
HAL Id: hal-01116577
https://hal.science/hal-01116577v1

Submitted on 13 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open licence - etalab

Unconventional digital computing approach: memristive
nanodevice platform

Mahyar Shahsavari, M Faisal Nadeem, S Arash Ostadzadeh, Philippe
Devienne, Pierre Boulet

To cite this version:
Mahyar Shahsavari, M Faisal Nadeem, S Arash Ostadzadeh, Philippe Devienne, Pierre Boulet. Un-
conventional digital computing approach: memristive nanodevice platform. physica status solidi (c),
2015, Issue physica status solidi (c) physica status solidi (c) Special Issue: E-MRS 2014 Spring Meet-
ing – Symposium E • E-MRS 2014 Spring Meeting – Symposium F • E-MRS 2014 Spring Meeting –
Symposium S, 12 (1-2), pp.222 - 228. �10.1002/pssc.201400069�. �hal-01116577�

https://hal.science/hal-01116577v1
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
https://hal.archives-ouvertes.fr

physica status solidi

Unconventional digital computing
approach: memristive nanodevice
platform

Mahyar Shahsavari*,1, M. Faisal Nadeem 2, S. Arash Ostadzadeh2, Philippe Devienne1, Pierre Boulet1

1 University of Lille, LIFL, CNRS, UMR 8022, F-59650 Villeneuve d’Ascq, France
2 Department of Software & Computer Technology, Delft University of Technology, Netherland

Key words: material implication, nanoscale crossbar, memristor nanodevice, digital computing

∗ Corresponding author: e-mail mahyar.shahsavari@lifl.fr, Phone: +33 (0)3 20 33 59 51

Memristor is a two-terminal nanodevice that has recently
attracted the attention of many researchers. Its simple
structure, non-volatility behavior, high-density integra-
tion, and low-power consumption make the memristor a
promising candidate to act as a switch in digital gates
for future high-performance and low-power nanocom-
puting applications. In this paper, we model the behavior
of memristor by using Verilog-A. To investigate its char-
acteristics in a circuit, we use the HSPICE simulator.

Furthermore, a library of digital gates are provided by
using two approaches to make digital gates: the first one
is based on material implication (IMP) and the second
one is based on crossbar arrays. Finally, we perform a
comparison and evaluation between the two methods.

Copyright line will be provided by the publisher

1 Introduction Memristor has recently drawn wide
attention of scientists and researchers due to non-volatility,
better alignment, and excellent scalability properties [1].
Memristor remembers its last state after the last power
plugging and has simple physical structure, high-density
integration, and low-power consumption. These features
make memristor an attractive candidate for building the
next generation non-volatile memories [2]. From high-
performance computing point of view, memristor has po-
tential capability to conquer the memory bottleneck issue,
by utilizing computational unit next to the memory [3].

The logic computing applications of memristor have
been investigated by several researchers [4–13]. For in-
stance, Borghetti et al. [12] used material implication
(IMP) logic operation to carry out logic computation by
using memristors. In IMP approach,A IMPB (A→B) op-
eration means ‘if A, then B’ and can be read as A implies
B. IMP together with a FALSE gate are able to form a
functionally complete set (any boolean function can be ex-
pressed). By applying memristor as a digital switch, a high
memristance (memristor resistance) is considered as logic
‘0’ and a low memristance is considered as logic ‘1’. An-

other approach to make gates by a two-terminal device as
a switch is the programmable crossbar architecture [8,13].
The crossbar nanowire array architecture can be used to
compute logic functions by using memristor as a switch
between two nanowires [4].

The main contributions of this paper are:

–To demonstrate that memristor has appropriate char-
acteristics to be applied as a switch in both IMP and
crossbar array methods, we proposed our electrical
model of the memristor behavior. Modeling is per-
formed by using Verilog-A Hardware Description Lan-
guage (HDL).

–Material implication (IMP) logic function and crossbar
array architecture are investigated as the two novel and
most promising methods for creating logical functions
by memristors.

–The crossbar array architecture approach is developed
in the term of using only memristors as switches be-
tween nanowires.

