

The standardized throughput for a given AC is derived
as the ratio between the effective time to transmit the data
and the average time between two successive transmissions.
This average time takes into account the time spent in the
contention process, the time possibly wasted in collision
and/or error as well as time to successfully transmit the packet,
including transmission times of the protocol overheads.

Let Si be the throughput for the ACi

Si = PsiP
E[I]+

P3
i′=0 Psi′ (Ts+AIFS[ACi′ ])+

P3
i′=0 Pi′Tc+PeTe

(19)

Where P stands for the data payload and E[I] is the average
time where the channel is idle. We have:

E[I] =
1
Pb
− 1 (20)

Psi and Psi′ correspond to the probability that the transmission
succeeds resp. for ACi and ACi′ .

Psi is given by the following:
With

Psi =
M × Pti(1− υ)M−1 ×

∏
i′>i(1− υi′)

1− (1− υ)M
(21)

Pti = Ts× b0,0,0,0i × (1− (Pfi)m+h+1) (22)

For Ts, Tc, and Te, we use the values given by the standard
[10].

Below, we give the equations to calculate each of those
times. Since there are two modes, namely the basic mode and
the RTS/CTS mode, we indicate by a ”b” the values for the
basic mode and ”r” those for the RTS/CTS mode.

For the basic mode

Tsb = PHY header + MACheader + Tp + γ

+ SIFS + ACK + γ

Teb = Tsb

Tcb = PHY header + MACheader + Tp + γ

+ ACK + SIFS

And for the RTS/CTS mode:

Tsr = RTS + γ + SIFS + CTS + γ

+ SIFS + PHY header + MACheader

+ Tp + γ + SIFS + ACK + γ

Ter = Tsr

Tcr = RTS + γ + SIFS + CTS + γ

+ SIFS

Where γ stands for the propagation time, which is often
neglected in the models, and Tp stands for the payload’s
transmission time which obviously depends on the nominal
throughput R (e.g.: 54 mbps for 802.11a).

V. CONCLUSION

In this article, we have presented an accurate EDCA model
based on a four dimensional Markov chain. We consider a non-
ideal channel, under different traffic scenarios (saturated and
unsaturated). Our model is very rich, which makes it on the
one hand, more accurate and closer to reality, but on the other
hand, it requires more complex calculations. The main result
of the model lies in the computation of the throughput which
leads to the capacity of the system. This result is essential
in order to design a planification tool for WiFi QoS-enabled
networks. Further extensions of this model will also compute
the average delay and study networks in which packet sizes
may be variable.
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Fig. 4. The full Markov chain
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