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Abstract

Among models allowing to introduce interaction between points, we
find the large class of Gibbs models coming from statistical physics.
Such models can produce repulsive as well as attractive point pattern.
In this paper, we focus on the main class of Gibbs models which is
the class of pairwise interaction point processes characterized by the
Papangelou conditional intensity. We suggest a new nonparametric
estimate of the pairwise interaction function for stationary pairwise
interaction point process. Sufficient conditions to strong uniform con-
sistency are obtained for the resulting estimator.

Keywords: Georgii-Nguyen-Zessin formula, kernel estimators, non para-
metric estimation, pairwise interaction point process, Papangelou conditional
intensity, srong uniform consistency, Orlicz spaces.



1 Introduction
The theory of spatial models is a growing field over the last decade, with
various applications in several domains such as ecology (Diggle [9]), forestry
(Matérn [21]), spatial epidemiology (Lawson [19]) and astrophysics (Neyman
and Scott [24]). Gibbs point processes arose in statistical physics as models
for interacting particle systems. Gibbs point processes in Rd can be defined
and characterized through the Papangelou conditional intensity (Møller and
Waagepetersen [22]) which is a function λ : Rd × Nlf → R+ where Nlf is
the space of locally finite configurations of points in Rd. The Papangelou
conditional intensity can be interpreted as follows: for any u ∈ Rd and
x ∈ Nlf , λ(u,x)du corresponds to the conditional probability of observing
a point in a ball of volume du around u given the rest of the point process
is x. Examples of Markov and non-Markov Gibbs point process models and
their conditional intensities are presented in Baddeley et al [1], Møller and
Waagepetersen ([22], [23]).

In this paper, we are concerned with nonparametric statistics for station-
ary pairwise interaction point processes (a special case of a Gibbs process)
which describes the interaction between pairs of points by a function (called
a pair potential function). They have been introduced in statistical literature
by Ripley and Kelly [32], Daley and Vere-Jones [7] and Georgii [14]. Our ob-
jectif of this work is to study estimating nonparametric interction function.
We suggest a new nonparametric estimate of the pairwise interaction func-
tion for stationary pairwise interaction point process. Sufficient conditions to
strong uniform consistency are obtained for the resulting estimator. Note also
that the main results of this work are obtained via assumptions of belonging
to Orlicz spaces induced by exponential Young functions for stationary real
random fields which allows us to derive the Kahane-Khintchine inequalities
by El Machkouri [20]. The conditions are expressed in terms of a series of
conditional expectation. Our results also carry through the most important
particular case of Orlicz spaces random fields, we use the inequality follows
from a Marcinkiewicz-Zygmund type inequality by Dedecker [8].

Many attempts have been tried to estimate the potential function from
point pattern data in a parametric framework: maximization of likelihood
approximations (Ogata and Tanemura [27], Ogata and Tanemura [28], Pentti-
nen [30]), pseudolikelihood maximization (Besag et al. [2], Jensen and Møller
[16]) and also some ad hoc methods (Strauss [33], Ripley [32], Hanisch and
Stoyan [15], Diggle and Gratton [11], Fiksel [12], Takacs [34], Billiot and
Goulard [4]).

Nonparametric estimation of the potential function has been largely ig-
nored by researchers. One exception is the suggestion to use the nonparamet-
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ric estimation of the pair correlation function and its approximate relation
to the pair potential through the Percus-Yevic equation (Diggle et al. [10]).
The approximation is a result of a cluster expansion method, and it is accu-
rate only for simulation study. The statistical and asymptotic properties of
this estimation techniques have not been studied so far.

The paper is organized as follows. The next section sets up the generic
notation and the basic tools of the point processes in Rd. We present the
model for stationary pairwise interaction point process and the assumptions
which will be considered in the sequel in Section 3. In Section 4, we present
our main results; on both the estimation method and strong uniform consis-
tencies for the resulting estimator. The last section is devoted to the proofs.

