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Abstract: The paper presents a dynamic theory for time-inconsistent
problems of optimal stopping. The theory is developed under the paradigm
of expected discounted payoff, where the process to stop is continuous and
Markovian. We introduce equilibrium stopping policies, which are imple-
mentable stopping rules that take into account the change of preferences
over time. When the discount function induces decreasing impatience, we
establish a constructive method to find equilibrium policies. A new class
of stopping problems, involving equilibrium policies, is introduced, as op-
posed to classical optimal stopping. By studying the stopping of a BES(1)
process under hyperbolic discounting, we illustrate our theory in an explicit
manner.

MSC 2010 subject classifications: Primary 60G40; secondary 91B06.
Keywords and phrases:Optimal Stopping, Time-inconsistency, Decreas-
ing impatience, Hyperbolic discounting, Markov subgame perfect equilib-
rium.

1. Introduction

The present article is an attempt to tackle time—or equivalently, dynamic—
inconsistency in optimal stopping problems. Time-inconsistency is the lack of
conservation in preference ordering through time, which leads to ill-posedness
of an inter-temporal optimization problem. This property is of particular inter-
est in Economics, where subjective preferences are given a priori in order to
compare different alternatives at different dates. Upon axiomatic foundations of
time-preferences by Samuelson [34], time-inconsistency has been revealed in the
seminal work of Stroz [36], to emphasize limitations in specifying the discount
function in the discounted utility paradigm. There are also problems that in-
trinsically involve time-inconsistency though specific objective functions, from
Macroeconomics of Sustainable Development [8, 12] to Finance [5, 9, 19]. We
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refer to [15] for an excellent synthesis on economic modeling and conceptual
issues related to time-preferences.

A crucial point to raise with time-inconsistent problems is that they must
be rewritten into new questions, which are not unique. Stroz [36] identifies
three meaningful behaviors— consistent planning, spendthriftiness and commit-
ment— that are mathematically rigorously defined. Later on, the terminology of
sophisticated and naive strategies has been accepted to designate that the first
behavior anticipates, while the second omits, the change of preference through
time, see [32]. The second behavior is irrational, in the sense that the related
value function for the agent does not corresponds to what is actually reached
when the optimization problem is posed at each instant of time. While the
former (sophistication) is mathematically challenging as dynamic programming
arguments do not hold anymore, it reconciles with rationality by proposing time-
consistent attainable strategies. Sophisticated strategies have recently emerged
as extended solutions of continuous time optimal control problems. In a nutshell,
the method considers the controlling agent as a sequence of different agents play-
ing through time an inter-temporal sequential game against his future selves.
The optimal control is then replaced by a consistent, reachable, Markov sub-
game perfect equilibrium strategy. Recent development in continuous time have
been made upon this idea, initiated by Karps [24, 22, 23] taken over by Ekeland
[11, 14, 13], and gathered into an emerging general theory of time-inconsistent
control problems by several authors [3, 4, 17, 42].

To our knowledge, there is no equivalent development for stopping problems.
The work of Grenadier and Wang [16] should be mentioned, but the case they
consider is very specific so that traditional dynamic programming still applies.
In this paper, we deal with the standard stopping problem involving expected
discounted non-negative payoffs. We relax the usual assumption of exponential
discounting to general discount functions, which results in time-inconsistency.
While optimal stopping rules may still be computed in time-inconsistent prob-
lems, e.g., Xu and Zhou [41], what does not hold anymore a priori is the at-
tainability of this optimal stopping rule along the evolution of the state process.
We thus lead a pedestrian tour among counter-examples, rationality and op-
timization. By setting the problem as an inter-temporal sequential game, our
exploration leads to the consideration of the lifetime of a stopping policy, and
the construction of equilibrium stopping policies. The latter are the stopping
rules that can be realistically implemented in a dynamical setting.

We restrict ourselves to the setting of expected discounted utility (EDU),
when the discount function admits decreasing impatience and the state process
is a continuous stochastic Markov process. The EDU paradigm is at core of
Economics, but exploited with exponential discounting most of the time. The
concept of impatience is strongly related to subjective discounting [25]. Decreas-
ing impatience is a discount pattern that exhibits less discounting over a time
interval when the interval is further away from today, see [33]. It encompasses
many discount behaviors (hyperbolic, quasi-hyperbolic) that has been strongly
supported by Behavioral Economics [37, 1, 26, 2], and can be summarized by
the following quote:
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In reflecting upon any action which I am to perform a twelvemonth hence, I al-
ways resolve to prefer the greater good, whether at that time it will be contiguous
or remote. [...] But on a nearer approach [...] a new inclination to the present
good springs up, and makes it difficult for me to adhere inflexibly to my first
purpose and resolution. (David Hume, A treatise of Human Nature, 1738 [18]).

The specific case of Markov diffusion processes allows us to treat a sufficiently
nice situation. We expect however that the present treatment will be extended
in forthcoming studies.

Our findings are the following. The introduction of equilibrium in stopping
problems noticeably differs from its counterpart in control problems. We ob-
serve that asymptotic analysis is not suited to stopping problems, and avoid
defining equilibrium from local perturbations. The very nature of stopping
problems—that the control is singular and a perturbation, e.g. stopping by
anticipation, impacts significantly the reward function— leads to a direct defi-
nition of equilibrium as a fixed point of a given operator. This has straight im-
portant consequences. First, the methodology developed here can benefit other
time-inconsistent stopping problems, see [41] and [39] for recent investigations.
Moreover, under current EDU setting, we provide a constructive method to ob-
tain equilibrium policies, via iterative application of the aforementioned opera-
tor. This construction, however, does not naturally link the equilibrium policy
to an analytic or probabilistic characterization. Another drastic consequence is
that equilibrium policies do not lead straightly to a solution to the optimization
problem. The class of equilibrium policies is not a singleton; consequently, equi-
librium policies are not specific candidates for reachable optimality, but merely
implementable strategies for which immediate preferences are compatible over
time under some commitment mechanism. Put in another way, committing to
an equilibrium policy will avoid regrets over time, until the actual stopping
moment.

We are thus led to note that there is no natural rewriting of the classical
optimal stopping problem, so that in line with [36] and subsequent works: dif-
ferent degrees of acceptation of time-inconsistent preferences by the agent lead
to different optimality criteria, and thus different optimal equilibrium solutions.
When the discount function is time-consistent, it is shown that there is a nat-
ural well-posed problem to which the equilibrium solution is the usual optimal
stopping rule. In general, however, this analysis opens the door to a new class
of stopping problems, which is to find and characterize equilibrium stopping
policies under a given optimality criterion. This theory is illustrated in a simple
example: the stopping of an one-dimensional Bessel process under hyperbolic
discounting. In this case, decreasing impatience revealed by the discount func-
tion allows us to explicitly characterize every equilibrium stopping policy as
the hitting time to some threshold lying below the classical optimal stopping
boundary.

The remainder proceeds as follows. Section 2 introduces general stopping
problems in a dynamic setting, and several situations under which time-inconsis-
tency arises. Section 3 establishes the notion of equilibrium stopping policies,
and studies the existence and construction of such policies. A new class of stop-
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ping problems involving equilibrium policies is also introduced. Section 4 pro-
vides an application and its associated solutions, which illustrate the results in
previous sections in an explicit manner.

2. Markov theory of optimal stopping

2.1. Initial setting

Consider a probability space (Ω,F ,P) which supports a continuous Markovian
process X : [0,∞) × Ω 7→ R

d. Let F = {Ft}t≥0 be the augmentation of the
natural filtration generated by X . For any t ≥ 0, we denote by Tt the collection
of all stopping times τ with τ ≥ t P − a.s. For any ω, ω′ ∈ Ω and π ∈ T0, we
define

(ω ⊗π ω̃)u := ωu1[0,π(ω))(u) + ω̃u1[π(ω),∞) u ≥ 0,

and assume that the concatenated path ω⊗π ω̃ still belongs to Ω. Note that this
is satisfied in particular for Ω := (Rd)[0,∞) and Ω := C([0,∞)d). We also assume
that X admits the following strong Markov property: for any F∞-measurable
random variable Y and any π ∈ T0,

E[Y | Fπ](ω) = Eπ(ω),Xπ(ω)[Y (ω ⊗π ·)] a.s. (2.1)

Consequently, we will use the notation Xt,x for the state process such that
Xt,x

t = x. We will denote by X := [0,∞)× R
d the space of time and state. We

introduce a payoff function g : Rd 7→ R, assumed to be nonnegative, continuous,
and satisfy

E

[
sup
t≥0

g(X0,x
t )

]
< ∞, ∀x ∈ R

d. (2.2)

We finally introduce the discount function δ : R+ → [0, 1], which is assumed to
be decreasing and verify δ(0) = 1. A standing assumption on δ throughout the
paper is the following:

δ(t)δ(s) ≤ δ(t+ s), ∀t, s ≥ 0. (2.3)

This assumption is related to the notion of decreasing impatience (DI) in Behav-
ioral Finance. Under current setting, the general definition of DI [33, Definition
1] reduces to:

For any s ≥ 0, t 7→ δ(t+ s)

δ(t)
is increasing.