The reminder of the paper is organized as follows. The
electrical model is presented in Section 2. Then, we apply

Copyright line will be provided by the publisher

2 Mahyar Shahsavari et al.: unconventional digital computing

our Verilog-A model in the HSPICE circuit simulator to
observe memristor behavior in the circuits. In Section 3,
the stateful logic operations via IMP is described. In Sec-
tion 4, the crossbar array architecture is presented by using
memristor as a junction switch. Evaluations of the two ap-
proaches are investigated in Section 5. Section 6 concludes
the paper.

2 Electrical model When an electric field is applied
to the terminals of memristor, the shifting in boundary be-
tween its doped and undoped regions leads to variable total
resistance of the device. In Figure 1.a, the electrical behav-
ior of memristor can be modeled as follows [14]:

v(t) = Rmemi(t) (1)

Rmem = RON
w(t)

D
+ROFF (1− w(t)

D
) (2)

where w(t) is the width of the doped region, D is the over-
all thickness of the TiO2 bi-layer, RON is the resistance
when the active region is completely doped (w = D) and
ROFF is the resistance, when the TiO2 bi-layer is mostly
undopped (w→ 0).

dw(t)

dt
= µv

RON

D
i(t) (3)

which yields the following formula for w(t):

w(t) = µv
RON

D
q(t) (4)

Where µv is the average dopant mobility. By inserting
Equation (4) into Equation (2) and then into Equation (1)
we obtain the memristance of device, which for RON �
ROFF simplifies to:

M(q) = ROFF (1− µvRON

D2
q(t)) (5)

Equation (5) shows the dopant drift mobility µv and semi-
conductor film thicknesses D values, which are two fac-
tors with crucial contributions to the memristance magni-
tude. Subsequently, we can write Kirchoff’s voltage law
for memristor given by:

v(t) = M(q)i(t) (6)

By using Verilog-A HDL, we simulate the behavior of
memristor, based on its behavioral equations. To investi-
gate the characteristics of memristor in electrical circuits,
the Verilog-A model of memristor behavior must be ap-
plied as a circuit element in the HSPICE netlist. In the
HSPICE circuit, we apply a sinusoidal source to observe
the memristor reaction in a simple circuit consisting of
memristor and sinusoidal source. Figure 1.b depicts i − v

Pt Pt

D

W(t)

Doped Undoped

a

b

Figure 1 Memristor schematic and behavior: a) the memristor
structure, the difference in applied voltage changes doped and un-
doped regions, b) current versus voltage diagram, which demon-
strates hysteresis characteristic of memristor, in the simulation
we apply the sinusoidal input wave with an amplitude of 1.5v,
different frequencies, RON = 100Ω,ROFF = 15kΩ,D =
10nm,µv = 10−10cm2s−1V −1.

plot of memristor terminals that we measured in our sim-
ulation. This i − v plot, which is the most significant fea-
ture of memristor [15], is namely called “pinched hystere-
sis loop”. The i− v characteristic demonstrates that mem-
ristor can [U+201C]remember[U+201D] the last elec-
tric charge flowing across it by changing its memristance.
Therefore, we can use memristor as a latch to save data and
also as a switch for computing. Moreover, in Figure 1.b, it
is depicted that the pinched hysteresis loop is shrunk by in-
creasing frequency. In fact, when the frequency increases
toward infinity, memristor behaves similar to a linear resis-
tor.

3 Stateful implication logic One of the basic poten-
tial applications of memristors is to utilize them in build-
ing blocks of logic gates. Therefore, by applying a dig-
ital pulse voltage to the memristor terminal, we have a
switch with ON or OFF state. Unlike conventional CMOS,
in memristor-based gates, data will be stored as a resis-
tance rather than a voltage. In this case, the latches are non-
volatile. Thus,RON displays logic ‘1’ which means closed
switch and ROFF displays ‘0’ for presenting open switch.
In contrast to the three-terminal CMOS-based transistor as
a switch, in a two-terminal switch, there is no terminal to
control ON or OFF states of the switch. Consequently, in-
stead of conventional boolean logic, we should find other
substitutes to create a gate and perform computing.

