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Introduction

Time inconsistency is known to exist in stopping decisions, such as casino gambling in [START_REF] Barberis | A model of casino gambling[END_REF] and [START_REF] Ebert | Until the bitter end: On prospect theory in a dynamic context[END_REF], optimal stock liquidation in [START_REF] Xu | Optimal stopping under probability distortion[END_REF], and real options valuation in [START_REF] Grenadier | Investment under uncertainty and time-inconsistent preferences[END_REF]. A general treatment, however, has not been proposed in continuous-time models. In this article, we develop a dynamic theory for time-inconsistent stopping problems in continuous time, under non-exponential discounting. In particular, we focus on log sub-additive discount functions (Assumption 3.1), which capture decreasing impatience, an acknowledged feature of empirical discounting in Behavioral Economics; see e.g. [START_REF] Thaler | Some empirical evidence on dynamic inconsistency[END_REF], [START_REF] Loewenstein | Anomalies: Intertemporal choice[END_REF], and [START_REF] Loewenstein | Anomalies in intertemporal choice: evidence and an interpretation[END_REF]. Hyperbolic and quasi-hyperbolic discount functions are special cases under our consideration.

The seminal work Strotz [START_REF] Strotz | Myopia and inconsistency in dynamic utility maximization[END_REF] identifies three types of agents under time inconsistency -the naive, the pre-committed, and the sophisticated. Among them, only the sophisticated agent takes the possible change of future preferences seriously, and works on consistent planning: she aims to find a strategy that once being enforced over time, none of her future selves would want to deviate from it. How to precisely formulate such a sophisticated strategy had been a challenge in continuous time. For stochastic control, Ekeland and Lazrak [START_REF] Ekeland | Being serious about non-commitment: subgame perfect equilibrium in continuous time[END_REF] resolved this issue by defining sophisticated controls as subgame-perfect Nash equilibria in a continuous-time inter-temporal game of multiple selves. This has aroused vibrant research on time inconsistency in mathematical finance; see e.g. [START_REF] Ekeland | Investment and consumption without commitment[END_REF], [START_REF] Ekeland | Time-consistent portfolio management[END_REF], [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF], [START_REF] Yong | Time-inconsistent optimal control problems and the equilibrium HJB equation[END_REF], [START_REF] Björk | Mean-variance portfolio optimization with state-dependent risk aversion[END_REF], [START_REF] Dong | Time-inconsistent portfolio investment problems[END_REF], [START_REF] Björk | A theory of Markovian time-inconsistent stochastic control in discrete time[END_REF], and [START_REF] Björk | A theory of Markovian timeinconsistent stochastic control in continuous time[END_REF]. There is, nonetheless, no equivalent development for stopping problems.

This paper contributes to the literature of time inconsistency in three ways. First, we provide a precise definition of sophisticated stopping policy (or, equilibrium stopping policy) in continuous time (Definition 3.2). Specifically, we introduce the operator Θ in (3.7), which describes the game-theoretic reasoning of a sophisticated agent. Sophisticated policies are formulated as fixed points of Θ, which connects to the concept of subgame-perfect Nash equilibrium invoked in [START_REF] Ekeland | Being serious about non-commitment: subgame perfect equilibrium in continuous time[END_REF].

Second, we introduce a new, iterative approach for finding equilibrium strategies. For any initial stopping policy τ , we apply the operator Θ to τ repetitively until it converges to an equilibrium stopping policy. Under appropriate conditions, this fixed-point iteration indeed converges (Theorem 3.1), which is the main result of this paper. Recall that the standard approach for finding equilibrium strategies in continuous time is solving a system of non-linear equations, as proposed in [START_REF] Ekeland | Investment and consumption without commitment[END_REF] and [START_REF] Björk | A theory of Markovian timeinconsistent stochastic control in continuous time[END_REF]. Solving this system of equations is difficult; and even when it is solved (as in the special cases in [START_REF] Ekeland | Investment and consumption without commitment[END_REF] and [START_REF] Björk | A theory of Markovian timeinconsistent stochastic control in continuous time[END_REF]), we only obtain one particular equilibrium, and it is unclear how other equilibrium strategies can be found. Our iterative approach can be useful here: we find different equilibria simply by starting the fixed-point iteration with different initial strategies τ . In some cases, we are able to find all equilibria; see Proposition 4.2.

Third, when an agent starts to do game-theoretic reasoning and look for equilibrium strategies, she is not satisfied with an arbitrary equilibrium. Instead, she works on improving her initial strategy to turn it into an equilibrium. This improving process is absent from [START_REF] Ekeland | Being serious about non-commitment: subgame perfect equilibrium in continuous time[END_REF], [START_REF] Ekeland | Investment and consumption without commitment[END_REF], [START_REF] Björk | A theory of Markovian timeinconsistent stochastic control in continuous time[END_REF], and subsequent research, although well-known in Game Theory as the hierarchy of strategic reasoning in [START_REF] Stahl | Evolution of smart-n players[END_REF] and [START_REF] Stahl | Experimental evidence on players' models of other players[END_REF]. Our iterative approach specifically represents this improving process: for any initial strategy τ , each application of Θ to τ corresponds to an additional level of strategic reasoning. As a result, the iterative approach complements the existing literature of time inconsistency in that it not only facilitates the search for equilibrium strategies, but provides "agent-specific" equilibria: it assigns one specific equilibrium to each agent according to her initial behavior.

Upon completion of our paper, we noticed the recent work Pedersen and Peskir [START_REF]Optimal mean-variance selling strategies[END_REF] on mean-variance optimal stopping. They introduced "dynamic optimality" to deal with time inconsistency. As explained in detail in [START_REF]Optimal mean-variance selling strategies[END_REF], this new concept is different from consistent planning in Strotz [START_REF] Strotz | Myopia and inconsistency in dynamic utility maximization[END_REF], and does not rely on game-theoretic modeling. Therefore, our equilibrium stopping policies are different from their dynamically optimal stopping times. That being said, a few connections between our paper and [START_REF]Optimal mean-variance selling strategies[END_REF] do exist, as pointed out in Remarks 2.2, 3.2, and 4.4.

The paper is organized as follows. In Section 2, we introduce the setup of our model, and demonstrate time inconsistency in stopping decisions through examples. In Section 3, we formulate the concept of equilibrium for stopping problems in continuous time, search for equilibrium strategies via fixed-point iterations, and establish the required convergence result. Section 4 illustrates our theory thoroughly in a real options model. Most of the proofs are delegated to appendices.

Preliminaries and Motivation

Consider the canonical space Ω := {ω ∈ C([0, ∞); R d ) : ω 0 = 0}. Let {W t } t≥0 be the coordinate mapping process W t (ω) = ω t , and F W = {F W s } s≥0 be the natural filtration generated by W . Let P be the Wiener measure on (Ω, F W ∞ ), where F W ∞ := s≥0 F W s . For each t ≥ 0, we introduce the filtration

F t,W = {F t,W s } s≥0 with F t,W s = σ(W u∨t -W t : 0 ≤ u ≤ s),
and let F t = {F t s } s≥0 be the P-augmentation of F t,W . We denote by T t the collection of all F t -stopping times τ with τ ≥ t a.s. For the case where t = 0, we simply write F 0 = {F 0 s } s≥0 as F s = {F s } s≥0 , and T 0 as T .

Remark 2.1. For any 0 ≤ s ≤ t, F t s is the σ-algebra generated by only the P-negligible sets. Moreover, for any s, t ≥ 0, F t s -measurable random variables are independent of F t ; see Bouchard and Touzi [8, Remark 2.1] for a similar set-up.

Consider the space X := [0, ∞) × R d , equipped with the Borel σ-algebra B(X). Let X be a continuous-time Markov process given by X s := f (s, W s ), s ≥ 0, for some measurable function f : X → R. Or, more generally, for any τ ∈ T and R d -valued F τ -measurable ξ, let X be the solution to the stochastic differential equation (2.1)

dX t = b(t, X t )dt + σ(t, X t )dW t for t ≥ τ, with X τ = ξ a.s.
We assume that b : X → R and σ : X → R satisfy Lipschitz and linear growth conditions in

x ∈ R d , uniformly in t ∈ [0, ∞). Then, for any τ ∈ T and R d -valued F τ -measurable ξ with E[|ξ| 2 ] < ∞, (2.1
) admits a unique strong solution.

For any (t, x) ∈ X, we denote by X t,x the solution to (2.1) with X t = x, and by E t,x the expectation conditioned on X t = x.

Classical Optimal Stopping

Consider a payoff function g : R d → R, assumed to be nonnegative and continuous, and a discount function δ : R + → [0, 1], assumed to be continuous, decreasing, and satisfy δ(0) = 1. Moreover, we assume that

(2.2) E t,x sup t≤s≤∞ δ(s -t)g(X s ) < ∞, ∀(t, x) ∈ X,
where we interpret δ(∞t)g(X t,x ∞ ) := lim sup s→∞ δ(st)g(X t,x s ); this is in line with Karatzas and Shreve [START_REF] Karatzas | Methods of mathematical finance[END_REF]Appendix D]. Given (t, x) ∈ X, classical optimal stopping concerns if there is a τ ∈ T t such that the expected discounted payoff

(2.3) J(t, x; τ ) := E t,x [δ(τ -t)g(X τ )]
can be maximized. The associated value function

(2.4) v(t, x) := sup τ ∈T t J(t, x; τ )
has been widely studied, and the existence of an optimal stopping time is affirmative. The following is a standard result taken from [START_REF] Karatzas | Methods of mathematical finance[END_REF]Appendix D] and [START_REF] Peskir | Optimal stopping and free-boundary problems[END_REF]Chapter I.2].