This also corresponds to the formulation in [27, 28]. The above definition of

DI in particular implies that δ(t+s)
δ(t) ≥ δ(0+s)

δ(0) = δ(s) for all t, s ≥ 0, which is

our assumption (2.3). In other words, condition (2.3) is more general than DI:
once we pick a discount function which induces decreasing impatience, (2.3) is
automatically satisfied.
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We introduce the objective function for (t, x) ∈ X and τ ∈ Tt by

J(t, x; τ) := Et,x

[
δ(τ − t)g(Xt,x

τ )
]
. (2.4)

The standard optimal stopping problem then consists of finding the value func-
tion v, and the associated optimal stopping time τ̃ , defined through

v(t, x) := sup
τ∈Tt

J(t, x; τ) = J(t, x; τ̃ ) . (2.5)

The literature on the treatment of this problem is abundant. The following is a
very general characterization of its solution, which starts by introducing for all
(t, x) ∈ X the process {Zt

s}s≥t defined by

Zt
s := ess sup

τ∈Ts

Es,Xt,x
s

[δ(τ − t)g(Xt,x
τ )], ∀s ≥ t. (2.6)

Definition 2.1. Let τ̃ and τ̄ be the F-stopping times defined by

τ̃ (t, x) := inf
{
s ≥ t : δ(s− t)g(Xt,x

s ) ≥ Zt
s

}
∈ Tt, (2.7)

τ̄ (t, x) := inf
{
s > t : δ(s− t)g(Xt,x

s ) ≥ Zt
s

}
∈ Tt. (2.8)

Notice that a strict inequality distinguishes τ̄ from τ̃ . In our continuous set-
ting, this distinction might appear superficial for now. It will be more relevant
in Section 3.3. We refer to [21, Appendix D] and [31, Chapter I.2] for the demon-
stration of the following result.

Proposition 2.1. For all (t, x) ∈ X, τ̃ and τ̄ are optimal, in the sense that for
any s ≥ t

J(t, x; τ̃ (t, x)) = J(t, x; τ̄ (t, x)) = ess sup
τ∈Tt

J(t, x; τ). (2.9)

Proposition 2.1 does not provide uniqueness explicitly, but Definition 2.1
states that τ̃ (respectively τ̄ ) is the first time that is better than any other
posterior time, from the point of view (t, x). Accordingly, τ̃ (respectively τ̄) is
uniquely defined. In full generality however, the optimal stopping time τ̃ is a
function of (t, x) as stated in the definition. This is the triggering point of our
investigation, and leads to the following natural extension of stopping times.

Definition 2.2. A map τ : X 7→ T0 is a stopping policy if for any (t, x) ∈ X,
τ(t, x) ∈ Tt. We denote by T (X) the collection of all stopping policies.

From now on, we consider τ̃ and τ̄ defined in Definition 2.1 as elements in
T (X). For a given (t, x), we label τ̃(t, x) the (t, x)-optimal stopping time.

2.2. Time-inconsistency and lifetime of a stopping policy

Consider the problem given by (2.4)-(2.5), and its general solution τ̃ ∈ T (X)
given by Proposition 2.1. Assume that for some (t, x) ∈ X,

τ̃ (t, x) = τ̄ (t, x) > t.
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Then there exists t′ > t such that P [τ̃ (t, x) ≥ t′] > 0. Time-consistency of the
stopping problem (2.5) informally translates into the property that the opti-
mal behavior at time t is still optimal from the point of view at time t′, or
equivalently,

τ̃ (t, x) = τ̃ (t′, Xt,x
t′ ) on {τ̃(t, x) ≥ t′}. (2.10)

In full generality, equation (2.10) may not hold on some subset of {τ̃ (t, x) ≥ t′}.
This can be observed by noting that the criterion for stopping in (2.7) has t
dependence in δ(· − t). It conveys the situation where the current (t, x)-optimal
stopping time τ̃ (t, x) (i.e., from the point of view at time t) is not (t′, Xt,x

t′ )-
optimal anymore (i.e., from the point of view at time t′ > t). Put differently,
there is no guarantee that the (t, x)-optimal stopping time can be preserved
and reached as soon as τ̃ (t, x) > t. This leads to the following concept of actual
lifetime of a stopping policy.

Definition 2.3. We define the map L : T (X) → T (X), for any (t, x) ∈ X and
τ ∈ T (X), by Lτ(t, x) := inf {s ≥ t : τ(s,Xt,x

s ) = s}.
By convention, inf ∅ = +∞. Definition 2.3 does not restrict to τ̃ for the specific
problem (2.4)-(2.5). It embeds straightforward properties that are expected of
any stopping policy. Namely, L is a projector on T (X), i.e., LLτ(t, x) = Lτ(t, x)
P− a.s. for any τ ∈ T (X) and (t, x) ∈ X. If we introduce

R(X) := {ρ ∈ T (X) : Lρ(t, x) = ρ(t, x) P− a.s. ∀(t, x) ∈ X} ,

the set of fixed points of L, then R(X) is clearly not empty and equal to LT (X).
Additionally, and in reference to (2.10), we have that for all τ ∈ T (X) and
(t, x) ∈ X:

Lτ(s,Xt,x
s ) = Lτ(t, x) on {Lτ(t, x) ≥ s} . (2.11)

A policy belonging to R(X) is thus rational in the sense that the eventual
time to stop is not being altered over time, and the dependency on (t, x) can
be omitted without ambiguity. To confirm this insight, given τ ∈ T (X), con-
sider the stopping criterion Tτ (t, x) associated with each (t, x), i.e., τ(t, x) =
inf {s ≥ t : (s,Xt,x

s ) ∈ Tτ (t, x)}. If τ ∈ R(X), a nice formulation of τ can be
provided via the stopping region Rτ given by

Rτ := {(t, x) ∈ X : (t, x) ∈ Tτ (t, x)} . (2.12)

That is, τ(t, x) = Lτ(t, x) = inf{s ≥ t : (s,Xt,x
s ) ∈ Rτ}. Note that Rτ ,

as expressed above, does not depend on (t, x) anymore. It is easy to provide
rational stopping policies, by defining a stopping rule independent of the time-
space values (t, x) in consideration. A particular example of rational stopping
policy is the immediate stopping policy (t, x) 7→ ι(t, x) := t. It is also easy to
provide stopping policies that are irrational, and compute their actual lifetime
from Definition 2.3 as a first step toward rationality.

Example 2.1 (Procrastination). For any (t, x) ∈ X, define the policy π ∈ T (X)
by π(t, x) = inf {s ≥ t : s ≥ t+ 1} = t + 1. Then obviously Lπ(t, x) = +∞
P− a.s. for every (t, x) ∈ X.
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Consider the problem (2.4)-(2.5) and the solution given by τ̃ ∈ T (X) of
Definition 2.1. Then for all (t, x) ∈ X,

Lτ̃ (t, x) = inf

{
s ≥ t : g(Xt,x

s ) ≥ ess sup
τ∈Ts

J(s,Xt,x
s ; τ)

}
. (2.13)

Characterization (2.13) holds our attention. One can see that it conveys some
notion of optimality, that it is the first time s which is better than any other
posterior time, from the point of view (s,Xt,x

s ). The following example shows
that, in a setting different from EDU, all above reasoning applies, and exhibits
that it is inappropriate to apply the optimal stopping rule because of time-
inconsistency.

Example 2.2 (Stopping under probability distortion). We introduce the time-
inconsistent problem of Xu and Zhou [41]. Namely, Xt,x is a process defined
as

dXt,x
s = Xt,x

s

(
σ2

2
ds+ σdWs

)
for s ≥ t, Xt,x

t = x,

with a standard Brownian motion (Ws)s≥t. The objective function is given by

J(t, x; τ) :=

∫ ∞

0

w
(
P
[
U(Xt,x

τ ) > u
])

du, (2.14)

where U : R+ → R
+ is nondecreasing and continuous, and w : [0, 1] → [0, 1] a

strictly increasing continuous function with w(0) = 0 and w(1) = 1. Equation
(2.14) refers to a Choquet expectation under capacity w. It conveys subjective
probability distortion, whereas w(u) := u refers to standard expectation. Con-
sidering the particular non-trivial case where U is convex, it is shown [41, Th.
4.4] that the optimal stopping time is

τ̃ (t, x) = t1{a∗(x)=b∗(x)} + inf
{
s ≥ t : Xt,x

s /∈ (a∗(x), b∗(x))
}
1{a∗(x)>b∗(x)}

where

(a∗, b∗)(x) = arg max
0≤a≤x≤b

((
1− w

(
x− a

b− a

))
U(a) + w

(
x− a

b− a

)
U(b)

)
.

We can then easily show that

Lτ̃ (t, x) = inf
{
s ≥ t : Xt,x

s = 0 or +∞
}
= +∞.

Indeed, one convinces himself that if x is in the interior of the support of the
process (X0,x

t )t≥0, then a∗ < x < b∗ in the maximization problem above. This
confirms Theorem 3 in [10].

Following our investigation, the question that arises is whether a stopping
policy is reachable (implementable). In Example 2.2, the application of Lτ̃ (t, x)
translates into never stopping, which leads to J(t, x; +∞) = 0 by convention.
On the contrary, stopping immediately provides U(x) which, for non-negative
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utility function U , is better than the rational projection of the optimal stopping
policy. This corresponds to the situation

J(t, x; τ̃ (t, x)) > J(t, x; t) ≥ J(t, x;Lτ̃ (t, x)). (2.15)

Then one faces a dilemma if he wants to reach optimality: choosing τ̃ only leads
to applying Lτ̃ (Thus, τ̃ is not implementable); however, one would not really
apply Lτ̃ because it is worse than immediate stopping; then, one similarly finds
that immediate stopping is worse than following τ̃ , which brings us back to the
start of the cycle. We then realize that none of τ̃ , Lτ̃ , and immediate stopping
are reachable (implementable).

