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Uniqueness in a class of Hamilton-Jacobi equations with constraints

In this note, we discuss a class of time-dependent Hamilton-Jacobi equations depending on a function of time, this function being chosen in order to keep the maximum of the solution to the constant value 0. The main result of the note is that the full problem has a unique classical solution. The motivation is a selection-mutation model which, in the limit of small diffusion, exhibits concentration on the zero level set of the solution of the Hamilton-Jacobi equation. The uniqueness result that we prove implies strong convergence and error estimates for the selection-mutation model.

Version française abrégée

On présente dans cette note un résultat d'unicité pour le problème de Hamilton-Jacobi suivant, d'inconnues (u(t, x), I(t)) :

   ∂ t u = |∇u| 2 + R(x, I), (t > 0, x ∈ R d ), max
x u(t, x) = 0, I(0) = I 0 > 0, u(0, x) = u 0 (x).

(1) La donnée R(x, I) vérifie des hypothses de stricte concavité par rapport à x et de monotonie par rapport à I explicites plus bas. La donnée initiale u 0 vérifie aussi des hypothèses spéciales de concavité. Ainsi, la fonction I(t) doit être choisie pour que la solution u(t, x) de l'équation de Hamilton-Jacobi ait, à chaque instant, un maximum égal à 0.

Nous avons alors le Theorem 0.1 On choisit R ∈ C 2 , et on suppose l'existence de I M > 0 tel que max 

∞ loc R + ; W 3,∞ loc (R d ) ∩ W 1,∞ loc R + ; L ∞ loc (R d ) × W 1,∞ ( 
R). L'existence pour (1) a été démontrée en plusieurs endroits, voir par exemple [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] ou [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]. L'unicité est donc notre résultat principal, c'était un problème ouvert. L'unicité était en effet connue seulement pour un cas très particulier (voir [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]).

Le modèle (1) intervient dans la limite ε → 0 des solutions de

∂ t n ε -ε∆n ε = n ε ε R x, I ε (t) (t > 0, x ∈ R d ), I ε (t) = R d ψ(x)n ε (t, x)dx, (2) 
où n ε (t, x) est la densité d'une population caractérisée par un trait biologique x d-dimensionnel. La compétition pour une ressource unique est représentée par I ε (t), ψ > 0 régulière donnée. Le terme R(x, I) est le taux de reproduction. Les hypothses de concavité sont des hypothèses techniques, mais pertinentes au plan biologique. Par une transformation de Hopf-Cole n ε = exp (u ε /ε) on se ramène à l'équation sur u ε suivante :

∂ t u ε = ε∆u ε + |∇u ε | 2 + R(x, I ε ) (3) 
qui, dans la limite ε → 0, donne l'équation sur u. On s'attend alors à ce que n ε se concentre aux points où u est proche de 0. Et, dans cette limite, I ε apparaît comme une sorte de multiplicateur de Lagrange. La convergence de (3) vers (1) à une sous-suite près est connue depuis [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]. Le Théorème 0.1 donne la convergence de toute la famille, ainsi que des estimations d'erreur. Soit x ε (t) le point où u ε (t, .) atteint son maximum. On suppose l'existence de I 0 tel que 0

< I 0 ≤ I ε (0) := R d ψ(x)n 0 ε (x)dx < I M , et on suppose n 0 ε = e u 0 ε /ε = r ε d/2 e u0/ε , with u 0 ∈ C 2 (R d ) and max x∈R d u 0 (x) = 0.
Le résultat est alors le Theorem 0.2 Soit n ε la solution de (2) et u ε définie par [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF]. Nous avons les développements asymptotiques suivants

I ε = I + εI 1 + o(1), x ε = x + ε x 1 + o(1), u ε = u + ε log( r ε d 2 ) + ε u 1 + o(1).
Les termes I 1 , x 1 et u 1 vont être présentés dans [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF]. Ce résultat implique le corollaire Corollary 0.3 Nous avons l'approximation suivante pour n ε :

n ε (t, x) = r ε d 2 exp(u 1 + u ε ) + o(1) .
En particular, lorsque ε → 0, toute la suite (n ε ) ε converge :

n ε (t, x) -→ ρ(t) δ x -x(t) au sens des mesures, avec ρ(t) = I(t) ψ(x(t))
.

En d'autres termes, la population se concentre sur un trait dominant qui évolue avec le temps. On note que la convergence de n ε à une sous-suite prés était déjà établie dans [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]. Tous ces résultats seront détaillés dans [START_REF] Mirrahimi | Uniqueness in a Hamilton-Jacobi equation with constraints[END_REF] et [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF].

