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I. Introduction

Since few years, many statistical approaches have been introduced in EMC 1 . It becomes a rather natural approach when dealing with physical phenomena that depends on numerous uncertain variables conditioning the interference levels. The development of these statistical techniques in the EMC area allowed for example to estimate the expectation and the standard deviation of an interest response depending on various random variables [START_REF] Sy | Probabilistic study of the coupling between deterministic electromagnetic fields and a stochastic thin-wire over a pec plane[END_REF]- [START_REF] Magdowski | Coupling of stochastic electromagnetic fields to a transmission line in a reverberation chamber[END_REF].

Only few approaches deal with estimation of extreme values in EMC [START_REF] Kasmi | Modeling extreme values resulting from compromising electromagnetic emanations generated by an information system[END_REF]. However, it is a very relevant way to look at risk analysis. A typical case would be a detection of malfunction of a device connected to a wire end when illuminated by an electromagnetic field [START_REF] Genender | Combination of the failure probability with a random angle of incidence of the radiated interference[END_REF].

Moreover, such a device may differ from one to another due to manufacturing conditions. In this case, a set of devices would be ideally represented by a probability density function (pdf) of failure with regard to, for instance, the level of current applied to its input. Thus, a reliability analysis of an EMC system has to take into account the probability that the interfering current reaches a certain value and the probability of having a device failure for the specific current magnitude.

In this paper, we will first introduce the reliability analysis tools (from the probabilistic mechanics [START_REF] Ditlevsen | Structural reliability methods[END_REF], [START_REF] Lemaire | Structural reliability[END_REF]) allowing to estimate a failure probability denoted P f defined as the probability of exceeding a certain threshold value. We will then provide factors indicating the sensitivity of this failure probability with respect to input parameters of the physical phenomenon. In Section III, we will apply these tools to analyse the risk of an EMC default by taking into account the uncertainty on input parameters influencing levels of interference for a simple example of crosstalk in a two wire transmission line.

II. Methods for reliability analysis

Due to the lack of knowledge regarding the input parameters of a set of equations, the analyst is constrained by using a statistical modelling by means of random variables describing the available information on the distribution of input parameters. Thus, the response of a numerical model (i.e. representing a physical phenomenon) becomes also uncertain. The purpose of reliability analysis consists in determining the probability of failure of a system and in providing a hierarchization of the input parameters (sensitivity analysis). This is based on the definition of a limit state function that is now introduced [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF].

A. The limit state function

Let a random vector X of size M (containing M random variables, possibly correlated) describing the uncertainties identified in model inputs. The assessment of the reliability of a system relies on a limit state function g depending on vector of input parameters X defined as:

g : R M -→ R X -→ y S -M(X), (1) 
where M is the numerical simulation model used and y S is a determined threshold. The limit state function g is formulated as:

• D f = {x; g(x) ≤ 0} defines the failure domain of the system; • D s = {x; g(x) > 0} defines the safe domain;

• ∂D = {x; g(x) = 0} is the limit state surface.

We denote now by f X the joint pdf of random vector X, the probability of failure P f of the system is then written:

P f = P(g(x) ≤ 0) = D f f X (x) dx. (2) 
In most cases, the integral defined in (2) has to be resolved by means of numerical methods such as Monte Carlo simulation (MCS). That requires numerous evaluations of the limit state function g, and of the numerical model M. To overcome this limitation, approximation methods for reliability analysis [START_REF] Ditlevsen | Structural reliability methods[END_REF] have been developed to compute the probability of failure at a relative low computational cost compared to MCS. These methods are based on the identification of the so-called design point which is now presented.

B. Transformation of the input variable space and identification of the design point

The principle of reliability methods is based on the transformation of the reliability problem from the physical space to the standard Gaussian space, in which reduced centered Gaussian variables are uncorrelated.