We must then develop a new methodology under which reachable (imple-
mentable) stopping policies can be found.

3. Equilibrium stopping policies

3.1. Definition

In optimal control problems, time-inconsistency is managed through the con-
cept of equilibrium policies. It consists of a status quo policy applied to every
(t, x) ∈ X, from which there is no incentive to differ locally. This last property
is mathematically translated by considering a small interval [t, t+ ε] over which
it is possible to freely select the control, whereas the status quo policy takes
over after t+ε. If the limiting optimal control obtained at each time t, as ε van-
ishes, coincides with the status quo policy, such a policy is called an equilibrium
policy, which is naturally a fixed point of certain operator.

In our pure stopping setting, we will modify a stopping policy instantaneously
at any given time t, instead of over a small interval [t, t+ ε]. This is because an
instantaneous modification already changes drastically the expected discounted
payoff. Notice that, for a stopping policy, only two kinds of modifications are
available, namely to stop when it is expected to defer, and vice versa. This natu-
rally leads to instantaneous comparison between payoffs obtained from stopping
and deferring.

To facilitate the instantaneous comparison, we need to first introduce a mod-
ified operator L∗ from Definition 2.3 to reflect the act of deferring at a given
time t.

Definition 3.1. We define the map L∗ : T (X) → T (X), for any τ ∈ T (X) and
(t, x) ∈ X, by L∗τ(t, x) := inf {s > t : τ(s,Xt,x

s ) = s}.
Note that L∗τ(t, x) reflects the situation where the agent chooses to defer at
time t, while all his future selves will follow the policy τ . The policy L∗τ does
not necessarily belong to R(X). If L∗τ(t, x) > t, then L∗τ(t, x) = Lτ(t, x).
However, it is possible that L∗τ(t, x) > Lτ(t, x) = t. In our continuous diffusion
case, this might happen with a reflection phenomenon on the boundary of the
stopping region Rτ , defined in (2.12). This will be crucial in the proof of the
main Theorem below.
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Let us turn back to the instantaneous modification of a policy. Suppose the
agent is given a policy τ ∈ T (X) to apply. At each time-state (t, x), he can carry
out the following game-theoretic thinking: given that all my future selves will
follow τ ∈ T (X), what is my best stopping strategy at current time t? Since
the agent at t has only two possible actions, to stop and to defer, he just needs
to compare the payoffs resulting from the two actions. If he chooses to stop
at time t, he will get g(x) immediately. If he chooses to defer at time t, since
all his future selves will follow τ ∈ T (X), the agent will eventually stop at the
moment L∗τ(t, x); the resulting payoff is therefore J(t, x;L∗τ(t, x)). It follows
that if (t, x) belongs to the region

Sτ := {(t, x) ∈ X : g(x) > J(t, x;L∗τ(t, x))}, (3.1)

it is optimal to stop immediately (even if τ(t, x) > t). If (t, x) belongs to the
region

Cτ := {(t, x) ∈ X : g(x) < J(t, x;L∗τ(t, x))}, (3.2)

it is optimal to defer at time t (even if τ(t, x) = t). We are left with the situation
where (t, x) belongs to

Iτ := {(t, x) ∈ X : g(x) = J(t, x;L∗τ(t, x))}. (3.3)

In this case, the agent is indifferent between to stop and to defer at time t. Two
possibilities are reasonable. One is to keep the status quo policy, i.e. follow the
given τ(t, x) ∈ Tt, as there is no incentive to deviate from it at time t. The agent
then rationally applies Lτ(t, x). The other one is to stop immediately, inspired
by the classical rationale of optimal stopping (once we reach the largest possible
payoff, we stop). Notice that they make no difference when τ(t, x) = t. Here, we
particularly choose to keep the status quo policy τ(t, x), which will be justified
in Remark 3.1 below.

Definition 3.2. Let τ ∈ T (X) and (t, x) ∈ X. We define the map Θ : T (X) →
T (X) by

Θτ(t, x) :=





t for (t, x) ∈ Sτ

Lτ(t, x) for (t, x) ∈ Iτ
L∗τ(t, x) for (t, x) ∈ Cτ

. (3.4)

The definition (3.4) summarizes our previous reasoning, and Θτ(t, x) can be
viewed as the best stopping strategy at time t given that all future selves will
follow τ ∈ T (X). It is worth noting that in general Θτ /∈ R(X), for τ ∈ T (X).
For instance, given (t, x) ∈ X, suppose t0 := L∗τ(t, x) > t, (s,Xt,x

s ) ∈ Cτ for
all s ∈ [t, t0 + ε] for some ε > 0, and L∗τ(t0, X

t,x
t0 ) > t0. Then Θτ(t, x) = t0 <

LΘτ(t, x). Similarly to R(X), we introduce the set of fixed points of Θ

E(X) := {τ ∈ T (X) : Θτ(t, x) = τ(t, x) P− a.s., ∀(t, x) ∈ X} (3.5)

as the set of equilibrium policies. These are, by construction, Markov subgame
perfect equilibrium strategies.

imsart-generic ver. 2014/10/16 file: huang_nguyen_2015.tex date: February 13, 2015



Y.-J. Huang and A. Nguyen-Huu/Time-Consistent Stopping 10

Remark 3.1. When (t, x) ∈ Iτ and τ(t, x) > t, it is preferable to stay with
τ(t, x), instead of immediate stopping, because this expresses a minimal modi-
fication of a policy under the use of Θ, and accordingly lower requirement for
being a fixed point of it. We can then expect a broader set E(X).

Note that an equilibrium policy τ ∈ E(X) naturally belongs to R(X).

Proposition 3.1. E(X) ⊂ R(X).

Proof. For any τ ∈ E(X), it is clear if (t, x) ∈ Sτ , then τ(t, x) = Θτ(t, x) =
t. Then Lτ(t, x) = t = τ(t, x). If (t, x) ∈ Cτ , then τ(t, x) = L∗τ(t, x) > t
(Note that if L∗τ(t, x) = t, then we would have (t, x) ∈ Iτ , a contradiction).
Therefore, Lτ(t, x) = L∗τ(t, x) = τ(t, x). Finally, for (t, x) ∈ Iτ , by definition
τ(t, x) = Lτ(t, x). Altogether, τ(t, x) = Lτ(t, x) for all (t, x) ∈ X.

3.2. Existence and construction

The existence of at least one policy in E(X) is ensured by the following trivial
result.

Remark 3.2. Recall ι : (t, x) → t ∈ R(X). We have Rι = Tι = X. Since
L∗ι(t, x) = t, Iι = X. We thus have Θι(t, x) = t = ι(t, x) for all (t, x) ∈ X, i.e.
ι ∈ E(X).

The operator Θ is not as easy to apply as L. A fortiori, it is not trivial to
characterize fixed points of Θ in a direct manner. The present section presents an
iterative application of Θ which leads to an equilibrium policy in the limit, under
certain regularity assumptions. The following result relies on the decreasing
impatience assumption (2.3).

Theorem 3.1. Let τ ∈ T (X). Assume that

L∗Θτ(t, x) ≤ L∗τ(t, x) P− a.s., ∀(t, x) ∈ X. (3.6)

Then, for any (t, x) ∈ X,

τ̂ (t, x) := lim
n→∞

LΘnτ(t, x)

converges P− a.s. Moreover, τ̂ ∈ E(X).
The proof of this result is demonstrated in Appendix A. Notice that if we take
Θ(t, x) = t for (t, x) ∈ Iτ in Definition 3.2, the proof of this theorem does not
hold anymore, which corresponds to Remark 3.1.

In the following, we in particular show that when applying this iterative
method to the standard optimal stopping policy τ̃ ∈ T (X) defined in (2.7), we
can indeed obtain a non-trivial equilibrium policy.

Lemma 3.1. Assumption (3.6) holds for τ̃ ∈ T (X) of Definition 2.1.
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Proof. Denote τ0(t) := Lτ̃ (t, x), τ1(t) := LΘτ̃ (t, x), τ∗0 (t) := L∗τ̃ (t, x) and
τ∗1 (t) := L∗Θτ̃ (t, x) for any (t, x) ∈ X, policies in T (X). We aim to show that
for any (t, x) ∈ X, τ1(t) ≤ τ0(t) P − a.s. Given (t, x) ∈ X, recall the process
{Zt

s}s≥t defined in (2.6). We consider two cases, namely τ∗0 (t) > t and τ∗0 (t) = t.
The time τ∗0 (t) being a F-stopping time, {τ∗0 > t} is Ft-measurable. We thus
have two cases.
1. Assume τ∗0 (t) > t and

g
(
Xt,x

τ∗

0 (t)

)
= Z

τ∗

0 (t)

τ∗

0 (t)
P− a.s.

This implies Θτ̃
(
τ∗0 (t), X

t,x
τ∗

0 (t)

)
= τ∗0 (t) P− a.s. and

g
(
Xt,x

τ∗

0 (t)

)
≥ Eτ∗

0 (t),X
t,x

τ∗

0 (t)

[
δ

(
τ∗0 (τ

∗
0 (t))− τ∗0 (t)

)
g

(
Xt,x

τ∗

0 (τ
∗

0 (t))

)]
P− a.s.