IMP (Figure 2.a) is a way to use one memristor to
control the other one. IMP is recognized as a promis-
ing method for making gates by memristors [9–12]. In
IMP structure, memristors have different roles in different

Copyright line will be provided by the publisher

pss header will be provided by the publisher 3

RG

VsetVcond
A B

A B

0

0
1

1

0

1

0

1

 B'

1

1
0

1

in in out
a b

Figure 2 Memristor-based IMP: a) circuit schematic, b) IMP
truth table.

stages of the computing process: input, output, computa-
tional logic element, and a latch depending upon which
write, read, computing and storing processes are taking
place, respectively.

To figure out how IMP operates, imagine A as a ques-
tion and B as the answer to that question. If the question
is wrong, any answer (wrong or correct) makes a true out-
put (logic 1), as depicted in Figure 2.b. The only case for
the false (logic 0) output would be a wrong answer to a
correct question. So the implication logic is equivalent to
function (¬A)∨B. Figure 2.a shows the basic circuit of
memristors A and B to perform implication logic, which
are formed by the vertical nanowire crossing over the hor-
izontal nanowire connected to a load resistor RG. After
the operation of material implications, the result is stored
as the state of switch B (B′) while A is left unchanged.
To switch between logic 1 to logic 0 (and vice versa),
we need a tri-state voltage driver with a high impedance
output state when it is undriven. Vset is a negative volt-
age which should be applied to its corresponding tri-state
driver. Vset can switch memristor to conductive state with
low resistance RON . Similarly, the positive voltage Vclear
is required to change the memristive switch state to low-
conductance (high-resistance) state ROFF . It is important
to mention that the magnitude of Vset and Vclear must
be larger than device threshold voltage for switching ON
and OFF. In order to remain in a specific state (line 3 in
truth table 2.b), the Vcond is applied as a negative voltage
with a magnitude smaller than Vset. Consequently, tri-state
drive —since is not in high-impedance state— is pulsed by
one of the Vset, Vclear or Vcond. By applying Vcond and
Vset to A and B simultaneously, the memristive IMP op-
erates properly. Although the conditional voltage (Vcond)
is not necessary, except for the case AB=‘10’ (third line
in the truth table Figure 2.b), it is possible to either ap-
ply Vcond or use high-impedance (HZ) for all other cases.
If Vset is applied to B alone, it would be unconditionally
‘logic 1’, nevertheless applying Vcond by itself to A does
not change its state. On the other hand, if both voltages are
applied together, the present state of switch A determines
the next state of switch B. If A=‘0’, it means memristor

A is in high resistance state (ROFF). Therefore, there is
a small voltage drop across RG. In this case, B will be
set and A is left unchanged. Alternatively, if present state
of A=‘1’, switch A is in low resistance state and Vcond
drops across RG, so both A and B remain unchanged. It
should be noted that the RG value must be chosen such
that RON<RG<ROFF , where RON and ROFF are resis-
tance states of ‘ON’ and ‘OFF’ switches, respectively.

RG

VBVA
A B

A

0

0
1

1

0

0

1

1

0

a

c

VC

C

C

0

0
0

0

C

0

0

C'
Step 1 Step 2 Step 3

B

0

0

1

1

1

0

1

1
1

0

C'

0

1

C" A

0

0
1

1

0

0

1

1
1

01

1

C"B

0

NAND Truth Table

b

Steps
Voltage Pulses

VA VB VC

1
2
3

Vclear

Vset

Vset

Vcond

Vcond

Operation

C=0

A IMP C

B IMP C

HZ=High Impedance

HZ HZ

HZ

HZ

Figure 3 NAND configuration with IMP: a) circuit schematic,
b) required voltages for controlling the process, c) sequential
truth table to obtain NAND.

In boolean logic algebra, a set of logic operations is
called functionally complete if all other logic functions
can be constructed from combining the members of this
set. The single-element sets NAND (AND, NOT) and NOR
(OR, NOT) are functionally complete operations. In addi-
tion, it has been demonstrated that all boolean expressions
can then be written in one of the standard normal forms
using only a (IMP) operation and a false (Inverse) opera-
tion [11,12]. In fact, to show that the memristive implica-
tion logic is a functionally complete operation; the easiest
way is to synthesize the NAND function with it.