To identify the design point, the first step consists in rewriting the integral (2) in the standard Gaussian space by using an isoprobabilistic transformation T : X -→ ξ. Various transformations (e.g. Rosenblatt or Nataf transformation [START_REF] Ditlevsen | Structural reliability methods[END_REF], [START_REF] Lemaire | Structural reliability[END_REF]) have been proposed for the probabilistic transformation of physical input random variables. Rosenblatt transformation is applied when the joint probability distribution is known (a rich information but rarely available) while the Nataf transformation requires only the knowledge of marginal distributions of input variables and their correlations (a poor information but generally available). Once the Rosenblatt or Nataf transformation is applied, the obtained standard Gaussian random variables are transformed to uncorrelated standard Gaussian random variables [START_REF] Lemaire | Structural reliability[END_REF]. Thus, (2) is reformulated in the uncorrelated Gaussian random variables space as follows:

P f = g(T -1 (ξ))≤0 φ M (ξ) dξ = G(ξ)≤0 φ M (ξ) dξ 1 . . . dξ M , (3) 
where G(ξ) = g(T -1 (ξ)) and φ M is the standard multinormal pdf. This pdf is maximal at the origin and decays exponentially with ξ 2 . Thus the points having the most significant contribution in the integral (3) are those of the failure domain that are the nearest to the origin of the standard Gaussian space.

The second step of the method is to identify the socalled design point ξ * (or Most Probable Point (MPP) of failure), which is the point of the failure domain nearest to the origin in the standard Gaussian space. This point is the solution of a constrained optimization problem:

P * = ξ * = Arg min ξ∈R M ξ 2 : G(ξ) ≤ 0 . ( 4 
)
Various algorithms can be used to solve the optimization problem (4) such as the improved Hasofer-Lind-Rackwitz-Fiessler (iHLRF) algorithm given in [START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF]. Having found the design point ξ * , the so-called Hasofer-Lind reliability index β is defined as the distance of the design point to the origin in the standard Gaussian space:

β = sign(G(0)) • ξ * , ( 5 
)
where sign(G(0)) is positive if 0 is in the safe domain and negative otherwise.

Once the design point is obtained, the third step is to perform Taylor series expansions of the limit state function at this point. These techniques are now presented.

C. Computation of the failure probability from the design point 1) Principle of FORM and SORM approximations:

The first order reliability method (FORM) performs a firstorder Taylor series expansion of the limit state function G at the design point ξ * for computing a first order approximation of the failure probability. This means to substitute the failure domain by the half space defined by a tangent hyperplane to the limit state surface at the design point ξ * (Fig. 1). The equation of the hyperplane denoted by G at the design point ξ * may be researched as [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF]:

G(ξ) = G(ξ * ) + ∇G(ξ * ) T • (ξ -ξ * ) = ∇G(ξ * ) T ∇G(ξ * ) • (ξ -ξ * ) = -α T • (ξ -ξ * ) = β -α T • ξ = 0, (6) 
where (.) T denotes the transposition, and the components of the unit vector α = -∇G(ξ * ) ∇G(ξ * ) are the direction cosines of the gradient vector at the design point. Moreover, [START_REF] Ditlevsen | Structural reliability methods[END_REF] has been obtained from G(ξ * ) = 0 since ξ * is on the limit state surface ∂D and normalizing the limit state function by ∇G(ξ * ) . Thus, the first order approximation of P f is written as [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF]:

P f = G(ξ)≤0 φ M (ξ) dξ ≈ Hyp(ξ * ) φ M (ξ) dξ 1 . . . dξ M . (7)
Starting from the premise that the Gaussian random variables are uncorrelated, it is possible to demonstrate that (7) is given by [START_REF] Ditlevsen | Structural reliability methods[END_REF], [START_REF] Lemaire | Structural reliability[END_REF]:

P f ≈ P f,FORM = Φ(-β), ( 8 
)
where Φ is the cumulative distribution function (CDF) of a unidimensional standard Gaussian random variable.