Proposition 2.1. For any (t, x) ∈ X, let {Z t,x s } s≥t be a right-continuous process with

(2.5) Z t,x s (ω) = ess sup τ ∈Ts E s,X t,x s (ω) [δ(τ -t)g(X τ )] a.s. ∀s ≥ t,
and define τ t,x ∈ T t by

τ t,x := inf s ≥ t : δ(s -t)g(X t,x s ) = Z t,x s . (2.6)
Then, τ t,x is an optimal stopping time of (2.4), i.e.

(2.7)

J(t, x; τ t,x ) = sup τ ∈T t J(t, x; τ ).
Moreover, τ t,x is the smallest, if not unique, optimal stopping time.

Remark 2.2. The classical optimal stopping problem (2.4) is static in the sense that it involves only the preference of the agent at time t. Following the terminology of Definition 1 in Pedersen and Peskir [START_REF]Optimal mean-variance selling strategies[END_REF], τ t,x in (2.6) is "statically optimal".

Time Inconsistency

Following Strotz [START_REF] Strotz | Myopia and inconsistency in dynamic utility maximization[END_REF], a naive agent solves the classical problem (2.4) repeatedly at every moment as time passes by. That is, given initial (t, x) ∈ X, the agent solves sup τ ∈Ts J(s, X t,x s ; τ ) at every moment s ≥ t.

By Proposition 2.1, the agent at time s intends to employ the stopping time τ s,X t,x s ∈ T s , for all s ≥ t. This raises the question of whether optimal stopping times obtained at different moments, τ t,x and τ t ′ ,X t,x t ′ with t ′ > t, are consistent with each other. Definition 2.1 (Time Consistency). The problem (2.4) is time-consistent if for any (t, x) ∈ X and s > t, τ t,x (ω) = τ s,X t,x s (ω) (ω) for a.e. ω ∈ { τ t,x ≥ s}. We say the problem (2.4) is timeinconsistent if the above does not hold.

In the classical literature of Mathematical Finance, the discount function usually takes the form δ(s) = e -ρs for some ρ ≥ 0. This already guarantees time consistency of (2.4). To see this, first observe the identity

(2.8) δ(s)δ(t) = δ(s + t) ∀s, t ≥ 0.
Fix (t, x) ∈ X and pick t ′ > t such that P[ τ t,x ≥ t ′ ] > 0. For a.e. ω ∈ { τ t,x ≥ t ′ }, set y := X t,x t ′ (ω). We observe from (2.6), (2.5), and

X t,x s (ω) = X t ′ ,y s (ω) that τ t,x (ω) = inf s ≥ t ′ : δ(s -t)g(X t ′ ,y s (ω)) ≥ ess sup τ ∈Ts E s,X t ′ ,y s (ω) [δ(τ -t)g(X τ )] , τ t ′ ,y (ω) = inf s ≥ t ′ : δ(s -t ′ )g(X t ′ ,y s (ω)) ≥ ess sup τ ∈Ts E s,X t ′ ,y s (ω) [δ(τ -t ′ )g(X τ )] .
Then (2.8) guarantees τ t,x (ω) = τ t ′ ,y (ω), as δ(τ -t) δ(s-t) = δ(τ -t ′ ) δ(s-t ′ ) = δ(τs). For non-exponential discount functions, the identity (2.8) no longer holds, and the problem (2.4) is in general timeinconsistent.

Example 2.1 (Smoking Cessation). Suppose a smoker has a fixed lifetime T > 0. Consider a deterministic cost process X s := x 0 e 1 2 s , s ∈ [0, T ], for some x 0 > 0. Thus, we have X t,x s = xe 1 2 (s-t) for s ∈ [t, T ]. The smoker can (i) quit smoking at some time s < T (with cost X s ) and die peacefully at time T (with no cost), or (ii) never quit smoking (thus incurring no cost) but die painfully at time T (with cost X T ). With hyperbolic discount function δ(s) := 1 1+s for s ≥ 0, (2.4) becomes minimizing cost

inf s∈[t,T ] δ(s -t)X t,x s = inf s∈[t,T ] xe 1 2 (s-t) 1 + (s -t) .
By basic Calculus, the optimal stopping time τ t,x is given by (2.9)

τ t,x = t + 1 if t < T -1, T if t ≥ T -1.
Time inconsistency can be easily observed, and it illustrates the procrastination behavior: the smoker never quits smoking. . This can be viewed as a real options problem in which the management of a large non-profitable insurance company has the intention to liquidate or sell the company, and would like to decide when to do so; see the explanations under (4.2) for details.

By the argument in Pedersen and Peskir [START_REF] Pedersen | Solving non-linear optimal stopping problems by the method of time-change[END_REF], we prove in Proposition 4.1 below that the optimal stopping time τ x , defined in (2.6) with t = 0, has the formula

τ x = inf s ≥ 0 : X x s ≥ √ 1 + s .
If one solves the same problem at time t > 0 with X t = x ∈ R + , the optimal stopping time is τ t,x = t + τ x = inf{s ≥ t : X t,x s ≥ 1 + (st)}. The free boundary s → 1 + (st) is unusual in its dependence on initial time t. From Figure 1, we clearly observe time inconsistency: τ t,x (ω) and τ t ′ ,X t,x t ′ (ω) do not agree in general, for any t ′ > t, as they correspond to different free boundaries. As proposed in Strotz [START_REF] Strotz | Myopia and inconsistency in dynamic utility maximization[END_REF], to deal with time inconsistency, we need a strategy that is either pre-committed or sophisticated. A pre-committed agent finds τ t,x in (2.6) at time t, and forces her future selves to follow τ t,x through a commitment mechanism (e.g. a contract). By contrast, a sophisticated agent works on "consistent planning": she anticipates the change of future preferences, and aims to find a stopping strategy that once being enforced, none of her future selves would want to deviate from it. How to precisely formulate sophisticated stopping strategies has been a challenge in continuous time, and the next section focuses on resolving this.

Equilibrium Stopping Policies

Objective of a Sophisticated Agent

Since one may re-evaluate and change her choice of stopping times over time, her stopping strategy is not a single stopping time, but a stopping policy defined below. Definition 3.1. A Borel measurable function τ : X → {0, 1} is called a stopping policy. We denote by T (X) the set of all stopping policies.

Given current time and state (t, x) ∈ X, a policy τ ∈ T (X) governs when an agent stops: the agent stops at the first time τ (s, X t,x s ) yields the value 0, i.e. at the moment

Lτ (t, x) := inf s ≥ t : τ (s, X t,x s ) = 0 . (3.1)
To show that Lτ (t, x) is a well-defined stopping time, we introduce the set

(3.2) ker(τ ) := {(t, x) ∈ X : τ (t, x) = 0}.
It is called the kernel of τ , which is the collection of (t, x) at which the policy τ suggests immediate stopping. Then, Lτ (t, x) can be expressed as

(3.3) Lτ (t, x) = inf s ≥ t : (s, X t,x s ) ∈ ker(τ ) .
Lemma 3.1. For any τ ∈ T (X) and (t, x) ∈ X, ker(τ ) ∈ B(X) and Lτ (t, x) ∈ T t .

Proof. The Borel measurability of τ ∈ T (X) immediately implies ker(τ ) ∈ B(X). In view of (3.3), Lτ (t, x)(ω) = inf {s ≥ t : (s, ω) ∈ E}, where

E := {(r, ω) ∈ [t, ∞) × Ω : (r, X t,x r (ω)) ∈ ker(τ )}.
With ker(τ ) ∈ B(X) and the process X t,x being progressively measurable, E is a progressively measurable set. Since the filtration F t satisfies the usual conditions, [2, Theorem 2.1] asserts that Lτ (t, x) is an F t -stopping time.

Remark 3.1 (Naive Stopping Policy). Recall the optimal stopping time τ t,x defined in (2.6) for all (t, x) ∈ X. Define τ ∈ T (X) by

(3.4) τ (t, x) := 0, if τ t,x = t, 1, if τ t,x > t.
Note that τ : X → {0, 1} is indeed Borel measurable because τ t,x = t if and only if

(t, x) ∈ (t, x) ∈ X : g(x) = sup τ ∈Tt E t,x [δ(τ -t)g(X τ )] ∈ B(X).
Following the standard terminology (see e.g. [START_REF] Strotz | Myopia and inconsistency in dynamic utility maximization[END_REF], [START_REF] Pollak | Consistent planning[END_REF]), we call τ the naive stopping policy as it describes the behavior of a naive agent, discussed in Subsection 2.2.

Remark 3.2. Despite its name, the naive stopping policy τ may readily satisfy certain optimality criterion. For example, "dynamic optimality" recently proposed in Pedersen and Peskir [START_REF]Optimal mean-variance selling strategies[END_REF] can be formulated in our case as follows: τ ∈ T (X) is dynamically optimal if there is no other π ∈ T (X) such that

P t,x J Lτ (t, x), X t,x Lτ (t,x) ; Lπ Lτ (t, x), X t,x Lτ (t,x) > g(X t,x Lτ (t,x) ) > 0
for some (t, x) ∈ X. By (3.4) and Proposition 2.1, τ is dynamically optimal as the above probability is always 0.