Introduction

The purpose of this note is to discuss uniqueness in the following problem, with unknowns (I(t), u(t, x)):

   ∂ t u = |∇u| 2 + R(x, I) (t > 0, x ∈ R d ), max x u(t, x) = 0, I(0) = I 0 > 0, u(0, x) = u 0 (x), (4) 
where I 0 > 0 and u 0 is a concave, quadratic function:

-L 0 -L 1 |x| 2 ≤ u 0 (x) ≤ L 0 -L 1 |x| 2 , -2L 1 ≤ D 2 u 0 ≤ -2L 1 , D 3 u 0 ∈ L ∞ (R d ).
The constraint on the maximum of u(t, .) makes the problem nonstandard. Our main result is Theorem 1.1 Choose R ∈ C 2 , and suppose that there is

I M > 0 such that max x∈R d R(x, I M ) = 0 = R(0, I M ).
Also assume the following concavity and regularity properties for R: 

-K 1 |x| 2 ≤ R(x, I) ≤ K 0 -K 1 |x| 2 , for 0 ≤ I ≤ I M , -2K 1 ≤ D 2 R(x, I) ≤ -2K 1 < 0 and D 3 R(•, I) ∈ L ∞ (R d ) for 0 ≤ I ≤ I M , -K 2 ≤ ∂ I R ≤ -K 2 , |∂ 2 
. Moreover u ∈ L ∞ loc R + ; W 3,∞ loc (R d ) ∩ W 1,∞ loc R + ; L ∞ loc (R d ) × W 1,∞ (R).
Existence to (4) has been proved in various contexts (see [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]). Thus, our contribution is uniqueness, which has up to now been an open problem. The uniqueness has indeed been known only for a very particular case (see [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]). The rest of the note is organized as follows. In Section 2, we explain the motivation and, in particular, the meaning of the various assumptions. In Section 3, we revisit existence for (4), which will entail an unconventional ODE formulation for uniqueness. Section 4, which is the main part of the note, provides a fairly complete sketch of the uniqueness proof. In Section 5, we give an application.

Background and motivation

Model (4) arises in the limit ε → 0 of the solutions to the problem

∂ t n ε -ε∆n ε = n ε ε R x, I ε (t) (t > 0, x ∈ R d ), I ε (t) = R d ψ(x)n ε (t, x)dx, (5) 
where n ε (t, x) is the density of a population characterized by a d-dimensional biological trait x. The population competes for a single resource, this is represented by I ε (t), where ψ is a given positive smooth function. The term R(x, I) is the reproduction rate; it is, as can be expected, very negative for large x and decreases as the competition increases. Such models can be derived from individual based stochastic processes in the limit of large populations (see [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]). The concavity assumption on R is a technical one, although biologically relevant. The Hopf-Cole transformation n ε = exp (u ε /ε) yields the equation

∂ t u ε = ε∆u ε + |∇u ε | 2 + R(x, I ε ) (6)
which, in the limit ε → 0, yields the equation for u. Now, I ε being uniformly positive and bounded in ε, the Hopf-Cole transformation leads to the constraint on u. Moreover, one expects that n ε concentrates at the points where u is close to 0 and the function I ε appears, in the limit, as a sort of Lagrange multiplier. This approach, based on the Hopf-Cole transformation, to study [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF] has been introduced in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF] and then developed in different contexts (see for instance [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]). Long time asymptotics of such models have also been studied in [START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF] and the references therein.

Existence

Existence to a solution to (4) is obtained by letting ε → 0 in [START_REF] Mirrahimi | Uniqueness in a Hamilton-Jacobi equation with constraints[END_REF]. The main step is the Theorem 3.1 (uniform estimates for u ε , [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]) There exists

I m > 0 such that 0 < I m ≤ I ε (t) ≤ I M + Cε 2 .

Moreover we have the following estimates on u

ε -L 0 -L 1 |x| 2 -ε2dL 1 t ≤ u ε (t, x) ≤ L 0 -L 1 |x| 2 + K 0 + 2dεL 1 t, L 1 -2tK 1 ≤ D 2 u ε (t, x) ≤ -2L 1 , D 3 u ε (t, •) L ∞ ≤ C(T ), for t ∈ [0, T ]. (7) 
The bounds for u ε can be obtained for any uniformly bounded function I ε , not only for that of [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]. This remark will be an important ingredient of the uniqueness proof.

Uniqueness

For a given continuous function I(t) such that 0 < I(t) < I M , one may construct a solution of ∂ t u = |∇u| 2 + R(x, I) with initial datum u 0 . Just as in Theorem 3.1, this solution satisfies estimates [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF]. And so, u(t, .) being strictly concave and quadratically decreasing, there exists a unique function x(t) such that u(t, x(t)) = max x∈R d u(t, x). Assume that I(t) is chosen such that u(t, x(t)) = 0. Then, from the equation on u we deduce that R(x(t), I(t)) = 0. Notice also that, because ∂ I R < 0, we have R(x(t), 0) > 0. Finally, differentiating ∇u(t, x(t)) = 0 and plugging in the equation for u we obtain an ODE for x: ẋ(t) = -D 2 u t, x(t)

-1 ∇ x R x(t), Ī(t) . The idea is thus to change the constrained problem (4) by the following slightly nonstandard differential system:

     R (x(t), I(t)) = 0, for t ∈ [0, T ], ẋ(t) = -D 2 u t, x(t) -1 ∇ x R x(t), Ī(t) , for t ∈ [0, T ], ∂ t u = |∇u| 2 + R(x, I), in [0, T ] × R d , (8) 

Application

Convergence of ( 6) to (4) had already been proved in [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF], along subsequences. The uniqueness part of Theorem 1.1 yields the convergence of the full family of solutions u ε of (6), instead of convergence along a subsequence. Moreover it allows an expansion of I ε , u ε and x ε (the maximum point of u ε at each time) in terms of ε. Here are the results.