However, the approximation (7) may sometimes be insufficient. Thus, the so-called second order reliability methods (SORM) have been proposed to provide a second order approximation of the probability of failure. It consists in replacing the limit state surface by a quadratic surface around the design point ξ * . Two types of SORM approximations are generally used: the so-called curvaturefitting SORM [START_REF] Breitung | Asymptotic approximations for multinormal integrals[END_REF] and the point-fitting SORM [START_REF] Der Kiureghian | Second-order reliability approximations[END_REF]. In this paper, we only present the curvature-fitting SORM but the reader can refer to [START_REF] Der Kiureghian | Second-order reliability approximations[END_REF] for a review of point-fitting SORM. The idea of curvature-fitting SORM is based on the computation of the Hessian matrix of the limit state function at the design point ξ * . After using a rotation of the coordinate system in the standard Gaussian space (i.e. v = R • ξ), the limit state function may be rewritten as [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF]:

G(ξ) ≈ β -v M + M-1 i=1 1 2 κ i v 2 i , (9) 
where {κ i , i = 1, . . . , M -1} stand for the curvature of the approximate paraboloïd around the design point.

[10] has proposed the first formula to express the second order approximation of the probability of failure, but [START_REF] Hohenbichler | New light on first-and second-order reliability methods[END_REF] improved it by the following:

P f ≈ P f,SORM = Φ(-β) M-1 i=1 1 1 - φ(β) Φ(-β) κ i . ( 10 
)
The SORM approximation of the probability of failure in [START_REF] Breitung | Asymptotic approximations for multinormal integrals[END_REF] proposes to correct the term obtained by FORM approximation in [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF].

2) Importance sampling: The FORM-SORM approximations of the probability of failure P f are obtained at a low computational cost compared to MCS. Otherwise, several drawbacks can be encountered when dealing with complex problems such as:

• the design point ξ * found after solving the optimization problem (4) may have been incorrectly identified (i.e. ξ * is a local minima instead of being a global minima); • the quality of approximations of the probability of failure in ( 8) and [START_REF] Breitung | Asymptotic approximations for multinormal integrals[END_REF] may not be sufficient.

To get over these limitations, a complementary approach called importance sampling (IS) has been introduced [START_REF] Melchers | Radial importance sampling for structural reliability[END_REF]. Since the weight of P f is mainly localized around the design point ξ * , the method consists in concentrating the sampling around this point (Fig. 2) by selecting an importance sampling density (ISD) ψ [START_REF] Lemaire | Structural reliability[END_REF]. In practice, ψ can be selected as a M -dimensional reduced Gaussian density function centered around the design point ξ * , i.e. ψ(ξ) = φ M (ξξ * ). As shown in Appendix, this method provides an estimation of the probability of failure. 

D. Measurement of local sensitivity

Further information called importance factors may be derived from FORM analysis introduced in Section II-C.1. Their interest is to determine the weight of each input random variable of the physical model on the probability of failure. We therefore are interested by the influence of each random variable on the failure of the system, measured by the reliability index β at the design point ξ * .

1) Sensitivity of the reliability index to the variables: Starting from the linearised limit state function G computed by FORM in ( 6), we notice that the direction cosines of α represent the sensitivity of the reliability index β to the independent standard Gaussian variables as:

α = ∂β ∂ξ ξ * . (11) 
Otherwise, the variance of the linearised limit state function G is defined by:

Var G = α T • Cov [ξ, ξ] • α, ( 12 
)
since the standard Gaussian variables are independent.

Using the fact that Cov [ξ, ξ] = Var [ξ] = I M , where I M is the identity matrix of size M , and since α is a unit vector, the variance of G becomes:

Var G = M i=1 α 2 i = 1. ( 13 
)
This means that the importance factors α 2 i represents the proportion of the variance associated to the variable ξ i . When the physical input random variables X are independent, each physical variable X i is associated to each standard Gaussian variable ξ i . In this case, the coefficients α 2 i directly provide a measure of importance of each physical input random variable X i . When the physical input random variables are correlated, the importance vector γ using the Jacobian of the probabilistic transformation T has to be introduced [START_REF] Lemaire | Structural reliability[END_REF].

2) Sensitivity of the reliability index to the distribution parameters: Besides the sensitivity of the reliability index β to each random variable, the sensitivity of β to the distribution parameters (expectation, standard deviation, ...) can be derived. However, the obtained sensitivities by deriving β with respect to the distribution parameters do not enable an importance comparison between different distribution parameters. In order to bypass this problem, a normalisation of sensitivities is carried out to get the elasticities of parameters defined by:

ǫ pi λ = p i λ β ∂β ∂p i λ ξ * , (14) 
where p i λ is the λ-th distribution parameter of the variable X i , i = 1, . . . , M . Note that once again, when the physical input random variables X i , i = 1, . . . , M are correlated, the Jacobian matrix of the probabilistic transformation T must be introduced for computing the elasticities of parameters (see [START_REF] Lemaire | Structural reliability[END_REF] for further details).