2 Generic notation and Basic tools
Let Bd be the Borel σ-algebra (generated by open sets) in Rd (the d-dimensional
space) and BdO ⊆ Bd be the system of all bounded Borel sets. A point pro-
cess X in Rd is a locally finite random subset of Rd, i.e. the number of
points N(Λ) = n(XΛ) of the restriction of X to Λ is a finite random vari-
able whenever Λ is a bounded Borel set of Rd (see Daley and Vere-Jones
[7]). We define the space of locally finite point configurations in Rd as
Nlf = {x ⊆ Rd;n(xΛ) < ∞,∀Λ ∈ Bd0}, where xΛ = x ∩ Λ. The volume
of a bounded Borel set Λ of Rd is denoted by |Λ| and o = (0, ..., 0).

The Papangelou conditional intensity completely characterizes the Gibbs
point process in terms of the Georgii-Nguyen-Zessin (GNZ) formula (see Pa-
pangelou [29] and Zessin [36] for historical comments and Georgii [13] or
Nguyen and Zessin [26] for a general presentation). The GNZ formula states
that for any nonnegative measurable function h on Rd ×Nlf

E
∑
u∈X

h(u,X \ u) = E

∫
Rd
h(u,X)λ(u,X)du. (1)

Let X⊗X be the point process on Rd × Rd consisting of all pairs (u, v)
of distinct points of X. It follows immediately from the GNZ formula (1)
that X⊗X is a Gibbs point process with (two-point) Papangelou conditional
intensity λ(u, v,x) = λ(u,x)λ(v,x ∪ {u}), for u, v ∈ Rd,x ∈ Nlf , meaning
that the GNZ formula in the form

E

6=∑
u,v,∈X

h(u, v,X \ {u, v}) =

∫
Rd

∫
Rd

Eh(u, v,X)λ(u, v,X)dudv (2)

is satisfied for any nonnegative measurable function h(u, v,x) on Rd × Rd ×
Nlf .
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A Young function ψ is a real convex nondecreasing function defined on R+

which satisfies limt→∞ ψ(t) = +∞ and ψ(0) = 0. We define the Orlicz space
Lψ as the space of real random variables Z defined on the probability space
(Ω,F ,P) such that E[ψ(|Z|/c)] < +∞ for some c > 0. The Orlicz space
Lψ equipped with the so-called Luxemburg norm ‖.‖ψ defined for any real
random variable Z by

‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }

is a Banach space. For more about Young functions and Orlicz spaces one
can refer to Krasnosel’skii and Rutickii [18]. Let θ > 0. We denote by ψθ the
Young function defined for any x ∈ R+ by

ψθ(x) = exp((x+ ξθ)
θ)− exp(ξθθ) where ξθ = ((1− θ)/θ)1/θ 11{0<θ<1}.

On the lattice Zd we define the lexicographic order as follows: if i = (i1, ..., id)
and j = (j1, ..., jd) are distinct elements of Zd, the notation i <lex j means
that either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for
1 ≤ q < p. Let the sets {V k

i ; i ∈ Zd , k ∈ N∗} be defined as follows:

V 1
i = {j ∈ Zd ; j <lex i},

and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Zd ; |i− j| ≥ k} where |i− j| = max
1≤l≤d

|il − jl|.

For any subset Γ of Zd define FΓ = σ(εi ; i ∈ Γ) and set

E|k|(εi) = E(εi|FV |k|
i

), k ∈ V 1
i .

Denote θ(q) = 2q/(2− q) for 0 < q < 2 and by convention 1/θ(2) = 0.

3 Model
The pairwise interaction point process is characterized by its conditional
intensity Papangelou defined by

λ(u,x) = g0(u) exp

(
−
∑
v∈x\u

g0({u, v})
)
.

Now we consider a special case where g0(u) is a constant and g0({u, v}) =
g(v − u) is translation invariant. In this case, the pairwise interaction point
process is called stationary.
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Throughout this paper, we assume the model is a stationary pairwise in-
teraction point process and its Papangelou conditional intensity at a location
u given by

λβ?(u,x) = β? exp

(
−
∑
v∈x\u

g(v − u)

)
(3)

where β? is the true value of the Poisson intensity parameter, g represents
the nonnegative pairwise interaction potential defined on Rd and is assumed
a nonnegative function and G = exp(−g) represents the pairwise interaction
function. In this semi-parametric model (3), the estimator of the Poisson
intensity parameter β? represented the first step in our procedure in the
paper [6], we have established its strong consistency and asymptotic normal-
ity. we also considered its finite-sample properties simulation study. Now,
we develop a method of nonparametric estimation of the pairwise interac-
tion function G, with the class of model defined by (3), under assumptions
as general as possible. The basic assumption throughout this paper is the
Papangelou conditional intensity has a finite range R, i.e.