Example 3.1 (Real Options Model, Continued). Recall the setting of Example 2.2. A naive agent follows τ ∈ T (X), and the actual moment of stopping is

L τ (t, x) = inf{s ≥ t : τ (s, X t,x s ) = 0} = inf{s ≥ t : X t,x s ≥ 1},
which differs from the agent's original decision τ t,x in Example 2.2.

We can now introduce equilibrium policies. Suppose that a stopping policy τ ∈ T (X) is given to a sophisticated agent. At any (t, x) ∈ X, the agent carries out the game-theoretic reasoning: "assuming that all my future selves will follow τ ∈ T (X), what is the best stopping strategy at current time t in response to that?" Note that the agent at time t has only two possible actions: stopping and continuation. If she stops at time t, she gets g(x) immediately. If

L * τ (t, x) := inf s > t : τ (s, X t,x s ) = 0 = inf s > t : (s, X t,x s ) ∈ ker(τ ) , (3.5) 
leading to the payoff

J(t, x; L * τ (t, x)) = E t,x δ(L * τ (t, x) -t)g(X L * τ (t,x) ) .
By the same argument in Lemma 3.1, L * τ (t, x) is a well-defined stopping time in T t . Note the subtle difference between Lτ (t, x) and L * τ (t, x): with the latter, the agent at time t simply chooses to continue, with no regard to what τ ∈ T (X) suggests at time t. This is why we have "s > t" in (3.5), instead of "s ≥ t" in (3.1). Now, we separate the space X into three distinct regions

S τ := {(t, x) ∈ X : g(x) > J(t, x; L * τ (t, x))}, C τ := {(t, x) ∈ X : g(x) < J(t, x; L * τ (t, x))}, I τ := {(t, x) ∈ X : g(x) = J(t, x; L * τ (t, x))}. (3.6) 
Some conclusions can be drawn:

1. If (t, x) ∈ S τ , the agent should stop immediately at time t.

2. If (t, x) ∈ C τ , the agent should continue at time t.

3. If (t, x) ∈ I τ , the agent is indifferent between stopping and continuation at current time; there is then no incentive for the agent to deviate from the originally assigned stopping strategy τ (t, x).

To summarize, for any (t, x) ∈ X, the best stopping strategy at current time (in response to future selves following τ ∈ T (X)) is

(3.7) Θτ (t, x) :=      0 for (t, x) ∈ S τ 1 for (t, x) ∈ C τ τ (t, x) for (t, x) ∈ I τ .
. The next result shows that Θτ : X → {0, 1} is again a stopping policy. Lemma 3.2. For any τ ∈ T (X), S τ , C τ , and I τ belong to B(X), and Θτ ∈ T (X).

Proof. Since L * τ (t, x) is the first hitting time to the Borel set ker(τ ), the map (t, x) → J(t, x; L * τ (t, x)) = E t,x [δ(L * τ (t, x) -t)g(X L * τ (t,x) )
] is Borel measurable, and thus S τ , I τ , and C τ all belong to B(X). Now, by (3.7), ker(Θτ ) = S τ ∪ (I τ ∩ ker(τ )) ∈ B(X), which implies that Θτ ∈ T (X). By Lemma 3.2, Θ can be viewed as an operator acting on the space T (X). For any initial τ ∈ T (X), Θ : T (X) → T (X) generates a new policy Θτ ∈ T (X). The switch from τ to Θτ corresponds to an additional level of strategic reasoning in Game Theory, as discussed below Corollary 3.1.

Definition 3.2 (Equilibrium Stopping Policies

). We say τ ∈ T (X) is an equilibrium stopping policy if Θτ (t, x) = τ (t, x) for all (t, x) ∈ X. We denote by E(X) the collection of all equilibrium stopping policies.

The term "equilibrium" is used as a connection to subgame-perfect Nash equilibria in an inter-temporal game among current self and future selves. This equilibrium idea was invoked in stochastic control under time inconsistency; see e.g. [START_REF] Ekeland | Being serious about non-commitment: subgame perfect equilibrium in continuous time[END_REF], [START_REF] Ekeland | Investment and consumption without commitment[END_REF], [START_REF] Ekeland | Time-consistent portfolio management[END_REF], and [START_REF] Björk | A theory of Markovian time-inconsistent stochastic control in discrete time[END_REF]. A contrast with the stochastic control literature needs to be pointed out.

Remark 3.3 (Comparison with Stochastic Control).

In time-inconsistent stochastic control, local perturbation of strategies on small time intervals [t, t + ε] is the standard way to define equilibrium controls. In our case, local perturbation is carried out instantaneously at time t. This is because an instantaneously-modified stopping strategy may already change the expected discounted payoff significantly, whereas a control perturbed only at time t yields no effect.

The first question concerning Definition 3.2 is the existence of an equilibrium stopping policy. Finding at least one such a policy turns out to be easy. Remark 3.4 (Trivial Equilibrium). Define τ ∈ T (X) by τ (t, x) := 0 for all (t, x) ∈ X. Then Lτ (t, x) = L * τ (t, x) = t, and thus J(t, x; L * τ (t, x)) = g(x) for all (t, x) ∈ X. This implies I τ = X. We then conclude from (3.7) that Θτ (t, x) = τ (t, x) for all (t, x) ∈ X, which shows τ ∈ E(X). We call it the trivial equilibrium stopping policy.

Example 3.2 (Smoking Cessation, Continued). Recall the setting in Example 2.1. Observe from (2.9) and (3.4) that L * τ (t, x) = T for all (t, x) ∈ X. Then,

δ(L * τ (t, x) -t)X t,x L * τ (t,x) = X t,x T 1 + T -t = xe 1 2 (T -t) 1 + T -t .
Since e 1 2 s = 1 + s has two solutions s = 0 and s = s * ≈ 2.51286, and e

1 2 s > 1 + s iff s > s * , the above equation implies S τ = {(t, x) : t < T -s * }, C τ = {(t, x) : t ∈ (T -s * , T )}, and I τ = {(t, x) : t = T -s * or T }. We therefore get Θ τ (t, x) = 0 for t < T -s * , 1 for t ≥ T -s * .
Whereas a naive smoker delays quitting smoking indefinitely (as in Example 2.1), the first level of strategic reasoning (i.e. applying Θ to τ once) recognizes this procrastination behavior and pushes the smoker to quit immediately, unless he is already too old (i.e. t ≥ Ts * ). It can be checked that Θ τ is already an equilibrium, i.e. Θ 2 τ (t, x) = Θ τ (t, x) for all (t, x) ∈ X.

It is worth noting that in the classical case of exponential discounting, characterized by (2.8), the naive stopping policy τ in (3.4) is already an equilibrium.

Proposition 3.1. Under (2.8), τ ∈ T (X) defined in (3.4) belongs to E(X).
Proof. The proof is delegated to Appendix A.1.

The Main Result

In this subsection, we look for equilibrium policies through fixed-point iterations. For any τ ∈ T (X), we apply Θ to τ repetitively until we reach an equilibrium policy. In short, we define τ 0 by

(3.8) τ 0 (t, x) := lim n→∞ Θ n τ (t, x) ∀(t, x) ∈ X,
and take it as a candidate equilibrium policy. To make this argument rigorous, we need to show (i) the limit in (3.8) converges, so that τ 0 is well-defined; (ii) τ 0 is indeed an equilibrium policy, i.e. Θτ 0 = τ 0 . To this end, we impose the condition:

Assumption 3.1. The function δ satisfies δ(s)δ(t) ≤ δ(s + t) for all s, t ≥ 0.

Assumption 3.1 is closely related to decreasing impatience (DI) in Behavioral Economics. It is well-documented in empirical studies, e.g. [START_REF] Thaler | Some empirical evidence on dynamic inconsistency[END_REF], [START_REF] Loewenstein | Anomalies: Intertemporal choice[END_REF], [START_REF] Loewenstein | Anomalies in intertemporal choice: evidence and an interpretation[END_REF], that people admits DI: when choosing between two rewards, people are more willing to wait for the larger reward (more patient) when these two rewards are further away in time. For instance, in the two scenarios (i) getting $100 today or $110 tomorrow, and (ii) getting $100 in 100 days or $110 in 101 days, people tend to choose $100 in (i), but $110 in (ii).

Following [28, Definition 1] and [START_REF] Noor | Decreasing impatience and the magnitude effect jointly contradict exponential discounting[END_REF], [START_REF]Hyperbolic discounting and the standard model: Eliciting discount functions[END_REF], DI can be formulated under current context as follows: the discount function δ induces DI if (3.9) for any s ≥ 0, t → δ(t + s) δ(t) is strictly increasing.

Observe that (3.9) readily implies Assumption 3. 

) ker(Θ n τ ) ⊆ ker(Θ n+1 τ ), ∀n ∈ N. (3.11 
Hence, τ 0 in (3.8) is a well-defined element in T (X), with ker(τ 0 ) = n∈N ker(Θ n τ ).

Proof. The proof is delegated to Appendix A.2.