E. Computation of the failure probability in large dimensions 1) Subset simulation:

In the reliability analysis, FORM, SORM and IS are classic tools allowing the engineer to solve the problem most of the time [START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF]. However, although these techniques are relatively robust, when the complexity of the problem increases (with for example a large number of the uncertain input parameter) the construction of a good ISD may be problematic [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF]. Therefore, a new simulation method called subset simulation (SS) has been developed in [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] for estimating small failure probabilities in high dimensions.

Supposing that the failure event D f is rare, the approach introduced in [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] consists in estimating the failure probability P f by introducing more frequent intermediate conditional failure events D fi , i = 1, . . . , R called subsets defined as D f1 ⊃ D f2 ⊃ . . . ⊃ D fR = D f . The several intermediate subsets are defined by D fi = {g(x) ≤ t i , i = 1, . . . , R} where the set of thresholds {t i , i = 1, . . . , R} is a decreasing sequence with t R = 0. Thus, the failure probability P f is given by definition of conditional probability as follows:

P f = P (D f ) = P (D fR ) = P R i=1 D fi = P D fR | D fR-1 • P R-1 i=1 D fi = . . . = P (D f1 ) R i=2 P D fi | D fi-1 . ( 15 
)
The principle of the SS is to estimate the probability of failure P f by estimating the quantities P (D f1 ) and the conditional probabilities {P D fi | D fi-1 , i = 2, . . . , R} [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF]. The estimation of these quantities depends in practice on the several subsets D fi , i = 1, . . . , R and their associated thresholds t i . The intermediate thresholds {t i , i = 1, . . . , R} should be chosen in order to get intermediate conditional failure probabilities that are not too small to be well estimated. A target probability value P c f has to be chosen in practice (generally P c f ≈ 0.1 -0.2 [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF]). The estimation of the first threshold t 1 is carried out by MCS where P (D f1 ) = P c f . The following thresholds {t i , i = 2, . . . , R} associated to the conditional failure events {D fi | D fi-1 }, i = 2, . . . , R are generated by Markov Chains Monte Carlo (MCMC) based on a modified Metropolis-Hastings (MMH) algorithm [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF]. This technique is carried out until a negative threshold is obtained. Once that step is achieved, this means that the searched limit state surface {g(x) = 0} has been found (i.e. this is the R-step and the negative threshold t R takes the value 0). Finally the last conditional failure probability {P D fR | D fR-1 } is estimated [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF].

In the next section, we propose to use these reliability analysis tools in the context of a simple crosstalk problem in transmission lines.

III. Computation and sensitivity analysis of the failure probability in a crosstalk problem

The results given in this section have been obtained by the open-source toolbox FERUM 4.1 [START_REF] Bourinet | A review of recent features and improvements added to ferum software[END_REF] (Finite Element Reliability Using Matlab ), coupled to a computer code based on the transmission line theory using the BLT2 equation formalism.

A. Presentation of the crosstalk configuration under study

In order to study the impact of uncertainties of input parameters on electromagnetic interferences, we examined an example of a two-wire lossless transmission line above a PEC3 (Fig. 3). The two wires have the same length denoted Lg. Wire n • 1 is located at a height denoted h 1 above the PEC being fed by an electromotive force e = 1 V. Two loads denoted R 1 and R 2 are connected at the ends of this wire. Wire n • 2 is placed at a height denoted h 2 above the PEC and is loaded by two resistances denoted R 3 and R 4 . We are interested in computing the induced current at the opposite end of the wire n • 2, denoted I 2 (Lg). It depends on the following random variables:

• R 1 is a variable uniformly distributed between 1 Ω and 10 Ω; • R 2 and R 3 are variables uniformly distributed between 10 kΩ and 100 kΩ; • h 1 and h 2 are uniform random variables between 1.5 cm and 2.5 cm and vary independently from each other; • Lg of the two-wire cable is a uniform random variable between 9.5 m and 10.5 m. Furthermore, R 4 is set to 10 Ω, the distance d between the two wires is set to 1 cm and the diameter of each wire d m is 1 mm. The objective of the study is to estimate a probability of failure P f defined as the probability that the maximum of the induced current evaluated in a predefined frequency band ∆ f exceeds a threshold denoted I t : P f = P (max ∆f I 2 (Lg) I t ).