λβ?(u,x) = λβ?(u,xB(u,R)), (4)

for any u ∈ Rd, x ∈ Nlf , where B(u,R) is the closed ball in Rd with centre
u and radius R.

4 Main results
Suppose that a single realization x of a point process X is observed in a
bounded window Λn where (Λn)n≥1 is a sequence of cubes growing up to Rd,
although more general convex compact sampling regions Λn which expands
unboundedly in all directions (as n → ∞ ) are possible. We face a missing
data problem, which in the spatial point process literature is referred to as a
problem of edge effects, we can avoid this problem by reducing the window
by introducing the 2R-interior of the cubes Λn, i.e.

Λn,R = {u ∈ Λn : B(u, 2R) ⊂ Λn}

and assume this has non-zero area. Various edge corrections have been sug-
gested by Ripley [31], Biber [3], Kelly and Ripley [17], Møller andWaagepetersen
[22] and Tukey [35]).

For simplicity assume that the support of the interection function G =
exp(−g) is T = {t ∈ Rd; g(t) > 0, for ||t|| < R}. With the convention
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c/0 = 0 for all real c, we consider a nonparametric estimator Ĝn(t) for β?G(t)
for t ∈ T by

Ĝn(t) =
Ĥn(t)̂̄F n(t)

, (5)

where

Ĥn(t) =
1

bdn|Λn,R|

6=∑
u,v∈X

v−u∈B(o,R)

11Λn,R(u)h(u,X\{u, v})h(v,X\{u, v})K
(
v − u− t

bn

)
(6)

is a kernel-type estimator estimating β?2G(t)F̄ (o, t), where 6= over the sum-
mation sign means that the sum runs over all pairwise different points u; v
in X and K : Rd → R denotes a smoothing kernel function associated with
a sequence (bn)n≥1 of bandwidths satisfying the below Conditions K(d,m)
and Z. ̂̄F n(t) =

1

|Λn,R|
∑

u∈XΛn,R

h(u,X \ {u})h(t− u,X \ {u}) (7)

meanwhile being an estimator of β?F̄ (o, t), where

F̄ (o, t) = P(X ∩B(o,R) = ∅,X ∩B(t, R) = ∅). (8)

And h is a nonnegative measurable function defined for all w ∈ Rd, x ∈ Nlf ,
by

h(w,x) = 11(x ∩B(w,R) = ∅). (9)

Moreover, we have to impose certain natural restrictions on the kernel func-
tion K and the sequence (bn)n≥1:

Condition K(d,m) : The sequence of bandwidths bn > 0 for n ≥ 1, is
chosen such that

lim
n→∞

bn = 0 and lim
n→∞

bdn|Λn,R| =∞.

The kernel function K is nonnegative, suppose that, for some 0 < R′ <∞,

K(u) = 0 for ||u|| > R′,

∫
Rd
K(u)du = 1

and for m ∈ N? ∫
Rd
za1

1 ...z
ad
d K(z)dz = 0

with a1, ..., ad ∈ N? such that 0 <
∑d

i=1 ai ≤ m.
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To establish uniform consistency over some compact set T0 ⊂ T we need
a further smoothness condition on the kernel function.

Condition Z : The kernel function K is a Lipschitz condition, i.e. there
exists a constant η > 0 such that∣∣K(u)−K(v)

∣∣ ≤ η||u− v|| for any u, v ∈ T.

We also assume additionally that:
Condition C(T )
F̄ (o, t) and G(t) are continuous on a compact set T0 ⊂ T .

The following theorem presents the asymptotic behavior of the expectation
of the kernel-type estimator (6) and the rate of convergence.