Condition (3.10) means that at any (t, x) ∈ X where the initial policy τ indicates immediate stopping, the new policy Θτ agrees with it; however, it is possible that at some (t, x) ∈ X where τ indicates continuation, Θτ suggests immediate stopping, based on the game-theoretic reasoning in Subsection 3.1. Note that (3.10) is not very restrictive, as it already covers all hitting times to subsets of X that are open (or more generally, half-open in [0, ∞) and open in R d ), as explained below.

Remark 3.5. Let E be a subset of X that is "open" in the sense that for any (t, x) ∈ E, there exists The stopping policy τ corresponds to the stopping times T t,x := inf{s ≥ t : (s, X t,x s ) ∈ E} for all (t, x) ∈ X. In particular, if

ε > 0 such that (t, x) ∈ [t, t + ε) × B ε (x) ⊆ E, where B ε (x) := {y ∈ R d : |y -x| < ε}. Define τ ∈ T (X) by τ (t, x) = 0 if and only if (t, x) ∈ E. Since ker(τ ) = E is "open", for any (t, x) ∈ ker(τ ), we have L * τ (t, x) = t,
E = [0, ∞) × F where F is an open set in R d , the corresponding stopping times are T ′ t,x := inf{s ≥ t : X t,x s ∈ F }, (t, x) ∈ X.
Moreover, the naive stopping policy τ also satisfies (3.10).

Proposition 3.3. τ ∈ T (X) defined in (3.4) satisfies (3.10).

Proof. The proof is delegated to Appendix A.3.

The next theorem is the main result of our paper. It shows that the fixed-point iteration in (3.8) indeed converges to an equilibrium policy. Proof. The proof is delegated to Section A.4.

The following result for the naive stopping policy τ , defined in (3.4), is a direct consequence of Proposition 3.3 and Theorem 3.1.

Corollary 3.1. Let Assumption 3.1 hold. The stopping policy τ 0 ∈ T (X) defined by

(3.12) τ 0 (t, x) := lim n→∞ Θ n τ (t, x) ∀(t, x) ∈ X
belongs to E(X).

Our iterative approach, as in (3.8), contributes to the literature of time inconsistency in two ways. First, the standard approach for finding equilibrium strategies in continuous time is solving a system of non-linear equations (the so-called extended HJB equation), as proposed in [START_REF] Ekeland | Investment and consumption without commitment[END_REF] and [START_REF] Björk | A theory of Markovian timeinconsistent stochastic control in continuous time[END_REF]. Solving this system of equations is difficult; and even when it is solved (as in the special cases in [START_REF] Ekeland | Investment and consumption without commitment[END_REF] and [START_REF] Björk | A theory of Markovian timeinconsistent stochastic control in continuous time[END_REF]), we just obtain one particular equilibrium, and it is unclear how other equilibrium strategies can be found. Our iterative approach provides a potential remedy here. We can find different equilibria simply by starting the iteration (3.8) with different initial policies τ ∈ T (X). In some cases, we are able to find all equilibria, and obtain a complete characterization of E(X); see Proposition 4.2 below.

Second, while the continuous-time formulation of equilibrium strategies was initiated in [START_REF] Ekeland | Being serious about non-commitment: subgame perfect equilibrium in continuous time[END_REF], the "origin" of an equilibrium strategy has not been addressed. This question is important as people do not start with using equilibrium strategies. People have their own initial strategies, determined by a variety of factors such as classical optimal stopping theory, personal habits, and popular rules of thumb in the market. Once an agent starts to do game-theoretic reasoning and look for equilibrium strategies, she is not satisfied with an arbitrary equilibrium. Instead, she works on improving her initial strategy to turn it into an equilibrium. This improving process is absent from [START_REF] Ekeland | Being serious about non-commitment: subgame perfect equilibrium in continuous time[END_REF], [START_REF] Ekeland | Investment and consumption without commitment[END_REF], and [START_REF] Björk | A theory of Markovian timeinconsistent stochastic control in continuous time[END_REF], but it is in fact well-known in Game Theory as the hierarchy of strategic reasoning in [START_REF] Stahl | Evolution of smart-n players[END_REF] and [START_REF] Stahl | Experimental evidence on players' models of other players[END_REF]. Our iterative approach embodies this framework: given an initial τ ∈ T (X), Θ n τ ∈ T (X) corresponds to level-n strategic reasoning in [START_REF] Stahl | Experimental evidence on players' models of other players[END_REF], and τ 0 := lim n→∞ Θ n τ reflects full rationality of "smart ∞ " players in [START_REF] Stahl | Evolution of smart-n players[END_REF]. Hence, our formulation complements the literature of time inconsistency in that it not only defines what an equilibrium is, but explains where an equilibrium is coming from. This in turn provides "agent-specific" results: it assigns one specific equilibrium to each agent according to her initial behavior.

In particular, Corollary 3.1 specifies the connection between the naive behavior and the sophisticated one. While these behaviors have been widely discussed in the literature, their relation has not been stated mathematically as precisely as in (3.12).

The Time-Homogeneous Case

Suppose the state process X is time-homogeneous, i.e. X s = f (W s ) for some measurable f : R d → R; or, the coefficients b and σ in (2.1) does not depend on t. The objective function (2.3) then reduces to J(x; τ ) := E x [δ(τ )g(X τ )] for x ∈ R d and τ ∈ T , where the superscript of E x means X 0 = x. The decision to stop or to continue then depends on the current state x only. The formulation in Subsection 3.1 reduces to: Definition 3.3. When X is time-homogeneous, a Borel measurable τ : R d → {0, 1} is called a stopping policy, and we denote by T (R d ) the set of all stopping policies. Given τ ∈ T (R d ) and x ∈ R d , we define, similarly to (3.2), (3.1), and (3.5), ker(τ ) := {x ∈ R d : τ (x) = 0}, Lτ (x) := inf{t ≥ 0 : τ (X x t ) = 0}, and L * τ (x) := inf{t > 0 : τ (X x t ) = 0}. Furthermore, we say τ ∈ T (R d ) is an equilibrium stopping policy if Θτ (x) = τ (x) for all x ∈ R d , where

(3.13) Θτ (x) :=        0 if x ∈ S τ := {x : g(x) > E x [δ(L * τ (x))g(X L * τ (x) )]}, 1 if x ∈ C τ := {x : g(x) < E x [δ(L * τ (x))g(X L * τ (x) )]}, τ (x) if x ∈ I τ := {x : g(x) = E x [δ(L * τ (x))g(X L * τ (x) )]}.
Remark 3.6. When X is time-homogeneous, all the results in Subsection 3.2 hold, with T (X), E(X), ker(τ ), and Θ replaced by the corresponding ones in Definition 3.3. Proofs of these statements are similar to, and in fact easier than, those in Subsection 3.2, thanks to the homogeneity in time.

A Detailed Case Study: Stopping of BES(1)

In this section, we recall the setup of Example 2.2, with hyperbolic discount function

(4.1) δ(s) := 1 1 + βs ∀s ≥ 0,
where β > 0 is a fixed parameter. The state process X is a one-dimensional Bessel process, i.e. X t = |W t |, t ≥ 0, where W is a one-dimensional Brownian motion. With X being timehomogeneous, we will follow Definition 3.3 and Remark 3.6. Also, the classical optimal stopping problem (2.4) reduces to

(4.2) v(x) = sup τ ∈T E x X τ 1 + βτ for x ∈ R + .
This can be viewed as a real options problem, as explained below.

By [START_REF] Taksar | Optimal dynamic reinsurance policies for large insurance portfolios[END_REF] and the references therein, when the surplus (or reserve) of an insurance company is much larger than the size of each individual claim, the dynamics of the surplus process can be approximated by dR t = µdt + σdW t with µ = p -E[Z] and σ = E[Z 2 ]. Here, p > 0 is the premium rate, and Z is a random variable that represents the size of each claim. Suppose that an insurance company is non-profitable with µ = 0, i.e. it uses all the premiums collected to cover incoming claims. Also assume that the company is large enough to be considered "systemically important", so that when its surplus hits zero, the government will provide monetary support to bring it back to positivity, as in the recent financial crisis. The dynamics of R is then a Brownian motion reflected at the origin. Thus, (4.2) describes a real options problem in which the management of a large non-profitable insurance company has the intention to liquidate or sell the company, and would like to decide when to do so.

An unusual feature of (4.2) is that the discounted process {δ(s)v(X x s )} s≥0 may not be a supermartingale. This makes solving (4.2) for the optimal stopping time τ x , defined in (2.6) with t = 0, nontrivial. As shown in Appendix B.1, we need an auxiliary value function, and use the method of time-change in [START_REF] Pedersen | Solving non-linear optimal stopping problems by the method of time-change[END_REF]. Proposition 4.1. For any x ∈ R + , the optimal stopping time τ x of (4.2) (defined in (2.6) with t = 0) admits the explicit formula

(4.3) τ x = inf s ≥ 0 : X x s ≥ 1/β + s .
Hence, the naive stopping policy τ ∈ T (R + ), defined in (3.4), is given by

(4.4) τ (x) := 1 [0, √ 1/β) (x) ∀x ∈ R + .
Proof. The proof is delegated to Appendix B.1.

Characterization of equilibrium policies

Lemma 4.1. For any τ ∈ T (R + ), consider τ ′ ∈ T (R + ) with ker(τ ′ ) := ker(τ ).