A circuit with three memristors A, B, and C is illus-
trated schematically in Figure 3.a. Assume two implica-
tion operations being performed subsequently, first A IMP
C and then B IMP C. Hence A and B are inputs and C is
output. The final output result is represented with variable
C′′ in Figure 3.c. Firstly, Vclear should be applied to switch
C to create the false operation (C ′ = (C IMP 0)). By ap-
plying Vcond and Vset pulses to A and C respectively, the
second step would be performed. Finally, C ′′ = (B IMP
C) is yielded by applying Vcond to VB and Vset to VC (see
Figure 3.b and Figure 3.c). In other words, the resulting
state of switch C can be written as:

C = B IMP (A IMP C) = ¬B ∨ ((¬A) ∨ C)

if C = 0 initially then

C = ¬B ∨ ((¬A) ∨ 0) = (¬B) ∨ (¬A)

= ¬(A ∧B)

Copyright line will be provided by the publisher

4 Mahyar Shahsavari et al.: unconventional digital computing

which is a NAND operation. Similarly, we can produce
equal IMP structure of other logic operations. In Table 1
different boolean logic gates are listed. Obviously, we can
demonstrate all logic relations in Table 1, not only by ap-
plying boolean logic rules but also by checking the truth
tables of both sides of relations.

Table 1 Different logic operations made by IMP operations and
the number of required memristors

Logic Operation Equal IMP functions #Device
NOT A A IMP 0 3
A AND B {A IMP (B IMP 0)} IMP 0 4
A NAND B A IMP (B IMP 0) 3
A OR B (A IMP 0) IMP B 3
A NOR B {(A IMP 0) IMP B} IMP 0 4
A XOR B (A IMPB) IMP {(B IMPA) IMP 0} 3

4 Crossbar architecture Programmable crossbar ar-
chitectures have been proposed as a promising approach
for future computing architectures because of their sim-
plicity of fabrication and high density, which support de-
fect tolerance [13,16]. In such architectures, assume that
each junction within the crossbar can be utterly config-
ured to activate an electronic device, such as a resistor,
diode, transistor, or recently memristor. In fact, attractive
features of memristor, such as simple physical structure,
non-volatility, high-density, and unlimited endurance make
this nano-device one of the best choices to play a switch
role in the crossbar junctions. The memristive-based cross-
bar opens new windows to explore advanced computer ar-
chitecture, different from the classical Von Neumann ar-
chitecture [16]. On the other hand, in crossbar architec-
ture, memory and logic operators are not separated. The
memory can perform logic implementations on the same
devices which store data. This is because during the opera-
tion process, control signals determine which elements act
as logic gates and which ones act as memory cells.

4.1 Memristive switches in crossbar architec-
tures Each junction in a crossbar could be connected
or disconnected by replacing a memristor as a switch in
the junction point between two vertical and horizontal
nanowires as depicted in Figure 4.a. Such a switch is in
high resistance (ROFF) (Figure 4.c) for open state or low
resistance (RON) (Figure 4.d) for close state, similar to the
states of memristor in Section 3. The memristive switch
retains its state as long as the voltage drop across it, is
not more than the required threshold voltage to change the
memristor state. In Figure 4.a the input voltage (vin) either
could be connected to the output voltage of an external
CMOS circuitry or be connected to the output of another
latch from the previous stage. As we have already men-
tioned, data in our architecture is saved as the resistance
of the memristive latch. However, for data transferring,

Vcontrol

Vin Vout

Unknown State

Open State Close State

Memristor as a switch a b

c d

Figure 4 Different states of a switch in a crossbar array.

an input voltage would be necessary. This input voltage
is driven by the state of the input impedance (Rin in Fig-
ure 5), which is a memristive switch. This voltage can be
disconnected which means the floating state (for instance,
a very high impedance �ROFF). The floating state in-
put happens when the input memristor (Rin in Figure
5.a) is OFF. Subsequently, the input voltage can also be a
fixed negative voltage (−Vf) with less magnitude than the
threshold, while the input memristor (Rin in Figure 5.b) is
ON.