It follows that
(
τ∗0 (t), X

t,x
τ∗

0 (t)

)
/∈ Cτ̃ with probability one, and thus

Θτ̃
(
τ∗0 (t), X

t,x
τ∗

0 (t)

)
=





τ∗0 (t) for
(
τ∗0 (t), X

t,x
τ∗

0 (t)

)
∈ Sτ̃

τ∗0 (τ
∗
1 (t)) for

(
τ∗0 (t), X

t,x
τ∗

0 (t)

)
∈ Iτ̃

= τ∗0 (t).

This shows that τ∗1 (t) ≤ τ∗0 (t) P− a.s.
2. Assume τ∗0 (t) = t or

g
(
Xt,x

τ∗

0 (t)

)
< Z

τ∗

0 (t)

τ∗

0 (t)
.

By definition of τ∗0 (t), there exists a decreasing sequence of stopping times
(tn)n≥0 converging almost surely to t, such that g

(
Xt,x

tn

)
= Ztn

tn P − a.s. This

implies τ̃
(
tn, X

t,x
tn (ω)

)
= tn and

g
(
Xt,x

tn

)
≥ Etn,X

t,x
tn

[
δ (τ∗0 (tn)− tn) g

(
Xt,x

τ∗

0 (tn)

)]
P− a.s.

It follows that
(
tn, X

t,x
tn

)
/∈ Cτ̃ with probability one, and thus

Θτ̃(tn, X
t,x
tn ) =

{
tn for (tn, X

t,x
tn ) ∈ Sτ̃

τ1(tn) for (tn, X
t,x
tn ) ∈ Iτ̃

= tn P− a.s.

This shows that τ∗1 (t) ≤ tn P − a.s. Sending n → ∞, we get τ∗1 (t) ≤ τ∗0 (t)
P− a.s.

Remark 3.3. The demonstration of the above result relies on a fundamental
property for Θτ for arbitrary τ ∈ T (X), i.e., they are bounded by Lτ̃ . Indeed,
one can see that on the stopping region RLτ̃ , we are either on Sτ or Iτ ∩Rτ for
any τ ∈ T (X). We can assert in general that

Θτ(t, x) ≤ Lτ̃ (t, x) P− a.s., ∀τ ∈ T (X) and (t, x) ∈ X. (3.7)
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Remark 3.4. Lemma 3.1 and Theorem 3.1 together show that

τ̂ (t, x) := lim
n→∞

Θnτ̃(t, x) ∀(t, x) ∈ X

is an equilibrium policy. This admits nice economic interpretation: At first, the
agent intends to apply over time the policy τ̃ , obtained from the classical optimal
stopping theory. Then, form the game-theoretic analysis in Section 3.1, the agent
at time t realizes his best stopping strategy is actually Θτ̃ (t, x). Since the initial
time t is arbitrarily chosen, it turns out that the agent wants to switch the entire
policy from τ̃ to Θτ̃ . With the intention to apply Θτ̃ over time, the agent can
carry out the same game-theoretic analysis and realize that it is better to employ
Θ2τ̃ . This procedure continues until the agent finally obtains τ0, which cannot
be “improved” anymore by Θ, i.e. Θτ̂ = τ̂ .

Assumption (3.6) is in general non-trivial to obtain for a generic policy, in
particular for semi-continuous processes. We will show, nonetheless, in Section
4 that it holds for a simple example.

3.3. Time-consistent stopping and time-consistent discounting

To solve a stopping problem, the most important thing is to specify a reasonable
objective. The standard objective in the literature is simple: at each time-state
(t, x) ∈ X, the agent aims to maximize his current expected discounted payoff
J(t, x; τ) over τ ∈ Tt. Under a general discount function, it turns out that this
objective, in general, is never attained over time. This is because at each (t, x),
in order to attain the objective, the agent needs to follow τ̃(t, x) ∈ Tt over time.
Yet, as shown in Section 2, τ̃ (t, x) in general will not be honored by the agent’s
future selves.

To overcome this, one has to specify a new objective for stopping problems.
Suppose an agent at time t decides to choose some τ ∈ T (X) and commit to it
over time. While deciding which τ ∈ T (X) to employ, he takes into account his
future selves’ feeling as follows: given the fact that a policy τ ∈ T (X) is being
enforced over time, will myself at time s > t be satisfied with his current stopping
strategy τ(s,Xt,x

s ), or unhappy because there are other better ones? (While the
future self cannot deviate from τ(s,Xt,x

s ), as τ is being enforced, there is no way
preventing him from feeling bad). The new objective for stopping problems is
therefore to find a stopping policy τ ∈ T (X) such that when it is enforced over
time, every future self is satisfied with his current stopping strategy τ(s,Xt,x

s ),
under the knowledge that τ ∈ T (X) is being enforced.

To attain this new objective, the agent should employ an equilibrium policy
τ ∈ E(X). By definition of E(X), the agent will not find himself in a situation
where his preferences (discount and utility) push him to deviate from τ , i.e., to
stop when τ suggests him to continue, or vice versa. It thus provides a reasonable
and reachable stopping policy to commit to.

In general, an equilibrium policy is not a solution to problem (2.5), nor does
it provide a natural alternative formulation of the problem. Indeed, one might
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suggest to pose the problem

v(t, x) := sup
τ∈E(X)

J(t, x; τ(t, x)), (3.8)

which is well-defined in the sense that E(X) 6= ∅. However, nothing guarantees a
priori that an equilibrium policy which is optimal, under (3.8), at (t, x) will still
be optimal at a later time. We will, nevertheless, present an example in which
an equilibrium policy τ∗ ∈ E(X) solves the problem (3.8) for all (t, x) ∈ X; see
Section 4.3. We also want to emphasize that the characterization of E(X) is a
sufficient challenge that shall be pursued in further research.

Time-consistency in our specific problem is given by the following special case
of (2.3):

δ(t)δ(s) = δ(t+ s), ∀0 ≤ t ≤ s; (3.9)

see [35] and [7]. It corresponds to the exponential discount function. Under time-
consistency, τ̃ obtained in the classical optimal stopping literature is already an
equilibrium policy.

Proposition 3.2. Suppose (3.9). Then τ̃(t, x) ∈ E(X).
Proof. The fact that τ̃(t, x) ∈ R(X) follows from (3.9) applied to the very
definition of τ̃ (t, x), which provides (2.13), by dividing both sides of the equality
by δ(s− t). As a direct consequence, L∗τ̃ (t, x) = τ̄ (t, x) P−a.s. for all (t, x) ∈ X,
where τ̄ is defined in (2.8). Considering (3.1)-(3.2)-(3.3)-(2.12), we trivially have
that Iτ̃ ⊆ Rτ̃ and by Proposition 2.1, Sτ̃ = ∅. Since τ̃ ∈ R(X), τ̃ (t, x) = t on
Rτ and τ̃ (t, x) > t on Cτ̃ , or equivalently, τ̃(t, x) = τ̄ (t, x) = L∗τ̃(t, x) on Cτ̃ .
Altogether, this shows that τ̃ ∈ E(X).

A straight consequence to Proposition 3.2 is that for any (t, x) ∈ X,

J(t, x; τ̃ (t, x)) = sup
τ∈Tt

J(t, x; τ) ≥ sup
τ∈E(X)

J(t, x; τ(t, x)).

Under time-consistency, since τ̃ is an equilibrium policy, the above inequality
shows that τ̃ attains the maximum on the right hand side for all (t, x) ∈ X.
Problem (3.8) is therefore making sense, and just reduces to the classical opti-
mal stopping problem (2.5). Similarly to the equilibrium treatment of control
problems, see [11], the dynamic equilibrium and the committed optimal solution
coincide under time-consistency.

4. A case study with hyperbolic discounting

4.1. Setting and optimal stopping

We consider Ω the Wiener space of continuous functions of time, on R+. In
this section, we take (Xt,x

s )s≥t a one-dimensional Brownian motion starting
at value x at time t. It can be derived from the canonical process (shifted)
associated to the Wiener measure on Ω. We consider the associated natural
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filtration F := (Fs)s≥t with Fr := σ{Xt,x
s : t ≤ s ≤ r}, completed by null sets

on the Wiener space. We consider the hyperbolic discount function

δ(s− t) :=
1

1 + β(s− t)
, ∀0 ≤ t ≤ s.

for some fixed parameter β > 0. The function satisfies (2.3). We eventually
consider the payoff function g(x) := |x|, being continuous and non-negative. We
thus fall into the framework of the paper.

Given initial time and state (t, x) ∈ X := R+ × R, the optimal stopping
problem in the classical framework is given by

U(t, x) := sup
τ∈Tt

Et,x

[
δ(τ − t)g(Xt,x

τ )
]
. (4.1)

Under current setting, the process (δ(s− t)U(s,Xt,x
s ))s≥t needs not be a super-

martingale, as δ(s− t)δ(τ −s) > δ(τ − t) for t < s < τ . We thus can not directly
apply standard methods to solve (4.1) and find the optimal stopping time. To
overcome this, we introduce an auxiliary value function. For any fixed t ≥ 0, we
define

V (t, s, x) := sup
τ∈Ts

Es,x [δ(τ − t)g(Xs,x
τ )]

= sup
τ∈Ts

Es,x

[ |Xs,x
τ |

1 + β(τ − t)

]
, for (s, x) ∈ [t,∞)× R. (4.2)

By definition, for any fixed t ≥ 0, V (t, t, x) = U(t, x). However, the stopped
process (V (t, s,Xt,x

s ))s≥t is a supermartingale, with the associated variational
inequality given, for (s, x) ∈ [t,∞)× R, by

min

{
vs(t, s, x) +

1

2
vxx(t, s, x), v(t, s, x)− |x|

1 + β(s− t)

}
= 0. (4.3)

This allows to provide the following classical solution, by use of the classical
method of time-change [30].