Then L * τ (x) = Lτ (x) = Lτ ′ (x) = L * τ ′ (x) for all x ∈ R + . Hence, τ ∈ E(R + ) if and only if τ ′ ∈ E(R + ). Proof. If x ∈ R + is in the interior of ker(τ ), L * τ (x) = Lτ (x) = 0 = Lτ ′ (x) = L * τ ′ (x). Since a one-dimensional Brownian motion W is monotone in no interval, if x ∈ ker(τ ′ ) \ ker(τ ), L * τ (x) = Lτ (x) = 0 = Lτ ′ (x) = L * τ ′ (x); if x / ∈ ker(τ ′ ), then L * τ (x) = Lτ (x) = inf{s ≥ 0 : |W x | ∈ ker(τ )} = inf{s ≥ 0 : |W x | ∈ ker(τ )} = Lτ ′ (x) = L * τ ′ (x)
. Finally, we deduce from (3.13) and L * τ (x) = L * τ ′ (x) for all x ∈ R + that τ ∈ E(R + ) implies τ ′ ∈ E(R + ), and vice versa.

The next result shows that every equilibrium policy corresponds to the hitting time to a certain threshold. Recall that a set E ⊂ R + is called totally disconnected if the only nonempty connected subsets of E are singletons, i.e. E contains no interval. Lemma 4.2. For any τ ∈ E(R + ), define a := inf (ker(τ )) ≥ 0. Then, the Borel set E := {x ≥ a : x / ∈ ker(τ )} is totally disconnected. Hence, ker(τ ) = [a, ∞) and the stopping policy τ a , defined by τ a (x) := 1 [0,a) (x) for x ∈ R + , belongs to E(R + ).

Proof. The proof is delegated to Appendix B.2

The converse question is for which a ≥ 0 the policy τ a ∈ T (R) is an equilibrium. To answer this, we need to find the sets S τa , C τa , and I τa in (3.13). By Definition 3.3,

(4.5) Lτ a (x) = T x a := inf{s ≥ 0 : X x s ≥ a}, L * τ a (x) = inf{s > 0 : X x s ≥ a}. Note that Lτ a (x) = L * τ a (x)
, by an argument similar to the proof of Lemma 4.1. As a result, for x ≥ a, we have J(x; L * τ a (x)) = J(x; 0) = x, which implies (i) For any a ≥ 0, x → η(x, a) is strictly increasing and strictly convex on [0,a], and satisfies 0 < η(0, a) < a and η(a, a) = a.

(ii) For any x ≥ 0, η(x, a) → 0 as a → ∞.

(iii) There exists a unique a * ∈ (0, 1/ √ β) such that for any a > a * , there is a unique solution x * (a) ∈ (0, a * ) of η(x, a) = x. Hence, η(x, a) > x for x < x * (a) and η(x, a) < x for x > x * (a). On the other hand, a ≤ a * implies that η(x, a) > x for all x ∈ (0, a). 

     > x, if x ∈ [0, x * (a)), = x, if x = x * (a), < x, if x ∈ (x * (a), a).
By (4.6), (4.7), (4.8), and the definition of Θ in (3.13), For a > a * , although τ a / ∈ E(R + ) by Proposition 4.2, we may use the iteration in (3.8) to find a stopping policy in E(R + ). Here, the repetitive application of Θ to τ a has a simple structure: to reach an equilibrium, we need only one iteration. Recall "static optimality" and "dynamic optimality" in Remarks 2.2 and 3.2. By Proposition 4.1, τ x in (4.3) is statically optimal for x ∈ R + fixed, while τ in (4.4) is dynamically optimal. This is reminiscent of the situation in Theorem 3 of [START_REF]Optimal mean-variance selling strategies[END_REF]. Moreover, τ ∈ T (R + ) defined by τ (x) := 1 [0,b) (x), x ∈ R + , is dynamically optimal for all b ≥ 1/β, thanks again to Proposition 4.1.

if a ≤ a * , Θτ a (x) = 1 [0,a) (x) + τ a (x)1 [a,∞) (x) ≡ τ a (x); if a > a * , Θτ a (x) = 1 [0,x * (a)) (x) + τ a (x)1 {x * (a)}∪[a,∞) (x) ≡ τ a (x
E(R + ) = {τ ∈ T (R + ) : ker(τ ) = [a, ∞) for some a ∈ [0, a * ]}. Proof. The derivation of "τ a ∈ E(R + ) ⇐⇒ a ∈ [0, a * ]" is

Further consideration on selecting equilibrium policies

In view of (4.10), it is natural to ask which equilibrium in E(R + ) one should employ. According to standard Game Theory literature discussed below Corollary 3.1, a sophisticated agent should employ the specific equilibrium generated by her initial stopping policy τ , through the iteration (3.8). Now, imagine that an agent is "born" sophisticated: she does not have any previouslydetermined initial stopping policy, and intends to apply an equilibrium policy straight away. A potential way to formulate her stopping problem is the following: (4.11) sup

τ ∈E(R + ) J(x; Lτ (x)) = sup a∈[0,a * ] J(x; Lτ a (x)) = sup a∈[x,a * ∨x] E x a 1 + βT x a .
where the first equality follows from Proposition 4.2 and Lemma 4.1.

Proposition 4.3. τ a * ∈ E(R + ) solves (4.11) for all x ∈ R + .
Proof. Fix a ∈ [0, a * ). For any x ≤ a, we have T x a ≤ T x a * . Thus,

J(x; Lτ a * (x)) = E x a * 1 + βT x a * = E x E x a * 1 + βT x a * F T x a ≥ E x 1 1 + βT x a E a a * 1 + βT a a * > E x a 1 + βT x a = J(x; Lτ a (x)),
where the last inequality follows from Lemma 4.3 (iii).

The conclusion is twofold. First, it is possible, at least under current setting, to find one single equilibrium policy that solves (4.11) for all x ∈ R + . Second, this "optimal" equilibrium policy τ a * is different from τ ′

x * ( a) , the equilibrium generated by the naive policy τ (see Remark 4.3). This indicates that the map Θ * := lim n→∞ Θ n : T (X) → E(X) is in general nonlinear: while τ ∈ T (T ) is constructed from optimal stopping times { τ x } x∈R + (or "dynamically optimal" as in Remark 4.4), Θ * ( τ ) = τ ′

x * ( a) ∈ E(X) is not optimal under (4.11). This is not that surprising once we realize τ x > L τ (x) > Lτ ′

x * ( a) (x) for some x ∈ R + . The first inequality is essentially another way to describe time inconsistency, and the second inequality follows from ker( τ ) ⊂ ker(Θ τ ) = ker(τ ′

x * ( a) ). It follows that the optimality of τ x for sup τ ∈T J(x; τ ) does not necessarily translate to the optimality of τ ′

x * ( a) for sup τ ∈E(R + ) J(x; Lτ (x)).

A Proofs for Section 3

Throughout this appendix, we will constantly use the notation

(A.1) τ n := Θ n τ n ∈ N, for any τ ∈ T (X).
A.1 Proof of Proposition 3.1

Fix (t, x) ∈ X. We deal with the two cases τ (t, x) = 0 and τ (t, x) = 1 separately. If τ (t, x) = 0, i.e. τ t,x = t, by (2.7)

g(x) = sup τ ∈Tt E t,x [δ(τ -t)g(X τ )] ≥ E t,x δ(L * τ (t, x) -t)g(X L * τ (t,x) ) , which implies (t, x) ∈ S τ ∪ I τ . We then conclude from (3.7) that Θ τ (t, x) = 0 if (t, x) ∈ S τ τ (t, x) if (t, x) ∈ I τ = τ (t, x). If τ (t, x) = 1, then L * τ (t, x) = L τ (t, x) = inf{s ≥ t : τ (s, X t,x s ) = 0} = inf{s ≥ t : τ s,X t,x s = s}. By (2.6) and (2.5), τ s,X t,x s = s means g(X t,x s (ω)) = ess sup τ ∈Ts E s,X t,x s (ω) [δ(τ -s)g(X τ )],
which is equivalent to

δ(s -t)g(X t,x s (ω)) = δ(s -t) ess sup τ ∈Ts E s,X t,x s (ω) [δ(τ -s)g(X τ )] = ess sup τ ∈Ts E s,X t,x s (ω) [δ(τ -t)g(X τ )] = Z t,x s (ω),
where the second equality follows from (2.8). We then conclude that

L * τ (t, x) = inf{s ≥ t : δ(s -t)g(X t,x s ) = Z t,x s } = τ t,x
. This, together with (2.7), shows that

E t,x δ(L * τ (t, x) -t)g(X L * τ (t,x) ) = E t,x δ( τ t,x -t)g(X τt,x ) ≥ g(x), which implies (t, x) ∈ I τ ∪ C τ . By (3.7), we have Θ τ (t, x) = τ (t, x) if (t, x) ∈ I τ 1 if (t, x) ∈ C τ = τ (t, x).
We therefore have Θ τ x) = τ (t, x) for all (t, x) ∈ X, i.e. τ ∈ E(X).