Assume that there is I 0 such that 0 < I 0 ≤ I ε (0) := R d ψ(x)n 0 ε (x)dx < I M , and that

n 0 ε = e u 0 ε /ε = r ε d/2 e u 0 /ε , with u 0 ∈ C 2 (R d ) and max x∈R d u 0 (x) = 0.
The result is the Theorem 5.1 Let n ε be the solution of ( 5) and u ε be defined by [START_REF] Mirrahimi | Uniqueness in a Hamilton-Jacobi equation with constraints[END_REF]. We have the following asymptotic expansions

I ε = I + εI 1 + o(1), x ε = x + ε x 1 + o(1), u ε = u + ε log( r ε d 2
) + ε u 1 + o(1).

The terms I 1 , x 1 and u 1 will be provided in [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF]. This yields the corollary Corollary 5.2 We have the following approximation for n ε :

n ε (t, x) = r ε d 2
exp u 1 (t, x) + u(t, x) ε + o(1) .

In particular, as ε → 0, the whole sequence (n ε ) ε converges:

n ε (t, x) -→ ρ(t) δ x -x(t) ,
weakly in the sense of measures, with ρ(t) = I(t) ψ(x(t)) .

In other words, the population density concentrates on a dominant trait which evolves in time. We note that the convergence of n ε along subsequences was already established in [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]. The above results will be detailed in [START_REF] Mirrahimi | Uniqueness in a Hamilton-Jacobi equation with constraints[END_REF] and [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF].

  x∈R d R(x, I M ) = 0 = R(0, I M ). De plus, R est supposée strictement concave et, pour |x| grand, comprise entre deux paraboles. La donne initiale u 0 est également à dcroissance quadratique et strictement concave. Le problème (1) a une unique solution (u, I), où u est une solution classique de l'équation de Hamilton-Jacobi. De plus u ∈ L

  Ixi R(x, I)| + |∂ 3 R Ixixj (x, I)| ≤ K 3 , for 0 ≤ I ≤ I M , and i, j = 1, 2, • • • , d. Problem (4) has a unique solution (u, I), where u solves the Hamilton-Jacobi equation in the classical sense
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with initial conditions I(0) = I 0 , u(0, •) = u 0 (•), x(0) = x 0 , such that R(x 0 , I 0 ) = 0.

Note that ( 8) is really a differential system because the assumptions on R imply that I(t) can implicitely be expressed in terms of x(t). And it is slightly nonstandard because x solves an ODE whose nonlinearity depends on u. Finally, note that, as soon as u satisfies the concavity and regularity estimates [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF], system (8) is equivalent to the constrained problem (4). This suggests to use a simple fixed point argument to prove uniqueness to (8) (and so, to (4)). Which in turn suggests to set up the following scheme: starting from x(t) ∈ C([0, T ], R d ), such that x(0) = x 0 , where R(x 0 , 0) > 0. Let I(t) solve R(x(t), I(t)) = 0 on [0, T ] with R(x 0 , I 0 ) = 0. Let v(t, .) be the unique solution to

Setting y := Φ(x), we notice that uniqueness is proved as soon as we have proved that Φ has a unique fixed point. One additional feature about a solution ( Ī, u, x) of ( 8): Lemma 4.1 The function Ī(t) is increasing. We claim that our problem reduces to proving the Theorem 4.2 There exists C > 0 universal and δ > 0, which is small as R(x 0 , 0) tends to 0, such that Φ is a contraction from C([0, δ], B C (x 0 )) to itself; here B r (a) denotes the ball of centre a ∈ R d and radius r > 0. Note indeed that, by Lemma 4.1, we have, because

for some universal c > 0. Hence Theorem 4.2 can be iterated to yield global existence and uniqueness.

Let us give an overview of the proof of Theorem 4.2. For I ∈ C ([0, δ]; [0, I M ]), let V (I) be the (unique) solution of (10). The main step is the following

This lemma, once proved, opens the way to Theorem 4.2. Indeed the equation R(x, I) = 0 yields a smooth mapping x → I, and I → V is a Lipschitz mapping thanks to Lemma 4.3. Moreover, the equation ẏ(t) = -D 2 v t, x(t)

-1 ∇ x R x(t), I(t) yields a Lipschitz mapping v → y by the estimates for v given by Theorem 3.1.

Lemma 4.3 is more involved. If I 1 and I 2 are as in the assumptions of the lemma, the function r = V (I 1 ) -V (I 2 ) solves

with v i = V (I i ). Note that the above equation has a unique classical solution which can be computed by the method of characteristics. The characteristics solve γ(t) = -∇v 1 (t, γ) -∇v 2 (t, γ),

and, due to the estimates of Theorem 3.1, they exist globally. So, one may successively express r given by integration along characteristics, and estimate its derivatives recursively.