Theorem 1. Consider a stationary pairwise interaction point process X in
Rd with Papangelou conditional intensity (3) satisfy condition (4) and under
Condition K(d, 1). We have

lim
n→∞

E Ĥn(t) = β?2G(t)F̄ (o, t)

at any continuity point t ∈ T of GF̄ . If Condition K(d,m) is satisfied and
GF̄ has bounded and continuous partial derivatives of order m in Bo(t, δ)
(for some δ > 0) for t ∈ T̊ , then

E Ĥn(t) = β?2G(t)F̄ (o, t) +O(bmn ) as n→∞. (10)

The estimator (7) turn out to be unbiased estimator of β?F̄ (o, t) and
strongly consistent (the uniform strong consistency) as n tends infinity, since
a classical ergodic theorem for spatial point processes obtained in [25]. This
implies the following:

Proposition 1. Consider a stationary pairwise interaction point process X
in Rd with Papangelou conditional intensity (3) satisfy condition (4).

sup
t∈To
|Ĝn(t)− β?G(t)|−→0 P-a.s. iff

sup
t∈To
|Ĥn(t)− β?2G(t)F̄ (o, t)|−→0 P-a.s..

Next we list a set of conditions which are needed to obtain (rates of) uni-
form strong convergence of the estimator Ĥn(t) to the function β?2G(t)F̄ (o, t).
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Now, we decompose Λn,R as ∪i∈ĨnΛi and Ĩn is a sequence of finite subsets
of Zd which only satisfies |Ĩn| goes to infinity as n goes to infinity and Λi are
the subcubes of Λn,R centered at i. To shorten the notation we introduce the
random variables

Zk =

6=∑
u,v∈X

v−u∈B(o,R)

11Λk(u)h(u,X \ {u, v})h(v,X \ {u, v})K
(
v − u− t

bn

)
.

Note for all k ∈ Ĩn, Z̄k = Zk − EZk and Sn =
∑

k∈Ĩn Z̄k.

Theorem 2. Under Conditions K(d,m), C(T ) and Z. Further, assume that
GF̄ has bounded and continuous partial derivatives of order m on T0.

1) If there exists 0 < q < 2 such that Z̄0 ∈ Lψθ(q) and∑
k∈V 1

0

∥∥∥∥√∣∣Z̄kE|k|(Z̄0)
∣∣∥∥∥∥2

ψθ(q)

<∞. (11)

Then

sup
t∈To

∣∣Ĥn(t)−β?2G(t)F̄ (o, t)
∣∣ = Oa.s.

(
(log n)1/q

(bn
√
n)d

)
+O(bmn ) as n→∞.

2) If Z̄0 ∈ L∞ and ∑
k∈V 1

0

∥∥Z̄kE|k|(Z̄0)
∥∥
∞ <∞. (12)

Then

sup
t∈To

∣∣Ĥn(t)−β?2G(t)F̄ (o, t)
∣∣ = Oa.s.

(
(log n)1/2

(bn
√
n)d

)
+O(bmn ) as n→∞.

3) If there exists p > 2 such that Z̄0 ∈ Lp and∑
k∈V 1

0

∥∥Z̄kE|k|(Z̄0)
∥∥
p
2

<∞. (13)

Assume that bn = n−q2(log n)q1 for some q1, q2 > 0. Let a, b ≥ 0 be fixed
and if a(p+ d)− d2/2− q2d > 1 and b(p+ d) + q1d > 1. Then

sup
t∈To

∣∣Ĥn(t)−β?2G(t)F̄ (o, t)
∣∣ = Oa.s.

(
na(log n)b

(bn
√
n)d

)
+O(bmn ) as n→∞.

Remark 1. From the Markov property of X entails that for i 6= 0 are not
neighborhoods, then Z̄i et Z̄o are conditionally independent, i.e E[Z̄0|(XΛi ; i 6=
0] = 0. Since σ(Zi, i ∈ V k

0 ) is contained in σ(XΛi , i 6= 0) for k > l, for some
integer l, it follows immediately that conditions (11), (12), (13) are satisfied.
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5 Proofs
In the sequel, we denote H(u, v,X) = h(u,X)h(v,X), IR(v−u) = 11(v−u ∈
B(o,R)) and keep in mind the function F̄ (o, t) defined by (8).