Proposition 4.1. For any (t, x) ∈ X, the optimal stopping time of problem
(4.2) is uniquely defined by

τ̃ (t, x) := inf
{
s ≥ t : |Xt,x

s | ≥
√
1/β + (s− t)

}
.

Proof. According to [38], V is a viscosity solution of (4.3). The later equation
can be rewritten as a free boundary problem, with a boundary supposedly of
the form s 7→ b(t, s):

{
vs(t, s, x) +

1
2vxx(t, s, x) = 0, v(t, s, x) > |x|

1+β(s−t) , for |x| < b(t, s);

v(t, s, x) = |x|
1+β(s−t) , for |x| = b(t, s).

(4.4)
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Following [30], we propose to study the ansatz

v(t, s, x) =
1√

1 + β(s− t)
h

(
x√

1 + β(s− t)

)
.

Equation (4.4) then becomes a one-dimensional free boundary problem for h:




−βyh′(y) + h′′(y) = βh(y), h(y) > |y|, for |y| < b(t,s)√
1+β(s−t)

;

h(y) = |y|, for |y| = b(t,s)√
1+β(s−t)

.
(4.5)

Since (t, s) does not appear in the ODE for h, we seek for a constant selective
criterion for |y|, that is, b(t, s) = α

√
1 + β(s− t) for some α ≥ 0. The second-

order ODE of (4.5) yields a general solution of the form

h(y) = e
β
2 y2

(
c1 + c2

√
2

β

∫ √
β
2 y

0

e−u2

du

)
, (c1, c2) ∈ R

2 . (4.6)

The boundary condition is given by h(α) = α, whereas smooth pasting condition
implies that h′(α) = 1. We must however find three parameters c1, c2 and α by
matching the first moments. This is done by abandoning the ansatz and take

v(t, s, x) =
e

βx2

2(1+β(s−t))

√
1 + β(s− t)

(
c1 + c2

√
2

β

∫ √
β
2

x√
1+β(s−t)

0

e−u2

du

)
(4.7)

for |x| < α
√

1 + β(s− t) and

v(t, s, x) =
|x|

1 + β(s− t)
for |x| ≥ α

√
1 + β(s− t). (4.8)

Equating the functions (4.7) and (4.8), and their partial derivatives in x and s
provides the following equations

α = e
β
2 α2

(
c1 + c2

√
2

β

∫ √
β
2 α

0

e−u2

du

)
and sgn(x) − c2 = sgn(x)α2β.

The last equation implies c2 = 0, to which it follows that α = 1/
√
β and

c1 = αe−1/2. Finally, we obtain

v(t, s, x) =
1√

β
√
1 + β(s− t)

exp

(
1

2

(
βx2

1 + β(s− t)
− 1

))
(4.9)

on the domain
{
(t, x) ∈ R

2 : |x| ≤
√
1/β + (t− s)

}
and (4.8) outside of it.

Notice that v(t, .) is C1,2 on this domain, and C1,1 on [t,+∞)×R. Additionally,
from (4.8),

vs(t, s, x) +
1

2
vxx(t, s, x) < 0 for |x| >

√
1/β + (s− t).
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We therefore conclude from the standard verification theorem [29, Theorem 3.2]

that V = v is a regular solution of (4.3). This implies that V
(
t, . ∧ τ̃ (t, x), Xt,x

.∧τ̃(t,x)

)

is a martingale for s ≥ t. The rest of the proof is standard.

4.2. Construction of equilibrium policies

The stopping time τ̃(t, x) is naive as it depends on the initial time t. More
precisely, τ̃(t, x) is different from

Lτ̃ = inf

{
s ≥ t : Xt,x

s /∈
(
−
√

1

β
,

√
1

β

)}
.

Indeed, |x| ≥ 1/
√
β leads to immediate stopping, and is a necessary condition

too. The rational policy is simple, and moreover

L∗τ̃ (t, x) = Lτ̃ (t, x) P− a.s., ∀t ∈ R+, ∀x 6= −1/
√
β or 1/

√
β.

The specification of policies of Section 2 are thus considerably simplified in the
present case. Without loss of generality, stopping policies defined by

τa(t, x) := inf
{
s ≥ t : |Xt,x

s | ≥ a
}
, ∀(t, x) ∈ X,

with 0 ≤ a, are in R(X), i.e., rational policies.

Remark 4.1. In fact, policies of the form {τa : a ≥ 0} are the only relevant
ones. First, the symmetry of the Brownian motion implies that the same rule
shall be given for ±Xt,x and ±Xt,−x. This implies to define a hitting region
for |X | only. Second, by taking a hitting region of the form H = [a, b] ∪ [c, d],
with 0 ≤ a < b < c < d, and τ(t, x) = inf {s ≥ t : |Xt,x| ∈ H}, we have for
x ∈ (b, c)

E
[
δ(τ(t, x) − t)|Xt,x

τ |
]
=
(
P
[
|Xt,x| = b

]
b+ P

[
|Xt,x

τ | = c
]
c
)
E [δ(τ(t, x) − t)]

< P
[
|Xt,x| = b

]
b+ (1− P

[
|Xt,x

τ | = b
]
)c = x

The latter is deduced from Doob’s Optional Stopping Theorem, which provides

P
[
|Xt,x

τ | = b
]
= P

[
Xt,0

τ − x = b− x
]
=

x− b

c− b
.

For x ≤ b or x ∈ [c, d], τ(t, x) makes no difference with τa. For x > d, it
is clear that E [δ(τ − t)d] < x = E

[
δ(τa − t)|Xt,x

τa |
]
. Altogether, the policy τa is

better than τ . By iteration, it is possible to generalize to any Lebesgue set of R+.
The distribution of |Xt,x| being absolutely continuous with respect to Lebesgue
measure, the conclusion holds for any stopping rule.

According to Remark 4.1, we reduce to the study of τa with a ≤ 1
√
β. The

reason is that equilibrium policies are necessarily bounded by Lτ̃ ≡ τ1/
√
β , see

Remark 3.3. This family of stopping policies will serve as a base for construction
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of equilibrium policies. Consider the policy τa ∈ T (X) for a > 0. Studying the
sets (3.1)-(3.2)-(3.3), we notice that

{(t, x) ∈ X : |x| > a} ⊆ Iτa (4.10)

as L∗τa(t, x) = Lτa(t, x) = t if x > a. In the particular case x = a,

J(t, a;L∗τa(t, x)) = aEt,x

[
1{L∗τa=t} +

1{L∗τa(t,x)>t}
1 + β(L∗τa(t, x)− t)

]
.

The fact that on the right of t, {Xt,a
s < a : s ∈ (t,L∗τa(t, x))} is of positive

probability implies that the above quantity is strictly lower than a, and

{(t, x) ∈ X : |x| = a} ⊆ Sτa . (4.11)

Eventually, for |x| < a, we need to study

J(t, x;L∗τa) = Et,x

[
a

1 + β(τa − t)

]
.

Lemma 4.1. On the space {(x, a) ∈ R
2
+ : a ≥ x}, define the function

η(x, a) := Et,x

[
a

1 + β(τa − t)

]
.

(i) Given a ≥ 0, x 7→ η(x, a) is strictly increasing and strictly convex on [0,a],
and satisfies 0 < η(0, a) < a and η(a, a) = a.

(ii) Given x ≥ 0, η(x, a) → 0 as a → ∞.
(iii) There exists a unique a∗ ∈ (0, 1/

√
β) such that for any a > a∗, there is

a unique solution x∗(a) ∈ (0, a∗) of η(x, a) = x. Hence, η(x, a) > x for
x < x∗(a) and η(x, a) < x for x > x∗(a). Otherwise, a ≤ a∗ implies that
η(x, a) > x for all x ∈ (0, a).

Proof. (i) Given a ≥ 0, it is obvious from definition that η(0, a) ∈ (0, a) and
η(a, a) = a. Fix x ∈ (0, a), and let fx

a denote the density of T x
a := τa − t. We

obtain

Et,x

[
1

1 + βT x
a

]
=

∫ ∞

0

1

1 + βt
fx
a (t)dt =

∫ ∞

0

∫ ∞

0

e−(1+βt)sfx
a (t)ds dt

=

∫ ∞

0

e−s

(∫ ∞

0

e−βstfx
a (t)dt

)
ds =

∫ ∞

0

e−s
Et,x[e

−βsTx
a ]ds.

(4.12)

Notice that T x
a is the first hitting time to a by an one-dimensional Bessel process.