The memristive switches can be configured as an in-
verting or non-inverting mode as it is depicted in Figure
5.c and Figure 5.d, respectively. If the stored data in the re-
ceiving switch is the logical complement of the input data,
the configuration is in the inverting mode. If the stored
data is the same as the input data the configuration is in the
non-inverting mode. Different control signals make differ-
ent configurations. Inverting configuration requires three
steps to perform the appropriate latch operation:
1) We preset the switch unconditionally open (Figure 5.a)
by applying a positive voltage (more than the positive
threshold) to the control of the vertical nanowire and also
by forcing input to the high impedance mode. A diode
is also required to provide a low-impedance path to the
ground to protect the junction.
2) If the input voltage is logic ‘1’ then Rin=RON and−Vf
drops across RG, so the voltage across memristor is not
enough to close it and the switch remains OFF. On the
other hand, when input is logic ‘0’, then Rin=ROFF and
memristor switch turns ON. Thus, the junction has held
the inverted state of the input (see Figure 5.b).
3) The input signal must be in high impedance (discon-
nected). The state of the switch is read out onto the hor-
izontal nanowire. This is accomplished by driving the
vertical nanowire with a small voltage whose magnitude is
less than the threshold control voltage (can not change the

Copyright line will be provided by the publisher

pss header will be provided by the publisher 5

Vcontrol=+V

Vin=float Vout

a Unconditionally Open b Conditionally Close

c Inverting Configuration d Non-Inverting Configuration

RG

Rin

RG

Rin

RG

-V

Vin= -Vf Vout

Driving switch Receiving switch Driving switch Receiving switch

Figure 5 Different states and configurations of the memristive
switches in a crossbar array.

switch state). We call this voltage vR (Read voltage).
For non-inverting configuration, as depicted in Figure 5.d,
the pull-down resistor RG is not required when writing the
state of the driving switch to the receiving one. The steps
for appropriate latch operation are the same as the ‘invert-
ing configuration’ except grounding the vertical nanowire
of the driving switch rather applying a negative voltage in
conditionally close step. In this case, by applying negative
voltage to the vertical control line, the receiving switch
will be close if the driving switch is close (low-impedance
path to the ground) and the receiving switch remains open
if the driving switch is open. Thus, the state of the first
switch is replicated in the second switch.

4.2 Configurable crossbar crray logic gates In
this section, we demonstrate how to make a gate by us-
ing the crossbar approach. We start using crossbar to make
a 3-input AND gates. Figure 6.a shows a crossbar array
which consisting of 8 memristors. We need three inputs A,
B, and C, each of which is assumed to be impedance en-
coded. Basically, various voltages are applied to vertical
nanowires to control the memristive switches. The inputs
are connected to the horizontal wires as represented in Fig-
ure 6.a. The crossbar array functions as an AND gate by
applying the following sequences.

1.All junctions are unconditionally opened by applying
a positive voltage higher than the threshold voltage to
the vin, vand, vout control vertical lines.

2.By driving vin with a negative voltage, the input data
(A, B, C) are latched in the input switches. The inputs
are in the inverting configuration thus ‘0’ and ‘1’ in-
puts, close and open the switches, respectively (Figure
6.b).

3.In this step, by driving the vin and K input to the
ground, as well as vand to the negative voltage (Fig-

ure 6.c) the input data are latched to the wired-AND
junctions.

4.In this step, the vertical control lines of the input and
output (vin, vout) are activated by a negative voltage
to capture the result to the output memristor (S8). The
voltage in point X in Figure 6.d can determine output
switch state. If there is at least one closed input (also
wired-AND) in the route from vin to the X point, the
negative voltage efficacy causes the output switch to
stay open. The reason is that the potential difference
across the output switch is not enough to close it. It
is noteworthy to mention that the voltage at X point is
yielded from the voltages dividing between the resis-
tance of switches in the route and S7 that connected to
the ground in the last horizontal nanowire line.

5.By driving a positive voltage to vand, all junctions in
this column will be opened (Figure 6.e).

6.The AND of the three inputs is stored in the output
switch and is ready to be read out.

If the output switch is at inverse mode (inverting configu-
ration), the crossbar array becomes a 3-input NAND gate.
Moreover, the crossbar array can also become a 3-input
NOR gate, if RG’s are removed while input data are ap-
plied to the circuit (Non-inverting configuration). By in-
verting the last output with the recent situation of the in-
puts, the crossbar architecture becomes a 3-input OR gate.
Consequently, all logic gates are created except XOR and
XNOR, which require a little different structures. First, we
create an exclusive-NOR gate, subsequently, by inverting
the output, XOR is obtained. To implement XNOR, two
minterms should be OR’ed together. The crossbar array
operation for creating XNOR is similar to AND crossbar
array in Figure 6. However, three additional steps are re-
quired. To simplify the crossbar array, we apply two vari-
ables A and B (Figure 7). In the following, we discuss
these sequences step by step.