5.1 Proof of Theorem 1

Proof. Follows immediately by expression the Ĥn(t) as a double sum and by
means of the GNZ formula (2) with

h(u, v,X) = 11Λn,R(u)IR(v − u)H(u, v,X)K

(
v − u− t

bn

)
,

we get

E Ĥn(t) =
1

bdn|Λn,R|
E

∫
R2d

11Λn,R(u)IR(v − u)H(u, v,X)K

(
v − u− t

bn

)
λβ?(u, v,X)dudv.

We remember the second order Papangelou conditional intensity by:

λβ?(u, v,x) = λβ?(u,x)λβ?(v,x ∪ {u}) for any u, v ∈ Rd and x ∈ Nlf .

Now, using the finite range property (4) for each function λβ?(u,x) and
λβ?(v,x ∪ {u}). Hence x = ∅, this implies that

λβ?(u, ∅) = β? and λβ?(v, ∅ ∪ {u}) = β?G(v − u) for all u, v ∈ Rd.

In this way we obtain by stationarity of X

E Ĥn(t) =
β?2

bdn|Λn,R|

∫
R2d

11Λn,R(u)IR(v − u)F̄ (o, v − u)K

(
v − u− t

bn

)
G(v − u)dudv

= β?2
∫
Rd
IR(bnz + t)F̄ (o, bnz + t)K(z)G(bnz + t)dz.

The continuity of F̄G in t and the boundedness conditions on the kernel
function yield the desired result with the first statement of Theorem 1 by
dominated convergence theorem.

For the results of the second part of Theorem 1, we consider B0(t, δ) an
open ball in Rd, the function G(t)F̄ (o, t) has bounded and continuous partial
derivatives of order m of in Bo(t, δ) (for some δ > 0 ) for t ∈ T̊ , then for any
point z in Rd, there exists θ ∈]0, 1[, such that by Taylor-Lagrange formula,
we get

G(t+ bnz) = G(t) +
m−1∑
k=1

∑
|α|=k

(bnz)α

α!

∂kG(t)

∂xα
+ bmn Rm(z, t)
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where Rm(z, t) =
∑
|α|=m

zα

α!
∂mG
∂xα

(t+ θbnz).

F̄ (o, t+ bnz) = F̄ (o, t) +
m−1∑
k=1

∑
|α|=k

(bnz)α

α!

∂kF̄ (o, t)

∂xα
+ bmn R

′
m(z, t)

where R′m(z, t) =
∑
|α|=m

zα

α!
∂mF̄
∂xα

(o, t+ θbnz).
So we multiply two such functions, their product equals the product of

their mth Taylor polynomials plus terms involving powers of t higher than
m. In other words, to compute the mth Taylor polynomial of a product of
two functions, find the product of their Taylor polynomials, ignoring powers
of t higher than m. So we denote this produit by T (t)(bnz)α, then we have

E Ĥn(t) = β?2G(t)F̄ (o, t)

∫
Rd
K(z)dz

+ β?2T (t)bαn

∫
Rd
zαK(z)dz

+O(bmn ) as n→∞.

Together with conditionK(d,m), we get the asserted rate of convergence. �

5.2 Preuve du Theorem 2
Proof. To establish rates of the uniform P- a.s. convergence for the estimator
(6), we apply a triangle inequality decomposition allows for

sup
t∈T0

∣∣Ĥn(t)−β?2G(t)F̄ (o, t)
∣∣ ≤ sup

t∈T0

∣∣Ĥn(t)−E Ĥn(t)
∣∣+sup

t∈T0

∣∣E Ĥn(t)−β?2G(t)F̄ (o, t)
∣∣.

(14)
Let (rn)n≥1 be sequence of positive numbers going to zero. Following Carbon
and al. [5], the compact set T0 can be covered by vn cubes Tk having sides
of lenght ln = rnb

d+1
n and center at ck. Clearly there exists c > 0, such that

vn ≤ c/ldn. Define

A1 = max
1≤k≤vn

sup
t∈Tk

∣∣Ĥn(t)− Ĥn(ck)
∣∣

A2 = max
1≤k≤vn

sup
t∈Tk

∣∣E Ĥn(t)− E Ĥn(ck)
∣∣

A3 = max
1≤k≤vn

∣∣Ĥn(ck)− E Ĥn(ck)
∣∣

10



then

sup
t∈To
|Ĥn(t)− E Ĥn(t)| ≤ A1 + A2 + A3. (15)

We study the following lemmas which significantly improve the desired result.