We thus compute its Laplace transform from the formula in [6]:

Et,x

[
e−

λ2

2 Tx
a

]
=

√
xI− 1

2
(xλ)

√
aI− 1

2
(aλ)

= cosh(xλ) sech(aλ), for x ≤ a.
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Here, Iν denotes the modified Bessel function of the first kind. Thanks to the
above formula with λ =

√
2βs, we obtain from (4.12) that

η(x, a) = a

∫ ∞

0

e−s cosh(x
√

2βs) sech(a
√
2βs)ds. (4.13)

It is then obvious that x 7→ η(x, a) is strictly increasing. Moreover,

ηxx(x, a) = 2aβ2

∫ ∞

0

e−ss cosh(x
√

2βs) sech(a
√
2βs)ds > 0 for x ∈ [0, a],

which shows the strict convexity.
(ii) By using (4.13) and the dominated convergence theorem, we get the

desired convergence.
(iii) The proof here divides into two parts. We will first prove the desired

result with x∗(a) ∈ (0, a), and then upgrade it to x∗(a) ∈ (0, a∗) in the second
step. Fix a ≥ 0. In view of the properties in part (i), we observe that the two
curves y = η(x, a) and y = x intersect at some x∗(a) ∈ (0, a) if and only if
ηx(a, a) > 1. Define k(a) := ηx(a, a). From (4.13), we have

k(a) = a

∫ ∞

0

e−s
√
2βs tanh(a

√
2βs)ds.

Thus, we see that k(0) = 0 and k(a) is strictly increasing on (0, 1), since for any
a > 0,

k′(a) =

∫ ∞

0

e−s
√
2s

(
tanh(a

√
2s) +

a
√
2s

cosh2(a
√
2s)

)
ds > 0.

By numerical computation, we find

k(1/
√
β) =

∫ ∞

0

e−s
√
2s tanh(

√
2s)ds ≈ 1.07461 > 1.

It follows that there must exist a∗ ∈ (0, 1/
√
β) such that k(a∗) = ηx(a

∗, a∗) = 1.
Monotonicity of k(a) then gives the desired result.

Now, for any a > a∗, we intend to upgrade the previous result to x∗(a) ∈
(0, a∗). Fix x ≥ 0. By the definition of η and part (ii), on the domain a ∈ [x,∞),
the map a 7→ η(x, a) must either first increases and then decreases to 0, or
directly decreases down to 0. From (4.13), we have

ηa(x, x) = 1− x

∫ ∞

0

e−s
√
2βs tanh(x

√
2βs)ds = 1− k(x),

where k is defined in part (iii). Recalling that k(a∗) = 1, we have ηa(a
∗, a∗) = 0.

Notice that

ηaa(a
∗, a∗) = − 2

a∗
k(a∗)− 2βa∗ + a∗

∫ ∞

0

4βse−s tanh2(a∗
√
2βs)ds

≤ − 2

a∗
+ 2βa∗ < 0,
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where the second line follows from tanh(x) ≤ 1 for x ≥ 0 and a∗ ∈ (0, 1/
√
β).

Since ηa(a
∗, a∗) = 0 and ηaa(a

∗, a∗) < 0, we conclude that on the domain
a ∈ [a∗,∞), the map a 7→ η(a∗, a) decreases down to 0. Now, for any a > a∗,
since η(a∗, a) < η(a∗, a∗) = a∗, we must have x∗(a) < a∗.

Remark 4.2. To find a∗ ∈ (0, 1) in Lemma 4.1 (ii), we need to solve in 0 <
a < 1

(ηa)′(a) = a

∫ ∞

0

e−s
√
2βs tanh(a

√
2βs)ds = 1

for any β > 0. One however notice that similarly to the proof of Lemma 4.1,
one can change a for a

√
β in the above equation. Using β = 1, numerical com-

putation shows that the general solution is a∗ ≈ 0.946475/
√
β < 1/

√
β.

A numerical illustration of Lemma 4.1.(iii) is given by taking a = 1/
√
β. To

find x∗(a), we need to solve for x

η1/
√
β(x) =

1√
β

∫ ∞

0

e−s cosh(x
√
2βs) sech(

√
2s)ds = x.

for a given β. Similarly as above, we search for x
√
β. Numerical computations

for β = 1 show that the general solution is x∗ ≈ 0.92195/
√
β. Accordingly,

x∗(1/
√
β) < a∗, for any β > 0.

6
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�
�
��

y = x

a∗ 1

y = η1(x)

x
∗(1)

y = ηa∗

(x)

Fig 1. Illustration of properties of ηa for a = a∗ (red) and a = 1 (blue), with β = 1.

The behavior of the above function η can be illustrated by figure 4.2, which
discriminates two cases. First observe that J(t, x;L∗τa(t, x)) > a for x < a ≤ a∗,
and

{(t, x) ∈ X : |x| < a} ⊆ Cτa . (4.14)

By complementarity of sets in X, we must have equality in (4.11)-(4.10)-(4.14).
Looking back at (4.10), we obtain Iτa ⊂ Rτa The operator Θ thus provides

Θτa(t, x) = inf
{
s ≥ t : |Xt,x

s | ≥ a
}
= τa(t, x).
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We therefore have a straight equilibrium policy by considering low values of a.
Consider now a > a∗. Then according to Lemma 4.1, any starting point

in absolute value |x| below x∗(a) incites to wait, whereas any starting point
between x∗(a) and a will push to anticipate stopping. We thus specify three
subsets of {(t, x) : |x| < a}, given by





S∗ := {(t, x) ∈ X : x∗(a) < |x| < a}
I∗ := {(t, x) ∈ X : |x| = x∗(a)}
C∗ := {(t, x) ∈ X : |x| < x∗(a)}

.

Altogether,
Θτa(t, x) = inf

{
s ≥ t : |Xt,x

s | > x∗(a)
}

since at |x| = x∗(a), we supposedly use Lτa(t, x) = τa(t, x) > t. At the other
singular point |x| = a, we are on Sτa . Therefore, τa /∈ E(X), and Θτa = L∗τx∗(a).
Notice then that x∗(a) < a implies that assumption (3.6) holds here, so that
Theorem 3.1 can be applied. Now from Lemma 4.1, x∗(a) < a∗, so that after
this round, we fall on the first case, and

ΘΘτa(t, x) = ΘL∗τx∗(a)(t, x) = τx∗(a)(t, x), ∀(t, x) ∈ X.

Notice now that the whole reasoning above does not depend on the value of β.
We summarize these findings in the following proposition.

Proposition 4.2. Let a ∈ (0, 1/
√
β]. Then

τ̂a(t, x) := lim
n

Θnτa(t, x), ∀(t, x) ∈ X,

is an equilibrium policy of the form τb for b ∈ (0, a∗] where a∗ ∝ β−1/2.

According to Remark 4.1, it is clear that if a stopping region H is a Lebesgue
set of R+ for some stopping policy, it will be improved by taking τa with
a = infH , as a consequence of applying Θ. Therefore, we exhaust equilibrium
policies:

E(X) = {τ ∈ T (X) : τ = τa for a ∈ (0, a∗]} . (4.15)

Remark 4.3. Notice that if the property x∗(a) < a∗ for a ∈ (0, 1/
√
β) did

not hold, it would still be possible to show that equilibrium policies are given by
(4.15). It suffices to apply the iterative construction principle of Section 3.2.

The probability that the Brownian motion Xt,x
τx∗(a)

reflects on the boundary

x∗(a) is null for x < x∗(a), and therefore

τx∗(a)(t, x) = L∗τx∗(a)(t, x) P− a.s., ∀x < x∗(a).

We can thus apply Lemma 4.1, with x∗(a) instead of a.
Applying the above reasoning recursively, we can set a0 = a, and an+1 =

x∗(an) for n ≥ 0, in order to obtain a sequence of stopping policies τan
∈ T (X):

τan+1 := Θτan
.

imsart-generic ver. 2014/10/16 file: huang_nguyen_2015.tex date: February 13, 2015



Y.-J. Huang and A. Nguyen-Huu/Time-Consistent Stopping 21

Assume that the sequence (an)n≥0 is bounded from below by a∗. Since it is
decreasing, it converges to some a∞ ≥ a∗. The function ηa in Lemma 4.1 being
C2 in x and parameter a on (a∗, 1), the function x∗ is continuous and

x∗ (a∞) = a∞,

which according to Lemma 4.1 again, implies that a∞ ≤ a∗. The convergence
must then be toward a∗. Another possible situation is that there exists N ≥ 0
such that aN ≤ a∗. Then according to Lemma 4.1,

ΘτaN
(t;x) = inf

{
s ≥ t : |Xt,x

s | ≥ aN
}
= τaN

(t, x)

and we stop the sequence which converges to that equilibrium policy.

4.3. Defining a new class of stopping problems

Let (t, x) ∈ X. Recall Problem (3.8), which is to

find τ∗ ∈ E(X) such that J(t, x; τ∗(t, x)) = sup
τ∈E(X)

J(t, x; τ(t, x)). (4.16)

According to the development above,

sup
τ∈E(X)

Et,x

[
|Xt,x

τ(t,x)|
1 + β(τ(t, x) − t)

]
= sup

a∈[x,a∗∨x]

Et,x

[
a

1 + β(τa(t, x)− t)

]
. (4.17)

We now wonder if this problem makes sense. The following Lemma shows that
the present problem is sufficiently nice to possess a good solution: τa∗ , for all
(t, x) ∈ X.

Lemma 4.2. Given t ∈ [0,∞) and 0 ≤ x ≤ a < a∗,

Et,x

[
a∗

1 + β(τa∗(t, x)− t)

]
> Et,x

[
a

1 + β(τa(t, x)− t)

]
.