In order to deal with extreme current values, we have chosen a frequency band for which wires are in resonance state. The interest of such case study is to adopt the point of view of an EMC engineer. At early design stage, one has a modest information on the input parameters of the system such as cable positions or input impedances. However, it is necessary to ensure that I 2 (Lg) does not cause a malfunction of a device connected at the end of a cable. Otherwise, one is interested by the precautions to take on input parameters to avoid that the system fails.

B. Preliminary analysis of the performances of FORM 1) Illustration of FORM in a simple problem:

To show the performances of a FORM analysis, the crosstalk problem presented in Section III-A has been simplified. Indeed, only resistances R 1 and R 2 (Fig. 3) have been considered as random variables in this simplified problem with the same probability distributions. All other random variables of the initial configuration are fixed to their mean values: R 3 = 55 kΩ, h 1 = h 2 = 2 cm and Lg = 10 m.

The aim of this simplified crosstalk problem is to highlight the good approximation of the failure probability P f established by FORM and SORM which relies upon the approximation of the limit state function g. Thus, we have selected an arbitrarily fixed threshold I t = 73 mA, and we computed P f = P (max ∆f I 2 (Lg) I t ) by FORM and SORM analysis. The failure probabilities P f,FORM and P f,SORM are then compared to a reference result obtained by 10,000 realizations from MCS, P f,MCS = 0.049 ± 4%. Note that 10,000 realizations were carried out to achieve a trade-off between computation time and accuracy of the estimation of P f . Thus, the approximation of the failure probability obtained by FORM is P f,FORM = 0.069 using 106 calls to the computer code. To improve the precision of the result obtained by FORM, we use a SORM approximation which provides P f,SORM = 0.049 using 5 additional calls to the computer code. Note that SORM is carried out once the design point ξ * was identified with FORM. We notice that the results provided by FORM and especially SORM are quite satisfactory in so far as there is a little difference between them and those obtained from a MCS with 10,000 realizations. In order to give a representation of the approximation of the failure probability P f computed by FORM analysis, we represented 2,000 realizations of g with respect to the loads R 1 and R 2 in the physical space in Fig. 4(a) and in the Gaussian space in Fig. 4(b). An illustration of the approximation of the limit state function G by a tangent hyperplane at the design point ξ * carried by FORM analysis in the Gaussian space is also shown in Fig. 4(b). Thus, we see that the tangent hyperplane (in black) established by FORM at the design point ξ * (in green) separates the realizations of the limit state function G which are in the failure domain (in magenta) and those in the safe domain (in blue). The red realization in Fig. 4(a) is the mean of the random vector X = {R 1 , R 2 } T in the physical space which is transformed to the origin of the Gaussian space in Fig. 4(b).

2) Illustration of FORM in the crosstalk configuration under study: As shown above, FORM and SORM provide a good approximation of the failure probability P f when the problem considered is very simple (i.e. with two input random variables). Let us go back to the initial configuration presented in Section III-A (with six input random variables). First, it is interesting to observe the behaviour of the induced current I 2 (Lg) in resonance regime. Thus, a representation of the induced current I 2 (Lg) in the frequency band [START_REF] Genender | Combination of the failure probability with a random angle of incidence of the radiated interference[END_REF][START_REF] Ditlevsen | Structural reliability methods[END_REF][START_REF] Lemaire | Structural reliability[END_REF][START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF][START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF][START_REF] Breitung | Asymptotic approximations for multinormal integrals[END_REF] has been given by 10 realizations from MCS in Fig. 5. We observe an important variability of I 2 (Lg) by means of resonance phenomena which appear around frequencies f n such as f n = (2n+1)•c/4•Lg, where n ∈ N, Lg is the length of the line and c is the speed of light. The first frequency resonant of the line is 7.5 MHz. However, a particular pattern of the curve is observed due to the combination of inductive and capacitive coupling.