A.2 Derivation of Proposition 3.2

To prove the technical result Lemma A.1 below, we need to introduce shifted random variables as formulated in Nutz [START_REF] Nutz | Random G-expectations[END_REF]. For any t ≥ 0 and ω ∈ Ω, we define the concatenation of ω and ω ∈ Ω at time t by

(ω ⊗ t ω) s := ω s 1 [0,t) (s) + [ω s -(ω t -ω t )]1 [t,∞) (s), s ≥ 0.
For any F ∞ -measurable random variable ξ : Ω → R, we define the shifted random variable

[ξ] t,ω : Ω → R, which is F t ∞ -measurable, by [ξ] t,ω (ω) := ξ(ω ⊗ t ω), ∀ω ∈ Ω.
Given τ ∈ T , we write ω ⊗ τ (ω) ω as ω ⊗ τ ω, and [ξ] τ (ω),ω (ω) as [ξ] τ,ω (ω). A detailed analysis of shifted random variables can be found in [3, Appendix A]; Proposition A.1 therein implies that give (t, x) ∈ X fixed, any θ ∈ T t and

F t ∞ -measurable ξ with E t,x [|ξ|] < ∞ satisfy (A.2) E t,x [ξ | F t θ ](ω) = E t,x [[ξ] θ,ω ] for a.e. ω ∈ Ω.
Lemma A.1. For any τ ∈ T (X) and (t, x) ∈ X, define t 0 := L * τ 1 (t, x) ∈ T t and s 0 := L * τ (t, x) ∈ T t , with τ 1 as in (A.1). If t 0 ≤ s 0 , then for a.e. ω ∈ {t < t 0 },

g(X t,x t 0 (ω)) ≤ E t,x δ(s 0 -t 0 )g(X s 0 ) | F t t 0 (ω).
Proof. For a.e. ω ∈ {t < t 0 } ∈ F t , we deduce from t 0 (ω) = L * τ 1 (t, x)(ω) > t that for all s ∈ (t, t 0 (ω)) we have τ 1 (s, X t,x s (ω)) = 1 . By (A.1) and (3.7), this implies (s, X t,x s (ω)) / ∈ S τ for all s ∈ (t, t 0 (ω)). Thus,

g(X t,x s (ω)) ≤ E s,X t,x s (ω) δ(L * τ (s, X s ) -s)g X L * τ (s,X s ) ∀s ∈ (t, t 0 (ω)) . (A.3) For any s ∈ (t, t 0 (ω)), note that [t 0 ] s,ω (ω) = t 0 (ω ⊗ s ω) = L * τ 1 (t, x)(ω ⊗ s ω) = L * τ 1 (s, X t,x s (ω))(ω), ∀ ω ∈ Ω. Since t 0 ≤ s 0 , similar calculation gives [s 0 ] s,ω (ω) = L * τ (s, X t,x s (ω))(ω). We thus conclude from (A.3) that g(X t,x s (ω)) ≤ E s,X t,x s (ω) δ([s 0 ] s,ω -s)g [X s 0 ] s,ω ≤ E s,X t,x s (ω) δ([s 0 ] s,ω -[t 0 ] s,ω )g [X s 0 ] s,ω , ∀s ∈ (t, t 0 (ω)) , (A.4)
where the second line holds because δ is decreasing and also δ and g are both nonnegative. On the other hand, by (A.2), it holds a.s. that

E t,x [δ(s 0 -t 0 )g(X s 0 ) | F t s ](ω) = E t,x δ([s 0 ] s,ω -[t 0 ] s,ω )g([X t,x s 0 ] s,ω ) ∀s ≥ t, s ∈ Q.
Note that we used the countability of Q to obtain the above almost-sure statement. This, together with (A.4), shows that it holds a.s. that

(A.5) g(X t,x s (ω)) 1 {(t,t 0 (ω))∩Q} (s) ≤ E t,x [δ(s 0 -t 0 )g(X s 0 ) | F t s ](ω) 1 {(t,t 0 (ω))∩Q} (s).
Since our sample space Ω is the canonical space for Brownian motion with the right-continuous Brownian filtration F, the martingale representation theorem holds under current setting. This in particular implies that every martingale has a continuous version. Let {M s } s≥t be the continuous version of the martingale {E t,x [δ(s 0t 0 )g(X s 0 ) | F t s ]} s≥t . Then, (A.5) immediately implies that it holds a.s. that

(A.6) g(X t,x s (ω)) 1 {(t,t 0 (ω))∩Q} (s) ≤ M s (ω) 1 {(t,t 0 (ω))∩Q} (s).
Also, using the right-continuity of M and (A.2), one can show that for any τ ∈ T t , M τ = E t,x [δ(s 0t 0 )g(X s 0 ) | F t τ ] a.s. Now, we can take some Ω * ∈ F ∞ with P[Ω * ] = 1 such that for all ω ∈ Ω * , (A.6) holds true and M t 0 (ω) = E t,x [δ(s 0 -t 0 )g(X s 0 ) | F t t 0 ](ω). For any ω ∈ Ω * ∩{t < t 0 }, take {k n } ⊂ Q such that k n > t and k n ↑ t 0 (ω). Then, (A.6) implies g(X t,x kn (ω)) ≤ M kn (ω), ∀n ∈ N. As n → ∞, we obtain from the continuity of s → X s and z → g(z), and the left-continuity of s → M s that g(X t,x t 0 (ω))

≤ M t 0 (ω) = E t,x [δ(s 0 -t 0 )g(X s 0 ) | F t t 0 ](ω).
Now, we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. We will prove (3.11) by induction. We know that the result holds for n = 0 by (3.10). Now, assume that (3.11) holds for n = k ∈ N ∪ {0}, and we intend to show that (3.11) also holds for n = k + 1. Recall the notation in (A.1). Fix (t, x) ∈ ker(τ k+1 ), i.e. τ k+1 (t, x) = 0. If L * τ k+1 (t, x) = t, then (t, x) belongs to I τ k+1 . By (3.7), we get τ k+2 (t, x) = Θτ k+1 (t, x) = τ k+1 (t, x) = 0, and thus (t, x) ∈ ker(τ k+2 ), as desired. We therefore assume below that L * τ k+1 (t, x) > t. By (3.7), τ k+1 (t, x) = 0 implies

(A.7) g(x) ≥ E t,x [δ(L * τ k (t, x) -t)g(X L * τ k (t,x) )].
Let t 0 := L * τ k+1 (t, x) and s 0 := L * τ k (t, x). Under the induction hypothesis ker(τ k ) ⊆ ker(τ k+1 ), we have t 0 ≤ s 0 , as t 0 and s 0 are hitting times to ker(τ k+1 ) and ker(τ k ), respectively; see (3.5). Using (A.7), t 0 ≤ s 0 , Assumption 3.1, and g being nonnegative,

g(x) ≥ E t,x [δ(s 0 -t)g(X s 0 )] ≥ E t,x [δ(t 0 -t)δ(s 0 -t 0 )g(X s 0 )] = E t,x δ(t 0 -t)E t,x δ(s 0 -t 0 )g(X s 0 ) | F t t 0 ≥ E t,x δ(t 0 -t)g(X t 0 ) ,
where the second line follows from the tower property of conditional expectations, and the third line is due to Lemma A.1. This implies (t, x) / ∈ C τ k+1 , and thus

(A.8) τ k+2 (t, x) = 0 for (t, x) ∈ S τ 1 τ k+1 (t, x) for (t, x) ∈ I τ 1 = 0.
That is, (t, x) ∈ ker(τ k+2 ). Thus, we conclude that ker(τ k+1 ) ⊆ ker(τ k+2 ), as desired.

It remains to show that τ 0 defined in (3.8) is a stopping policy. Observe that for any (t, x) ∈ X, τ 0 (t, x) = 0 if and only if Θ n τ (t, x) = 0, i.e. (t, x) ∈ ker(Θ n τ ), for n large enough. This, together with (3.11), implies that

{(t, x) ∈ X : τ 0 (t, x) = 0} = n∈N ker(Θ n τ ) ∈ B(X).
Hence, τ 0 : X → {0, 1} is Borel measurable, and thus an element in T (X).

A.3 Proof of Proposition 3.3

Fix (t, x) ∈ ker( τ ). Since τ (t, x) = 0, i.e. τ t,x = t, (2.6), (2.5), and (2.7) imply

g(x) = sup τ ∈Tt E t,x [δ(τ -t)g(X τ )] ≥ E t,x δ(L * τ (t, x) -t)g(X L * τ (t,x) ) .
This shows that (t, x) ∈ S τ ∪ I τ . Thus, we have ker( τ ) ⊆ S τ ∪ I τ . It follows that

ker( τ ) = (ker( τ ) ∩ S τ ) ∪ (ker( τ ) ∩ I τ ) ⊆ S τ ∪ (ker( τ ) ∩ I τ ) = ker(Θ τ ),
where the last equality follows from (3.7).

A.4 Derivation of Theorem 3.1

Lemma A.2. Suppose Assumption 3.1 holds and τ ∈ T (X) satisfies (3.10). Then τ 0 defined in (3.8) satisfies L * τ 0 (t, x) = lim n→∞ L * Θ n τ (t, x), ∀(t, x) ∈ X.