Lemma 1. For j=1,2, we have

Aj = Op.s.(rn).

Proof. For any t ∈ Tk, by Condition Z, we derive that there exists constant
η > 0 such that n sufficiently large∣∣∣∣Ĥn(t)− Ĥn(ck)

∣∣∣∣
≤ 1

bd+1
n

η
∥∥t− ck∥∥∣∣∣∣ 1

|Λn,R|

6=∑
u,v∈X

v−u∈B(o,R)

11Λn,R(u)h(u,X \ {u, v})h(v,X \ {u, v})
∣∣∣∣

≤ 1

bd+1
n

ηrnb
d+1
n

∣∣∣∣ 1

|Λn,R|

6=∑
u,v∈X

v−u∈B(o,R)

11Λn,R(u)h(u,X \ {u, v})h(v,X \ {u, v})
∣∣∣∣

≤ ηrn

∣∣∣∣ 1

|Λn,R|

6=∑
u,v∈X

v−u∈B(o,R)

11Λn,R(u)h(u,X \ {u, v})h(v,X \ {u, v})
∣∣∣∣.

The Lemma 1 easily follows from the last inequalitie and the Nguyen and
Zessin [25] ergodic theorem. �

Lemma 2. Assume that either (11) holds for some 0 < q < 2 such that
Z̄0 ∈ Lψθ(q) and rn = (log n)1/q/(bn

√
n)d or (12) holds such that Z̄0 ∈ L∞

and rn = (log n)1/2/(bn
√
n)d, then

A3 = Op.s.(rn).

Proof. In the sequel, the letter C denotes any generic positive constant. For
ε > 0, using Markov’s inequality, we get

P
(
|Ĥn(t)− E Ĥn(t)| > εrn

)
= P

(
|Sn| > εrn(nbn)d

)
≤ exp

[
−

(
ε rn(nbn)d

||Sn||ψθ(q)
+ ξq

)q ]
E exp

[(
|Sn|

||Sn||ψθ(q)
+ ξq

)q ]
.
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Therefore, we assume that there exists a real 0 < q < 2, such that
Z̄0 ∈ Lψθ(q) and using Kahane-Khintchine inequalities (cf. El Machkouri
[20], Theorem 1), we have

P
(
|Ĥn(t)− E Ĥn(t)| > εrn

)
≤ P

(
|Sn| > εrn(nbn)d

)
≤ (1 + eξ

q
q ) exp

[
−

(
ε rn(nbn)d

M(
∑

i∈Ĩn bi,q(Z̄))1/2
+ ξq

)q ]
denote

bi,q(Z̄) =
∥∥Z̄0

∥∥2

ψθ(q)
+
∑
k∈V 1

0

∥∥∥∥√∣∣Z̄kE|k|(Z̄0)
∣∣∥∥∥∥2

ψθ(q)

.

whereM is a positive constant depending only on q. We derive that if condi-
tion (11) holds, then there exist constant C > 0 and so if rn = (log n)1/q/(bn

√
n)d,

such that

sup
t∈T0

P
(
|Ĥn(t)− E Ĥn(t)| > εrn

)
≤ (1 + eξ

q
q ) exp

[
−
(
ε rn(
√
nbn)d

C
+ ξq

)q ]
≤ (1 + eξ

q
q ) exp

[
− εq log n

Cq

]
. (16)

Now, we will accomplish the second step the proof of Theorem 2. Using
Kahane-Khintchine inequalities (cf. El Machkouri [20], Theorem 1) with
q = 2, such that Z̄0 ∈ L∞, we have

P
(
|Ĥn(t)− E Ĥn(t)| > εrn

)
≤ 2 exp

[
−

(
ε rn(nbn)d

M(
∑

i∈Ĩn bi,2(Z̄))1/2

)2 ]
denote

bi,2(Z̄) =
∥∥Z̄0

∥∥2

∞ +
∑
k∈V 1

0

∥∥Z̄kE|k|(Z̄0)
∥∥
∞.