We want now to approximate the failure probability P f by FORM analysis with a threshold value I t = 70 mA. Thus, the failure probability obtained by FORM is P f,FORM = 0.139 with 142 calls to the computer code. In a second time, an approximation by SORM analysis indicates P f,SORM = 0.082 with 27 additional calls to the computer code. The reference result, obtained by 10,000 realizations from MCS is P f,MCS = 0.087 ± 3%. In this case, we notice a significant gap between the result provided by FORM and the reference result. This shows the limitations of FORM analysis when the complexity of the problem increases. In order to show again the approximation of the limit state function g carried out by FORM, 2,000 evaluations of the limit state function g from MCS are represented on the axis of the random load R 1 in the physical space in Fig. 6(a). After using the probabilistic transformation (from physical space to Gaussian space), FORM performs an approximation of the surface state limit by a tangent hyperplane (in black) at the design point ξ * (in green) in Fig. 6(b). In this case, we see for example on the axis of the Gaussian random variable ξ 1 that the realizations of g in the safe domain (in blue) and those in the failure domain (in magenta) are not very well separated. This allows to highlight the limitations of the FORM analysis that may poorly approximate the failure domain. This is due to the limit state function g which has a non-linear and too irregular shape in the frequency band [START_REF] Genender | Combination of the failure probability with a random angle of incidence of the radiated interference[END_REF][START_REF] Ditlevsen | Structural reliability methods[END_REF][START_REF] Lemaire | Structural reliability[END_REF][START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF][START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF][START_REF] Breitung | Asymptotic approximations for multinormal integrals[END_REF]. Moreover, the approximation of the limit state function g established by SORM was sufficient in this case. However, if the number 4. Representation of the limit state function g with respect to the random vector X = {R 1 , R 2 } T in the physical space (a) and in the Gaussian space (b) obtained by 2,000 realizations from MCS. Realizations in the safe domain are in blue and those in the failure domain are in magenta. The red realization is the evaluation of g for the variables mean value and the green realization is the design point ξ * at which the FORM hyperplane (in black) is determined. of input random variables increases again, SORM could also be insufficient to approximate the failure probability P f . In order to overcome possible difficulties of FORM and SORM, the approaches by IS and SS introduced in Sections II-C.2 and II-E.1, which are more robust with regard to the complexity of the problem, will be used in the following analysis.

C. Susceptibility of a device connected to wire n • 2

The first part of Section III was devoted to the estimation of extreme values probability of the induced current I 2 (Lg). However, an EMC engineer aims at estimating the probability of having an immunity problem of the connected device whose input impedance is R 4 . A failure pdf of the device is supposed to be known. The following part describes a procedure to compute the probability of having a failure for the device.

1) Integration of failure device in the crosstalk problem:

In the crosstalk study considered, rather than choosing the load R 4 as a random variable, we fixed R 4 to 10 Ω. Indeed, R 4 has been chosen in this way to represent a set of devices (having a known impedance) manufactured under the same conditions and connected at the end of a cable. Since each device may differ from each other owing to manufacturing conditions, each of them has its own probability of failure and therefore the set of devices can be represented by a failure pdf (provided from experiments or theoretical analysis).

Starting from the knowledge of the failure probability of the device, the purpose of the study becomes now to estimate the probability of failure P f,sys of a system defined as: the probability of having a device failure D f d if the maximum of the induced current computed in the frequency band ∆f = [5-10 MHz] reaches this threshold value. In terms of probabilities, this means to estimate the following quantity: For the only purpose of illustration, an histogram of max ∆f I 2 (Lg) has been built up from 10,000 realizations from MCS. It is shown in blue in Fig. 7. The probability of having a device failure P (D f d ) is supposed to follow a Gaussian distribution with a mean of 80 mA and a standard deviation of 6 mA. The corresponding pdf appears in red in Fig. 7. Two cases may occur. In the first case, no intersection takes place between the upper values of the histogram of max ∆f I 2 (Lg) and the lower values of currents for which P (D f d ) is significant. In this case, P f,sys may be considered to be zero and the device is reliable with a very high level of probability. Curves of Fig. 7 figure out the opposite situation. Since the two curves overlap, P f,sys given by (16) will be significantly different from zero.