1.All junctions are unconditionally opened by applying a
positive voltage to the vin, two vAND’s, and vout con-
trol lines.

2.By driving vin with a negative voltage, the input data
(A, B, Ā, B̄) are latched in the input switches. The
inputs are in the inverting configuration, therefore, ‘0’
and ‘1’ inputs close and open the switches, respec-
tively.

3.In this step, by driving the vin and K input to the
ground, and vAND1 to the negative voltage, the input
data are latched to the wired-AND for the first minterm.

4.In this step, the vertical control lines of input and output
(vin, vout) are activated by a negative voltage for first
minterm to capture the result (ĀB̄) to the output.

5.By applying the positive voltage to vAND1 (the wired-
AND), junctions become open for the first minterm.

6.For the second minterm implementation, step 3 should
be repeated by applying a negative voltage to vAND2.

7.In this step, the control lines of input and output (vin,
vout) are activated by a negative voltage for the second

Copyright line will be provided by the publisher

6 Mahyar Shahsavari et al.: unconventional digital computing

Figure 6 The crossbar array architecture for
AND function with memristor switches: a) by
applying the positive voltages all switches be-
come open (clear), b) capture data in the in-
put latches, c) transfer data to the wired-AND
switches, d) if all inputs are ‘1’ (open) then the
X spot is not negative so the output switch has
enough voltage across it to be ON, e) open all
wired-AND switches to be prepared to read out-
put, f) read output.

A

B

C

K

Vin VAND Vout

Input
Latches

Wired
AND

Output
Latch

a: All latches opened

0

1

0

K
ABC

b: Input data latched C: Wired-AND junctions closed

V V

0

VV
+V

d: Wired-AND computed latched e: Wired-AND junctions opened f: Read the output

S1 S4

S2

S3

S5

S6

S7 S8

V

RG

X

RG

RG

minterm to capture the result (AB) to the output. It is
worth to note that performing OR of the two minterms
is sequential rather than concurrent. It means that if
the output switch is set into the close state by the first
minterm, the value of the second minterm has no ef-
fect. Otherwise, changing the state of the output switch
is dependent on the second minterm.

8.By applying the positive voltage to the vAND2, the
wired-AND junctions become open for the second
minterm.

9.The XNOR of two inputs A and B is stored in the out-
put switch and it is ready to be read out.

It is also possible to make other boolean logic functions
by applying NAND combinations. However, it requires a
larger number of memristive switches. Furthermore, it nul-
lifies the most important capability of memristors, i.e. con-
figurability.

5 Evaluation In this section, we present an evalua-
tion of both the IMP and crossbar array approaches. Both
approaches have significant advantages over the CMOS-
based logic gates, such as having computing and storing
on the same physical unit, non-volatility, and small scal-
ability because of the nature of memristive switches. By
applying the IMP method, the number of memristors to
make a gate can be saved. The less number of memristive
switches causes less power consumption and cost. Table 2
provides the number of memristors required to make vari-
ous logic gates in both cases. We note that the number of
memristors to make gates in the IMP approach in Table
1 is different from Table 2. When logic operations listed
in Table 1 operate on two variables A and B, the original
logic would be lost during the implication process. For in-
stance, in case of NAND, only B is changed and in case of
XOR both A and B will change. Therefore, to store data
we require additional number of memristive switches. For

A

B

K

Vin VAND1 Vout

Input
Latches Wired ANDs

Output
Latch

RG

RG

RG

A

B
RG

VAND2

A B AB

A B
Figure 7 Crossbar array architecture for exclusive-NOR func-
tion.

Table 2 The number of memristive switches to make logic gates
for the imp and crossbar array approaches.