Proof. Since x ≤ a ≤ a∗, τa(t, x) ≤ τa∗(t, x) P− a.s. We then have

Et,x

[
a∗

1 + β(τa∗(t, x)− t)

]
≥ Et,x

[
1

1 + β(τa(t, x) − t)

a∗

1 + β(τa∗(t, x)− t)

]

= Et,x

[
1

1 + β(τa(t, x)− t)
Eτa(t,x),a

[
a∗

1 + β(τa∗(τa(t, x), a)− τa(t, x))

]]

> Et,x

[
a

1 + β(τa(t, x)− t)

]
,

where the last inequality follows from Lemma 4.1.

Since Lemma 4.2 holds for arbitrary (t, x) ∈ X with x < a∗, we realize that
τa∗ ∈ E(X) solves (4.17) for all (t, x) ∈ X. Problem (4.16) is then a posteriori
dynamically consistent: committing to the equilibrium policy τa∗ , chosen to
be the optimal at some initial state (t, x), remains optimal in E(X) when the
Brownian motion evolves. It is not only a time-consistent policy, but maximizes
each future self’s expected discounted payoff as well.
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Appendix A: Proof of Theorem 3.1

Detailed analysis will be carried out to show that the proposed procedure in Sec-
tion 3.1 indeed leads to equilibrium policies. We start with a regularity property
of the operator Θ in the diffusion case. We then use it in a core proposition as-
serting the monotonicity of a special operator involving Θ on stopping policy.
By noticing the boundedness from below of policies, we can then construct the
limit of iterative application of that operator. We then conclude that the limit
is a fixed point of Θ, and thus an equilibrium policy.

Lemma A.1. Given τ ∈ T (X), we denote τ∗(s) := L∗τ(s,Xs), τ1(s) :=
Θτ(s,Xs), and τ∗1 (s) := L∗τ1(s). Assume that τ∗1 (t) ≤ τ∗(t) P − a.s. for any
(t, x) ∈ X. Then for (t, x) ∈ X, on the set {t < τ∗1 (t)}, we have

g(Xt,x
τ∗

1 (t)
) ≤ Eτ∗

1 (t),X
t,x

τ∗

1 (t)

[
δ(τ∗(τ∗1 (t))− τ∗1 (t))g

(
Xt,x

τ∗(τ∗

1 (t))

)]
.

Proof. On {t < τ∗1 (t)}, we have τ1(s) > s for any t < s < τ∗1 (t). This implies
that for such s, (s,Xt,x

s ) ∈ Sτ ∪ Iτ , and together with monotonicity of δ and
non-negativity of g, we have

g(Xt,x
s ) ≤ Es,Xt,x

s

[
δ(τ∗(s)− s)g

(
Xt,x

τ∗(s)

)]

≤ Es,Xt,x
s

[
δ (τ∗(s)− τ∗1 (s)) g

(
Xt,x

τ∗(s)

)]

≤ E

[
δ (τ∗(t)− τ∗1 (t)) g

(
Xt,x

τ∗(t)

)
| Fs

]
(A.1)

The third line follows from the strong Markov property (2.1). Now, let us denote

Y := δ (τ∗(t)− τ∗1 (t)) g
(
Xt,x

τ∗(t)

)
. We claim that the process s 7→ E[Y | Fs] is

left-continuous, if we select a version of E[Y | Fs] appropriately for all s > 0.
Let M̂ be a martingale with M̂s defined as an arbitrary version of E[Y | Fs] for
all s ≥ 0. By [21, Proposition 1.3.14], there exists Ω∗ ∈ F with P(Ω∗) = 1 such
that for any s > 0,

Ms(ω) := lim
r↑s,r∈Q

M̂s(ω) exists ∀ω ∈ Ω∗.

Recall that the continuity of X implies that the filtration F = {Ft}t≥0 is not
only right-continuous, but continuous; see e.g. [20, Corollary 2.7.8]. Thanks to
Levy’s upward theorem (see e.g. [40, Theorem 14.2]) and the left-continuity of
F, Ms is again a version of E[Y | Ft] for all s > 0. Since the process M is by
definition left-continuous, the claim is proved. Given ω ∈ Ω∗ ∩ {t < τ∗1 (t)}, take
{kn} ⊂ R+ such that kn ↑ τ∗1 (t)(ω). By (A.1), we have

g(Xt,x
kn

(ω)) ≤ Mkn
(ω) ∀n ∈ N.

imsart-generic ver. 2014/10/16 file: huang_nguyen_2015.tex date: February 13, 2015



Y.-J. Huang and A. Nguyen-Huu/Time-Consistent Stopping 23

Sending n to infinity gives

g(Xt,x
τ∗

1 (t)
(ω)) ≤ Mτ∗

1 (t)
(ω)

= Eτ∗

1 (t)(ω),Xt,x

τ∗

1
(t)

(ω)

[
δ(τ∗(τ∗1 (t)) − τ∗1 (t))g

(
Xt,x

τ∗(τ∗

1 (t))

)]
,

where the last equality follows form the strong Markov property (2.1) again.

Proposition A.1. Let τ ∈ T (X) satisfy (3.6). Then

L∗ΘΘτ(t, x) ≤ L∗Θτ(t, x) P− a.s., ∀(t, x) ∈ X.

Proof. Let us denote τ∗(s) := L∗τ(s,Xs), τ1(s) := Θτ(s,Xs), τ
∗
1 (s) := L∗Θτ(s,Xs),

τ2(s) := Θτ1(s) and τ∗2 (s) := L∗τ2(s). Recall assumption (3.6):

τ∗1 (t) ≤ τ∗(t) P− a.s. ∀(t, x) ∈ X.

We want to show that τ∗2 (t) ≤ τ∗1 (t) P − a.s. for all (t, x) ∈ X. Fix (t, x) ∈ X.
We will consider three distinct cases which, following (3.6), cover Ω. As in the
proof of Lemma 3.1, we assume without loss of generality that each case is of
probability one, and treat the general case by conditioning.

1. Denote for sake of simplicity τ∗11 := τ∗1 (τ
∗
1 (t)) and τ∗01 := τ∗(τ∗1 (t)) in this

part of the proof. Assume P [t < τ∗1 (t) < τ∗11] = 1. Suppose that there exists a
decreasing sequence of stopping times (tn)n∈N ⊂ Tτ1 such that

lim
n

tn = τ∗1 (t) P− a.s. and τ1(tn) = tn P− a.s. ∀n ∈ N.

Then one must have τ∗1 (τ
∗
1 (t)) = τ∗1 (t), which is not possible. Therefore, since

t < τ∗1 (t) we have
τ1(τ

∗
1 (t)) = τ∗1 (t) P− a.s. (A.2)

Since τ1 = Θτ , (A.2) implies

g
(
Xt,x

τ∗

1 (t)

)
≥ Eτ∗

1 (t),X
t,x

τ∗

1 (t)

[
δ

(
τ∗01 − τ∗1 (t)

)
g
(
Xt,x

τ∗

01

)]
. (A.3)

Recall from (3.6) that τ∗11 ≤ τ∗01 P− a.s. According to (2.3),

δ(τ∗01 − τ∗1 (t)) ≥ δ(τ∗11 − τ∗1 (t))δ(τ
∗
01 − τ∗11). (A.4)

According to (2.1), (A.4) and non-negativity of g, inequality (A.3) becomes

g(Xt,x
τ∗

1 (t)
) ≥ E

[
δ(τ∗11 − τ∗1 (t))E

[
δ(τ∗01 − τ∗11)g(X

t,x
τ∗

01
) | Fτ∗

11

] ∣∣∣ Fτ∗

1 (t)

]
(A.5)

with probability one. Now according to Lemma A.1, if τ∗11 < τ∗01,

g(Xt,x
τ∗

11
) ≤ E

[
δ(τ∗01 − τ∗11)g(X

t,x
τ∗

01
) | Fτ∗

11

]
,
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and if τ∗11 = τ∗01, the above inequality holds trivially (as an equality). Altogether,
these inequalities imply

g(Xt,x
τ∗

1 (t)
) ≥ E

[
δ(τ∗11 − τ∗1 (t))g(X

t,x
τ∗

11
)
∣∣∣ Fτ∗

1 (t)

]
P− a.s.

which implies that (τ∗1 (t), X
t,x
τ∗

1 (t)
) /∈ Cτ1 . Consequently,

τ2(τ
∗
1 (t)) =

{
τ∗1 (t) for (τ∗1 (t), X

t,x
τ∗

1 (t)) ∈ Sτ1

Lτ1(τ∗1 (t)) for (τ∗1 (t), X
t,x
τ∗

1 (t)) ∈ Iτ1
= τ∗1 (t) P− a.s.

It follows that τ∗2 (t) ≤ τ∗1 (t).
2. Assume now that P [t < τ∗1 (t) = τ∗1 (τ

∗
1 (t))] = 1. Accordingly, there exists

a decreasing sequence of stopping times (tn)n∈N such that

lim
n

tn = τ∗1 (t) P− a.s. and τ1(tn) = tn P− a.s. ∀n ∈ N.

We claim that τ∗2 (t) ≤ tn for all n ∈ N. Fix n ∈ N. Note that if τ∗1 (tn) = tn on
some subset A ⊆ Ω, then straightforwardly (tn, X

t,x
tn ) ∈ Iτ1 and Lτ1(tn) = tn.