P f,sys = P D f d | max ∆f I 2 (Lg) • P max ∆f I 2 (Lg) , (16)
2) Computation of the failure probability of the EMC system: The failure probability P f,sys of the EMC system is computed in discretizing the device failure domain (the filled area under the failure pdf) as:

P f,sys ≈ N i=1 P(D f d | max ∆f I 2 (Lg)) ∈ [I 2min + (i -1) • ∆ i , I 2min + i • ∆ i ] • P(max ∆f I 2 (Lg) ≥ I 2min + i • ∆ i ) -P(max ∆f I 2 (Lg) ≥ I 2min + (i -1) • ∆ i ) .
(17) I 2min corresponds to the lower limit of the current below which P (D f d ) is negligible. We select I 2min to be about three times the standard deviation below the mean, i.e. I 2min = 60 mA. The step ∆ i is chosen to be slightly below the standard deviation, as a trade-off between computation time and accuracy of estimation of P f,sys . The summation is stopped at N discrete intervals for which P(max ∆f I 2 (Lg) ≥ I 2min + N • ∆ i ) is negligible. For N intervals, one needs (N +1) estimation of P(max ∆f I 2 (Lg)) with FORM, SORM, IS or SS. Namely in the case of Fig. 7, N = 4 intervals are selected with I 2min = 60 mA, ∆ i = 5 mA. Thus, the upper evaluation is done for I 2 (Lg) = 80 mA, for which the probability to exceed such a value has been found negligible, e.g. 7.9 • 10 -4 ± 71% by SS.

The failure probability P f,sys computed by FORM, SORM, IS and SS as well as their number of calls to the model n sys are listed in Table I. The total failure 3) Sensitivity of the failure probability P f,sys of the EMC system: The failure probability P f,sys of the EMC system computed previously has been obtained around 2%. During the FORM analysis, we obtained the importance factors introduced in Section II-D.1. Thus, the importance factors on the failure probability for exceeding the threshold value I t = 60 mA (i.e. the lowest current value for which the system begins to be faulty) are R 1 = 95%, R 2 = 2% and R 3 = 2%. Other input variables are negligible. This shows that the input variable that an EMC engineer has to control to avoid that the system fails is the load R 1 . However, the importance factors do not give any information on the measures to be taken in order to avoid a possible failure of the system. In order to obtain this information, we need to exploit the elasticities of parameters introduced in Section II-D.2 thanks to FORM analysis for the threshold value I t = 60 mA. A representation of elasticities of the lower bound (the upper bound could have been chosen but it was less influential) of each input variable defined by bar plots appears in Fig. 8. For example, an increase of lower bounds R 1min = 1 Ω of the load R 1 and h 1min = 1.5 cm of the height h 1 of the wire n • 1 will cause a decrease of the failure probability P f,sys of the EMC system (here an increase of R 1min = 1 Ω will have more impact than h 1min = 1.5 cm since the bar plot is the largest). Inversely, an increase of lower bounds R 2min = 10 kΩ and R 3min = 10 kΩ will entail an increase of the failure probability P f,sys while the lower bounds h 2min = 1.5 cm (of the height h 2 ) and Lg min = 9.5 m (of the length Lg of the wires) are negligible. We now suppose that the system designer is able to specify a more restrictive lower bound for R 1 , increasing it from 1 Ω to 2 Ω. We recompute, in the same way, the failure probability P f,sys with the same random variables than previously but now the load R 1 is uniformly distributed between 2 Ω and 10 Ω. Once again, 10,000 evaluations of the maximum of the induced current I 2 (Lg) from MCS allowed to represent the failure probability P f,sys in Fig. 9. This failure probability P f,sys is represented by the filled area under the failure pdf of device. We notice that this filled area has been reduced compared to that of Fig. 7 (which corresponds to the case where R 1min = 1 Ω), we only need to use N=3 intervals.