Logic Operation #IMP #Crossbar Array
S← NOT A 2 3
S← A AND B 4 6
S← A NAND B 3 6
S← A OR B 6 6
S← A NOR B 6 6
S← A XOR B 7 11

a more detailed explanation see [17]. Despite the overhead
introduced in the crossbar approach in terms of number of

Copyright line will be provided by the publisher

pss header will be provided by the publisher 7

memristors, it can dynamically adapt its logic function by
controlling voltages. Therefore, based on the run-time re-
quirements, the crossbar array approach is adaptable and
reconfigurable.

6 Conclusions In this paper, the electrical model of
the memristor is represented to show how physical proper-
ties of this device can be utilized for digital circuit appli-
cations. Memristor is a two-terminal device, therefore, we
need new approaches to apply it to operate as a switch. IMP
logic with memristor is studied as the first method to create
digital gates. We demonstrated that by using IMP and the
inverse function (NOT), it is possible to produce all dig-
ital boolean functions. In the IMP approach, the number
of memristors to make gates are fewer than the crossbar
array approach. We purposed the crossbar array architec-
ture as the second novel promising technique for nanocom-
puting paradigm. The crossbar array method with memris-
tive switches has been investigated comprehensively. Re-
configurability is the most significant advantage of using
the crossbar array architecture. It is interesting to note that
in both computing techniques, the storing and computing
units are physically the same. This property has the poten-
tial to overcome the memory bottleneck. For future work,
one can organize a Programmable Logic Device (PLA)
platform in such a way that the crossbar array operates as
a programmable AND array beside IMP as a fixed connec-
tion for the OR array.

References

[1] H. (Helen) Li and M. Hu, Compact model of memristors
and its application in computing systems, in: Design, Au-
tomation Test in Europe Conference Exhibition (DATE),
2010, (March 2010), pp. 673–678.

[2] Y. Ho, G. M. Huang, and P. Li, Nonvolatile memristor
memory: device characteristics and design implications,
in: Proceedings of the 2009 International Conference on
Computer-Aided Design, , ICCAD ’09 (ACM, New York,
NY, USA, 2009), pp. 485–490.

[3] M. D. Ventra and Y. V. Pershin, CoRR abs/1211.4487
(2012).

[4] T. Raja and S. Mourad, Digital logic implementation in
memristor-based crossbars - a tutorial., in: DELTA, (IEEE
Computer Society, 2010), pp. 303–309.

[5] J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. A. Ohlberg,
W. Wu, and D. R. Stewart, PNAS 106 (2009).

[6] E. Lehtonen, J. Poikonen, and M. Laiho, Implication logic
synthesis methods for memristors, in: Circuits and Systems
(ISCAS), 2012 IEEE International Symposium on, (May
2012), pp. 2441–2444.

[7] G. S. Rose, J. Rajendran, H. Manem, R. Karri, and R. E.
Pino, Proceedings of the IEEE 100(6), 2033–2049 (2012).

[8] I. Vourkas and G. Sirakoulis, Nanotechnology, IEEE
Transactions on 11(6), 1151–1159 (2012).

[9] S. Kvatinsky, A. Kolodny, U. Weiser, and E. Friedman,
Memristor-based imply logic design procedure (2011),
pp. 142–147, cited By (since 1996) 4.

[10] E. Lehtonen, J. Poikonen, and M. Laiho(May), 2441–2444
(2012).

[11] E. Lehtonen and M. Laiho, Stateful implication logic
with memristors, in: Proceedings of the 2009 IEEE/ACM
International Symposium on Nanoscale Architectures, ,
NANOARCH ’09 (IEEE Computer Society, Washington,
DC, USA, 2009), pp. 33–36.

[12] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R.
Stewart, and R. S. Williams, Nature 464(7290), 873–876
(2010).

[13] P. J. Kuekes, D. R. Stewart, and S. R. Williams, Journal of
Applied Physics 97(3) (2005).

[14] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams, Nature 453(7191), 80–83 (2008).

[15] L. Chua and S. M. Kang, Proceedings of the IEEE 64(2),
209–223 (Feb. 1976).

[16] G. Snider, Applied Physics A 80, 1165–1172 (2005).
[17] K. Bickerstaff and E. Swartzlander, Memristor-based arith-

metic, in: Signals, Systems and Computers (ASILOMAR),
2010 Conference Record of the Forty Fourth Asilomar
Conference on, (Nov.), pp. 1173–1177.

Copyright line will be provided by the publisher