Proof. We will use the notation in (A.1). Recall that ker(τ n ) ⊆ ker(τ n+1 ) for all n ∈ N and ker(τ 0 ) = n∈N ker(τ n ) from Proposition 3.2. By (3.5), this implies that {L * τ n (t, x)} n∈N is a nonincreasing sequence of stopping times, and

L * τ 0 (t, x) ≤ t 0 := lim n→∞ L * τ n (t, x).
It remains to show that L * τ 0 (t, x) ≥ t 0 . We deal with the following two cases. (i) On {ω ∈ Ω : L * τ 0 (t, x)(ω) = t}: By (3.5), there must exist a sequence {t m } m∈N in R + , depending on ω ∈ Ω, such that t m ↓ t and τ 0 (t m , X t,x tm (ω)) = 0 for all m ∈ N. For each m ∈ N, by the definition of τ 0 in (3.8), there exists n * ∈ N large enough such that τ n * (t m , X t,x tm (ω)) = 0, which implies L * τ n * (t, x)(ω) ≤ t m . Since {L * τ n (t, x)} n∈N is nonincreasing, we have t 0 (ω) ≤ L * τ n * (t, x)(ω) ≤ t m . With m → ∞, we get t 0 (ω) ≤ t = L * τ 0 (t, x)(ω).

(ii) On {ω ∈ Ω : L * τ 0 (t, x)(ω) > t}: Set s 0 := L * τ 0 (t, x). If τ 0 (s 0 (ω), X t,x s 0 (ω)) = 0, then by (3.8) there exists n * ∈ N large enough such that τ n * (s 0 (ω), X t,x s 0 (ω)) = 0. Since {L * τ n (t, x)} n∈N is nonincreasing, t 0 (ω) ≤ L * τ n * (t, x)(ω) ≤ s 0 (ω), as desired. If τ 0 (s 0 (ω), X t,x s 0 (ω)) = 1, then by (3.5) there exist a sequence {t m } m∈N in R + , depending on ω ∈ Ω, such that t m ↓ s 0 (ω) and τ 0 (t m , X t,x tm (ω)) = 0 for all m ∈ N. Then we can argue as in case (i) to show that t 0 (ω) ≤ s 0 (ω), as desired. Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.2, τ 0 ∈ T (X) is well-defined. For simplicity, we will use the notation in (A.1). Fix (t, x) ∈ X. If τ 0 (t, x) = 0, by (3.8) we have τ n (t, x) = 0 for n large enough. Since τ n (t, x) = Θτ n-1 (t, x), we deduce from "τ n (t, x) = 0 for n large enough" and (3.7) that (t, x) ∈ S τ n-1 ∪ I τ n-1 for n large enough. That is, g(x) ≥ E t,x δ(L * τ n-1 (t, x)t)g(X L * τ n-1 (t,x) ) for n large enough. With n → ∞, the dominated convergence theorem and Lemma A.2 yield g(x) ≥ E t,x δ(L * τ 0 (t, x)t)g(X L * τ 0 (t,x) ) , which shows that (t, x) ∈ S τ 0 ∪ I τ 0 . We then deduce from (3.7) and τ 0 (t, x) = 0 that Θτ 0 (t, x) = τ 0 (t, x). On the other hand, if τ 0 (t, x) = 1, by (3.8) we have τ n (t, x) = 1 for n large enough. Since τ n (t, x) = Θτ n-1 (t, x), we deduce from "τ n (t, x) = 1 for n large enough" and (3.7) that

(t, x) ∈ C τ n-1 ∪ I τ n-1 for n large enough. That is, g(x) ≤ E t,x δ(L * τ n-1 (t, x) -t)g(X L * τ n-1 (t,x) ) for n large enough.
With n → ∞, the dominated convergence theorem and Lemma A.2 yield g(x) ≤ E t,x δ(L * τ 0 (t, x)t)g(X L * τ 0 (t,x) ) , which shows that (t, x) ∈ C τ 0 ∪ I τ 0 . We then deduce from (3.7) and τ 0 (t, x) = 1 that Θτ 0 (t, x) = τ 0 (t, x). We therefore conclude that τ 0 ∈ E(X).

B Proofs for Section 4 B.1 Derivation of Proposition 4.1

In the classical case of exponential discounting, (2.8) ensures that for all s ≥ 0,

(B.1) δ(s)v(X x s ) = sup τ ∈T E X x s [δ(s + τ )g(X τ )] = sup τ ∈Ts E x [δ(τ )g(X τ ) | F s ] ,
which shows that {δ(s)v(X x s )} s≥0 is a supermartingale. Under hyperbolic discounting (4.1), since δ(r 1 )δ(r 2 ) < δ(r 1 +r 2 ) for all r 1 , r 2 ≥ 0, {δ(s)v(X x s )} s≥t may no longer be a supermatingale, as the first equality in the above equation fails.

To overcome this, we introduce the auxiliary value function: for (s,

x) ∈ R 2 + , V (s, x) := sup τ ∈T E x [δ(s + τ )g(X τ )] = sup τ ∈T E x X τ 1 + β(s + τ ) . (B.2)
By definition, V (0, x) = v(x), and {V (s, X x s )} s≥0 is a supermartingale as V (s, X Following [START_REF] Pedersen | Solving non-linear optimal stopping problems by the method of time-change[END_REF], we propose the ansatz w(s, y) = 1 √ 1+βs h( y √ 1+βs ). Equation (B.4) then becomes a one-dimensional free boundary problem:

(B.5) -βzh ′ (z) + h ′′ (z) = βh(z), h(z) > |z|, for |z| < b(s) √ 1+βs ; h(z) = |z|, for |z| ≥ b(s) √ 1+βs .
Since the variable s does not appear in the above ODE, we take b(s) = α √ 1 + βs for some α ≥ 0. The general solution of the first line of (B.5) is

h(z) = e β 2 z 2 c 1 + c 2 2 β √ β/2z 0 e -u 2 du , (c 1 , c 2 ) ∈ R 2 .
The second line of (B.5) gives h(α) = α. We then have

w(s, y) =      e βy 2 2(1+βs) √ 1+βs c 1 + c 2 2 β √ β/2y √ 1+βs 0 e -u 2 du , |y| < α √ 1 + βs; |y| 1+βs , |y| ≥ α √ 1 + βs.
To find the parameters c 1 , c 2 and α, we equate the partial derivatives of (s, y) → w(s, y) obtained on both sides of the free boundary. This yields the equations 1+βs -1 -y 1+βs and observing that h(0) > 0, h( 1/β + s) = 0, and h ′ (y) < 1 1+βs -1 1+βs = 0 for all y ∈ (0, 1/β + s), we conclude h(y) > 0 for all y ∈ [0, 1/β + s), or w(s, y) > |y| 1+βs for |y| < 1/β + s. Also note that w is C 1,1 on [0, +∞) × R, and C 1,2 on the domain {(s, y) ∈ [0, ∞) × R : |y| < 1/β + s}. Moreover, by (B.6), w s (s, y) + 1 2 w yy (s, y) < 0 for |y| > 1/β + s). We then conclude from the standard verification theorem (see e.g. [START_REF] Øksendal | Applied stochastic control of jump diffusions[END_REF]Theorem 3.2]) that V (s, y) = w(s, y) is a smooth solution of (B.4). This implies that { V (s, W y s )} s≥0 is a supermartingale, and { V (s ∧ τ * y , W y s∧τ * y )} s≥0 is a true martingale, with τ * y := inf{s ≥ 0 : |W y s | ≥ 1/β + s}. It then follows from standard arguments that τ * y is the smallest optimal stopping time of V (0, y), and thus τx := inf{s ≥ 0 : X x s ≥ 1/β + s} is the smallest optimal stopping time of (4.2). In view of Proposition 2.1, τ x = τx .

α = e β 2 α 2 c 1 + c 2 2 β √ β/2α 0 e -u

B.2 Proof of Lemma 4.2

First, we prove that E is totally disconnected. If ker(τ ) = [a, ∞), then E = ∅ and there is nothing to prove. Assume that there exists x * > a such that x * / ∈ ker(τ ). Define We claim that ℓ = u = x * . Assume to the contrary ℓ < u. Then τ (x) = 1 for all x ∈ (ℓ, u). Thus, given y ∈ (ℓ, u), L * τ (y) = T y := inf{s ≥ 0 : X y s / ∈ (ℓ, u)} > 0, and (B.7) J(y; L * τ (y)) = E y X T y 1 + βT y < E y [X T y ] = ℓP[X T y = ℓ] + uP[X T y = u].

Since X s = |W s | for a one-dimensional Brownian motion W and 0 < ℓ < y < u, by the optional sampling theorem P[X T y = ℓ] = P[W y s hits ℓ before hitting u] = u-y u-ℓ and P[X T y = u] = P[W y s hits u before hitting ℓ] = y-ℓ u-ℓ . This, together with (B.7), gives J(y; L * τ (y)) < y. This implies y ∈ S τ , and thus Θτ (y) = 0 by (3.13). Then Θτ (y) = τ (y), a contradiction to τ ∈ E(R + ). This already implies that E is totally disconnected, and thus ker(τ ) = [a, ∞). The rest of the proof follows from Lemma 4.1.