We derive that if condition (12) holds and so if rn = (log n)1/2/(bn
√
n)d, there

existe C > 0 such that

sup
t∈T0

P
(
|Ĥn(t)− E Ĥn(t)| > εrn

)
≤ 2 exp

[
− ε2 log n

C2

]
. (17)

On the other hand, we have

P (|A3| > εrn) ≤ vn sup
t∈T0

P
(
|Ĥn(t)− E Ĥn(t)| > εrn

)
.

12



Using (16) and (17), choosing ε sufficiently large, therefore, it follows with
Borel-Cantelli’s lemma

P(lim sup
n→∞

|A3| > εrn) = 0.

�

Now, we will accomplish the last step the proof of Theorem 2.

Lemma 3. Assume (13) holds for some p > 2 such that Z̄0 ∈ Lp and
bn = n−q2(log n)q1 for some q1, q2 > 0. Let a, b ≥ 0 be fixed and denote
rn = na(log n)b/(bn

√
n)d. If

a(p+ d)− d2/2− q2d > 1 and b(p+ d) + q1d > 1,

then
A3 = Op.s(rn).

Proof. Let p > 2 be fixed, such that Z̄0 ∈ Lp and for any ε > 0,

P(|Ĥn(t)− E Ĥn(t)| > εrn) = P
(
|Sn| > εrn(nbn)d

)
≤ ε−p E |Sn|p

rpn(nbn)pd

≤ ε−p

rpn(nbn)pd

2p
∑
i∈Ĩn

ci(Z̄)

p/2

.

The last inequality follows from a Marcinkiewicz-Zygmund type inequality
by Dedecker [8], where

ci(Z̄) = ‖Z̄i‖2
p +

∑
k∈V 1

i

‖Z̄kE|k−i|(Z̄i)‖ p
2
.

Under assumption (13) and with the stationarity of X, we derive that there
exists C > 0 such that

P (|A3| > εrn) ≤ vn sup
t∈T0

P(|Ĥn(t)− E Ĥn(t)| > εrn)

≤ vn
Cε−p

rpn(bn
√
n)pd

.

13



As vn ≤ c/ldn and ln = rnb
1+d
n , therefore for rn = na(log n)b/(bn

√
n)d, it

follows for n sufficiently large,

P (|A3| > εrn) ≤ Cε−p

na(p+d)−d2/2(log n)b(p+d)bdn

≤ Cε−p

na(p+d)−d2/2−q2d(log n)b(p+d)+q1d
.

For a(p+ d)− d2/2− q2d > 1 and b(p+ d) + q1d > 1, we have∑
n≥1

P (|A3| > εrn) <∞.

The proof of Lemma 3 is complete. �

By strengthening the uniform continuity assumption of G(t)F̄ (o, t), one
hand, by Theorem 1, we have for a conventional calculation

sup
t∈To
|E Ĥn(t)− β?2G(t)F̄ (o, t)| = O(bmn ).

We conclude the proof of Theorem 2 by combining inequality (14) and in-
equality (15). �

5.3 Proof of Proposition 1

Proof. Our proofs will be expressed using constant α1 et α2. Denote F̃ (t) =

β?F̄ (o, t) and H̃(t) = β?2G(t)F̄ (o, t). For t ∈ T0, we assume that

∃α1 > 0, F̃ (t) ≥ α1 and ∃α2 > 0, H̃(t) ≤ α2,

implies,

|Ĝn(t)− β?G(t)| ≤ |Ĥn(t)− H̃(t)|
α1 − | ̂̄F n(t)− F̃ (t)|

+ α2α
−1
1 | ̂̄F n(t)− F̃ (t)|. (18)

Ergodic theorem (Nguyen and Zessin [25] ) immediately gives, as n→∞,∣∣ ̂̄F n(t)− F̃ (t)
∣∣ a.s.−→ 0. (19)

Using the monotony of functions F̃ and ̂̄F n, we can approach the functions
F̃ and ̂̄F n by their values in a fintie number of points. Bringing this remark
and the result (19), we have as n→∞,

sup
t∈To

∣∣ ̂̄F n(t)− F̃ (t)
∣∣ a.s.−→ 0. (20)

By Theorem 2, the expression(20) and the expression (18), we complete the
proof. �
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