Since τ2 = Θτ1,
τ2(tn) = Lτ1(tn) = tn on A.

This implies that τ∗2 (t) ≤ tn on A. Now on the set Ac, since τ∗1 (tn) > tn, we
can argue as in step 1 above, with tn replacing τ∗1 (t), to show that τ∗2 (t) ≤ tn
on Ac. Sending n to infinity provides

τ∗2 (t) ≤ τ∗1 (t) P− a.s.

3. Assume that P [τ∗1 (t) = t] = 1. Then one can argue as in step 2, with t
replacing τ∗1 (t), by choosing a properly decreasing sequence of stopping times
converging to t P− a.s. The same reasoning leads to τ∗2 (t) ≤ τ∗1 (t) P− a.s.

Corollary A.1. Let τ ∈ T (X) satisfy (3.6). Assume Θτ(t, x) = t for some
(t, x) ∈ X. Then ΘΘτ(t, x) = t.

Proof. By (3.4), Θτ(t, x) = t implies that (t, x) /∈ Cτ , i.e.

g(x) ≥ Et,x[δ(L∗τ(t, x) − t)g(Xt,x
L∗τ(t,x))].

If L∗Θτℓ(t, x) = L∗τ(t, x), the above inequality immediately yields (t, x) /∈ CΘτ ,
and thus

ΘΘτ(t, x) =

{
t for (t, x) ∈ SΘτ

Θτ(t, x) for (t, x) ∈ IΘτ
= t. (A.6)

If t < L∗Θτ(t, x) < L∗τ(t, x), we may argue as in case 1. in the previous proof
of Proposition A.1 to show that

g(x) ≥ Et,x[δ(L∗τ(t, x)− t)g(Xt,x
L∗τ(t,x))] ≥ Et,x[δ(L∗Θτ(t, x)− t)g(Xt,x

L∗Θτ(t,x))].

This again gives (A.6). Finally, if L∗Θτ(t, x) = t, then (t, x) ∈ IΘτ trivially, and
thus ΘΘτ(t, x) = Θτ(t, x) = t.
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Remark A.1. The above Corollary applies to the immediate stopping policy ι
defined by

ι(t, x) = t, ∀(t, x) ∈ X.

Indeed, since ι ∈ E(X), we have equality in Proposition A.1 as soon as τ(t, x) =
ι(t, x) for some (t, x) ∈ X. This is of course an irrelevant equilibrium policy, but
it ensures a lower bound for convergence of iterative applications of Θ.

Corollary A.2. Let τ ∈ T (X) satisfy (3.6). Define

τ̂(t, x) := lim
n

LΘnτ(t, x), ∀(t, x) ∈ X.

Then τ̂ ∈ T (X) and L∗τ̂ (t, x) = limn L∗Θnτ(t, x) P − a.s. for all (t, x) ∈ X.
Moreover, if Θnτ(t, x) > t for all n ≥ 1, then τ̂ (t, x) = L∗τ̂(t, x).

Proof. For the sake of clarity, denote τn := Θnτ ∈ T (X) for n ∈ N. Fix (t, x) ∈
X. If τn(t, x) = t for some n ∈ N, then by Corollary A.1, τ̂ (t, x) = t. If τn(t, x) > t
for all n ∈ N, then LΘnτ(t, x) = L∗Θnτ(t, x) for all n ∈ N and according to
Proposition A.1,

τ̂ (t, x) = lim
n

L∗Θnτ(t, x) converges.

Thus, τ̂ is well-defined and belongs to T (X). Now, let us denote

τ̂∗(t, x) := lim
n

L∗Θnτ(t, x).

Being a F-stopping time, τ̂∗(t, x) must fall under the next two cases in Ft.
1. Assume that τ̂∗(t, x) = t. We claim that there exists a decreasing sequence

of stopping times (tn)n∈N converging to t P − a.s., such that τn(tn, X
t,x
tn ) = tn

P− a.s.
First, suppose that L∗τn(t, x) = t for n large enough, and take n = 1 without

loss of generality. It thus hold for all n ∈ N. For n = 1, we can find a decreasing
sequence of stopping times (t1,k)k∈N such that τ1(t1,k, X

t,x
t1,k) = t1,k P− a.s. for

all k ∈ N. Similarly for any n ≥ 1, we can find a decreasing sequence (tn,k)k∈N,
additionally verifying tn,1 < t1,n−1 P − a.s., such that τn(tn,k, X

t,x
tn,k

) = tn,k
P− a.s. for all k ∈ N. The claim then follows by taking tn := tn,1 for all n ∈ N.

Next, assume that L∗τn(t, x) > t for all n ∈ N. For any n ≥ 1, this implies
that either

τn(L∗τn(t, x), X
t,x
L∗τn(t,x)

) = L∗τn(t, x) P− a.s.

or there exists a decreasing sequence of stopping times (tn,k)k∈N, converging to
L∗τn(t, x) P− a.s. as above, verifying tn,1 < t1,n−1 P− a.s. and τn(tn,k, X

t,x
tn,k

) =
tn,k P− a.s. for all k ∈ N. The claim then follows by taking tn := L∗τn(t, x) in
the first case or tn := tn,1 in the second case.

By the claim and Corollary A.1, τ̂ (tn, X
t,x
tn ) = tn for all n ∈ N, which

gives L∗τ̂ (t, x) = t. Moreover, the claim implies that τ̂ (t, x) = limn Lτn(t, x) ≤
limn tn = t. It follows that τ̂ (t, x) = L∗τ̂(t, x) = t = τ̂∗(t, x).
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2. Assume that τ̂∗(t, x) > t. Similarly to the proof of Proposition A.1, observe
that τn(s,X

t,x
s ) > s and Lτn(s,Xt,x

s ) = L∗τn(s,Xt,x
s ) = L∗τn(t, x) for all n ∈ N

and s ∈ (t, τ̂∗(t, x)) P− a.s. Then, for the same s,

τ̂(s,Xt,x
s ) = lim

n
L∗τn(s,X

t,x
s ) = lim

n
L∗τn(t, x) = τ̂∗(t, x) > s. (A.7)

Now, we claim that τ̂ (τ̂∗(t, x), Xt,x
τ̂∗(t,x)) = τ̂∗(t, x) P−a.s.. This, together with

(A.7), would imply L∗τ̂ (t, x) = τ̂∗(t, x), as desired. Here, we have two cases that,
as in preceding proofs, can be assumed to be of probability one separately. By
Corollary A.1, the claim above is trivial if

τn(τ̂
∗(t, x), Xt,x

τ̂∗(t,x)) = τ̂∗(t, x) P− a.s.

for some n ∈ N. We thus assume that

τn(τ̂
∗(t, x), Xt,x

τ̂∗(t,x)) > τ̂∗(t, x) P− a.s. for all n ∈ N.

If L∗τn(t, x) = τ̂∗(t, x) P − a.s. for some n ∈ N, then, since τn(s,X
t,x
s ) > s for

all s ∈ (t, τ̂∗(t, x)] P− a.s.,

L∗τn(τ̂
∗(t, x), Xt,x

τ̂∗(t,x)) = τ̂∗(t, x) P− a.s.

It immediately follows that

τ̂ (τ̂∗(t, x), Xt,x
τ̂∗(t,x)) = lim

n
L∗τn(τ̂

∗(t, x), Xt,x
τ̂∗(t,x)) = τ̂∗(t, x) P− a.s.

If on the contrary, L∗τn(t, x) > τ̂∗(t, x) P − a.s. for all n ∈ N, then the same
calculation in (A.7) directly gives τ̂ (τ̂∗(t, x), Xt,x

τ̂∗(t,x)) = τ̂∗(t, x).

We can now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Consider (τn)n∈N as in the proof of Corollary A.2. Fix
(t, x) ∈ X.

1. Assume that τn0(t, x) = t for some n0 ∈ N. Then, following Remark A.1,
τ̂(t, x) = t and thus

Θτ̂(t, x) =





t for (t, x) ∈ Sτ̂

t for (t, x) ∈ Iτ̂
L∗τ̂(t, x) for (t, x) ∈ Cτ̂

Thanks to Corollary A.2, for any n ≥ n0, τn(t, x) = t, and thus (t, x) /∈ Cτn .
Accordingly

g(x) ≥ Et,x

[
δ(L∗τn(t, x) − t)g(Xt,x

L∗τn(t,x)
)
]
, ∀n > n0.

Sending n to infinity, and using Corollary A.2 again,

g(x) ≥ Et,x

[
δ(L∗τ̂ (t, x)− t)g(Xt,x

L∗τ̂(t,x))
]
,
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which means that (t, x) /∈ Cτ̂ . Consequently, Θτ̂(t, x) = t = τ̂(t, x).
2. Assume now that τn(t, x) > t for all n ∈ N. This implies together with

Corollary A.2 that

Θτ̂(t, x) =





t for (t, x) ∈ Sτ̂

τ̂ (t, x) for (t, x) ∈ Iτ̂
τ̂ (t, x) for (t, x) ∈ Cτ̂

This also implies that, for any n ∈ N, (t, x) /∈ Sτn , i.e.,

g(x) ≤ Et,x

[
δ(L∗τn(t, x)− t)g(Xt,x

L∗τn(t,x)
)
]
, ∀n ≥ 0. (A.8)

Again, by sending n to infinity, with help of Corollary A.2, we obtain that
(t, x) /∈ Sτ̂ , which finishes the proof.
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