B.3 Proof of Lemma 4.3

(i) Given a ≥ 0, it is obvious from definition that η(0, a) ∈ (0, a) and η(a, a) = a. Fix x ∈ (0, a), and let f x a denote the density of T x a . We obtain Since T x a is the first hitting time of a one-dimensional Bessel process, we compute its Laplace transform using Theorem 3.1 of [START_REF] Kent | Some probabilistic properties of Bessel functions[END_REF] (or Formula 2.0.1 on p. 361 of [START_REF] Borodin | Handbook of Brownian motion-facts and formulae, Probability and its Applications[END_REF]): (B.9)

E x 1 1 + βT x a = ∞ 0 1 1 + βt f x a (t)dt =
E x e - where the second line follows from tanh(x) ≤ 1 for x ≥ 0 and a * ∈ (0, 1/ √ β). Since η a (a * , a * ) = 0 and η aa (a * , a * ) < 0, we conclude that on the domain a ∈ [a * , ∞), the map a → η(a * , a) decreases down to 0. Now, for any a > a * , since η(a * , a) < η(a * , a * ) = a * , we must have x * (a) < a * .

Example 2 . 2 (

 22 Real Options Model). Suppose d = 1 and X s := |W s |, s ≥ 0. Consider the payoff function g(x) := x for x ∈ R + and the hyperbolic discount function δ(s) := 1 1+s for s ≥ 0. The problem (2.4) reduces to v(x) = sup τ ∈T E x Xτ 1+τ

5 Figure 1 :

 51 Figure 1: The free boundary s → 1 + (st) with different initial times t.

  which implies (t, x) ∈ I τ . Thus, ker(τ ) ⊆ I τ . It follows that (3.10) holds, as ker(τ ) ⊆ S τ ∪ ker(τ ) = S τ ∪ (I τ ∩ ker(τ )) = ker(Θτ ), where the last equality is due to (3.7).

Theorem 3 . 1 .

 31 Let Assumption 3.1 hold. If τ ∈ T (X) satisfies (3.10), then τ 0 defined in(3.8) belongs to E(X).

(4. 6 ) 3 . 4 . 3 .

 6343 [a, ∞) ⊆ I τa . For x ∈ [0, a), we need the lemma below, whose proof is delegated to Appendix B.Lemma Recall T x a in (4.5). On the space {(x, a) ∈ R 2 + : a ≥ x}, define η(x, a) := E x a 1 + βT x a .

2 .

 2 The figure below illustrates x → η(x, a) under different scenarios a ≤ a * and a > a * .We now separate the case x ∈ [0, a) into two sub-cases:1. If a ≤ a * , Lemma 4.3 (iii) shows that J(x; L * τ a (x)) = η(x, a) > x, and thus (4.7) [0, a) ⊆ C τa . If a > a * , then by Lemma 4.3 (iii), (4.8) J(x; L * τ a (x)) = η(x, a)

  presented in the discussion above the proposition. By the proof of Lemma 4.3 in Appendix B.3, a * satisfies η a (a * , a * ) = 1, which leads to the characterization of a * . Now, for any τ ∈ T (R + ) with ker(τ ) = [a, ∞) and a ∈ [0, a * ], Lemma 4.1 implies τ ∈ E(R + ). For any τ ∈ E(R + ), set a := inf(ker(τ )). By Lemma 4.2, ker(τ ) = [a, ∞) and τ a ∈ E(R + ). The latter implies a ∈ [0, a * ] and thus completes the proof.

Remark 4 . 1 (

 41 Estimating a * ). With β = 1, numerical computation gives a * ≈ 0.946475. It follows that for a general β > 0, a * ≈ 0.946475/ √ β.

Remark 4 . 2 . 2 . 4 . 3 .

 42243 Fix a > a * , and recall x * (a) ∈ (0, a * ) inLemma 4.3 (iii). By (4.9),Θτ a (x) = τ ′ x * (a) (x) := 1 [0,x * (a)] (x) for all x ∈ R + . Equivalently, ker(Θτ a ) = ker(τ ′ x * (a) ) = (x * (x), ∞). Since ker(τ ′ x * (a) ) = [x * (a), ∞) and x * (a) ∈ (0, a * ), we conclude from (4.10) that τ ′ x * (a) ∈ E(R + ). Recall (3.12) which connects the naive and sophisticated behaviors. With the naive strategy τ ∈ T (R + ) given explicitly in (4.4), Proposition 4.2 and Remark 4.1 imply τ / ∈ E(R + ). We may find the corresponding equilibrium as in Remark 4.Remark Set a := 1/ √ β. By (4.4) and Remark 4.2, Θ τ = Θτ a = τ ′ x * ( a) ∈ E(R + ). In view of the proof of Lemma 4.3 in Appendix B.3, we can find x * ( a) by solving η(1/ √ β, x) = x, i.e. 1 √ β ∞ 0 e -s cosh(x √ 2βs) sech( √ 2s)ds = x, for x. Numerical computation shows x * ( a) ≈ 0.92195/ √ β, and thus x * ( a) < a * by Remark 4.1. This verifies τ ′ x * ( a) ∈ E(R + ), thanks to (4.10). Remark 4.4.

  x s ) is equal to the right hand side of (B.1). Proof of Proposition 4.1. Recall that X s = |W s | for a one-dimensional Brownian motion W . Let y ∈ R be the initial value of W , and define V (s, y) := V (s, |y|). The associated variational inequality for V (s, y) is the following: for (s, y) ∈ [0, ∞) × R, (B.3) min w s (s, y) + 1 2 w yy (s, y), w(s, y) -|y| 1 + βs = 0. Taking s → b(s) as the free boundary to be determined, we can rewrite (B.3) as (B.4) w s (s, y) + 1 2 w yy (s, y) = 0, w(s, y) > |y| 1+βs , for |y| < b(s); w(s, y) = |y| 1+βs , for |y| ≥ b(s).

2 2 1+βs - 1 ,

 221 du and sgn(x)c 2 = sgn(x)α 2 β.The last equation implies c 2 = 0. This, together with the first equation, shows that α = 1/ √ β and c 1 = αe -1/2 . Thus, we obtain(|y| < 1/β + s, |y| 1+βs , |y| ≥ 1/β + s.Note that w(s, y) > |y| 1+βs for |y| < 1/β + s. Indeed, by defining the function h(y)

ℓ

  := sup {b ∈ ker(τ ) : b < x * } and u := inf {b ∈ ker(τ ) : b > x * } .

e

  -βst f x a (t)dt ds = ∞ 0 e -s E x [e -βsT x a ]ds. (B.8)

2 ∞ 0 e 0 e

 200 xλ) sech(aλ), for x ≤ a. Here, I ν denotes the modified Bessel function of the first kind. Thanks to the above formula with λ = √ 2βs, we obtain from (B.8) that (B.10) η(x, a) = a ∞ 0 e -s cosh(x 2βs) sech(a 2βs)ds.It is then obvious that x → η(x, a) is strictly increasing. Moreover,η xx (x, a) = 2aβ -s s cosh(x 2βs) sech(a 2βs)ds > 0 for x ∈ [0, a],which shows the strict convexity.(ii) This follows from (B.10) and the dominated convergence theorem.(iii) We will first prove the desired result with x * (a) ∈ (0, a), and then upgrade it to x * (a) ∈ (0, a * ). Fix a ≥ 0. In view of the properties in (i), we observe that the two curves y = η(x, a) and y = x intersect at some x * (a) ∈ (0, a) if and only if η x (a, a) > 1. Define k(a) := η x (a, a). By (B.10), (B.11) k(a) = a ∞ -s 2βs tanh(a 2βs)ds.Thus, we see that k(0) = 0 and k(a) is strictly increasing on (0, 1), since for any a > 0,k ′ (a) = ∞ 0 e -s √ 2s tanh(a √ 2s) + a √ 2s cosh 2 (a √ 2s) ds > 0. By numerical computation, k(1/ √ β) = ∞ 0 e -s √ 2s tanh( √ 2s)ds ≈ 1.07461 > 1. It follows that there must exist a * ∈ (0, 1/ √ β) such that k(a * ) = η x (a * , a * ) = 1. Monotonicity of k(a) thengives the desired result. Now, for any a > a * , we intend to upgrade the previous result to x * (a) ∈ (0, a * ). Fix x ≥ 0. By the definition of η and (ii), on the domain a ∈ [x, ∞), the map a → η(x, a) must either first increases and then decreases to 0, or directly decreases down to 0. From (B.10), we haveη a (x, x) = 1x ∞ 0 e -s 2βs tanh(x 2βs)ds = 1k(x),with k as in (B.11). Recalling k(a * ) = 1, we have η a (a * , a * ) = 0. Notice that η aa (a * , a * ) = -2 a * k(a * ) -2βa * + a * ∞ 0 4βse -s tanh 2 (a * 2βs)ds ≤ -2 a * + 2βa * < 0,

  1, as δ(t + s)/δ(t) ≥ δ(s)/δ(0) = δ(s) for all s, t ≥ 0. That is, Assumption 3.1 is automatically true under DI. Note that Assumption 3.1 is more general than DI, as it obviously includes the classical case of exponential discounting, characterized by (2.8).

The main convergence result for (3.8) is the following: Proposition 3.2. Let Assumption 3.1 hold. If τ ∈ T (X) satisfies (3.10) ker(τ ) ⊆ ker(Θτ ), then

  Proposition 4.2. τ a defined in Lemma 4.2 belongs to E(R + ) if and only if a ∈ [0, a * ], where a * > 0 is characterized by a * ∞

	(4.9)		).
	0 e -s √	2βs tanh(a * √	2βs)ds = 1. Moreover,
	(4.10)		
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