The results of P f,sys obtained by reliability methods and their respective numbers of calls to the model n sys are listed in Table II. The failure probability results to less than P f,sys = 1% by reliability methods. Once again the results provided by SORM, IS and SS are close to the reference result obtained by 10,000 realizations from MCS. As an indication, the probability that the maximum of the induced current I 2 (Lg) exceeds 60 mA switch from 30% when R 1 was uniformly distributed between 1 Ω and 10 Ω, to 22% when R 1 is uniformly distributed between 2 Ω and 10 Ω. This shows the impact of a slight modification of the load R 1 . 

IV. Conclusion

In this work, we have proposed various reliability methods allowing to compute a probability of failure in an EMC context, i.e the probability that the induced current exceeds a threshold value by taking into account uncertainties on input parameters of a numerical model.

These methods at a low computational cost compared to Monte Carlo simulation, estimate rather well the probability of failure when we treat a simple problem (e.g. with two input random variables). However, when the problem becomes more complex with an increasing of the number of input random variables, classic methods such as FORM and SORM can fail in estimating a probability of failure (even if in this work, SORM still provided good approximations of the failure probability). This leads to use more efficient methods such as importance sampling (IS) and subset simulation (SS).

These tools of reliability analysis enable a quick estimation of risks starting from "vague" information on input parameters such as cable positions or input impedances, which is believed to be useful for EMC engineers.

Given the knowledge of the probability of failure of a device, we may provide the solution of the estimation problem of the risk of failure for the device, once the probability of exceeding current thresholds at its input is determined through reliability methods. Choosing a simple crosstalk problem enables performing Monte Carlo simulations with relatively low cost computations in order to provide reference results. The advantage of reliability methods should be more pronounced for more complex problems with high dimensions. This extension is the object of further work.

Fig. 1 .

 1 Fig. 1. Linearisation of the limit state function in FORM.

Fig. 2 .

 2 Fig. 2. Sampling concentrated around the design point ξ * .

Fig. 3 .

 3 Fig.3. Two wires above a PEC with the following uniform random variables: the loads R 1 , R 2 , R 3 , the heights h 1 , h 2 and the length Lg of the wires.

  Fig.4. Representation of the limit state function g with respect to the random vector X = {R 1 , R 2 } T in the physical space (a) and in the Gaussian space (b) obtained by 2,000 realizations from MCS. Realizations in the safe domain are in blue and those in the failure domain are in magenta. The red realization is the evaluation of g for the variables mean value and the green realization is the design point ξ * at which the FORM hyperplane (in black) is determined.

Fig. 5 .

 5 Fig. 5. Representation of the induced current I 2 (Lg) with respect to the frequency band [5-10 MHz] given by 10 realizations from MCS depending on the uniform random variables: the loads R 1 , R 2 , R 3 , the heights h 1 , h 2 and the length Lg of the wires.

Fig. 6 .

 6 Fig. 6. (a) Evaluation of the limit state function g with respect to the component random variable R 1 (among the six random variables) in the physical space (a) and in the space of the corresponding Gaussian random variable (b) obtained by 2,000 realizations from MCS. Realizations in the safe domain are in blue and those in the failure domain are in magenta. The red realization is the evaluation of g for the mean value of R 1 and the green realization is the component ξ * 1 of the design point ξ * at which the FORM hyperplane (in black) is determined.

Fig. 7 .

 7 Fig. 7. Histogram of the maximum induced current I 2 (Lg) in the frequency band [5 -10 MHz] (blue color) and Gaussian pdf of the device failure R 4 (red color). The filled area under the Gaussian pdf is the failure probability P f,sys of the system. R 1 is uniformly distributed between 1 Ω and 10 Ω.

Fig. 8 .

 8 Fig. 8. Elasticities of the lower bound of each input random variable calculated by FORM analysis for the threshold value It = 60 mA.

Fig. 9 .

 9 Fig. 9. Histogram of the maximum induced current I 2 (Lg) in the frequency band [5 -10 MHz] (blue color) and Gaussian pdf of the device failure R 4 (red color). The filled area under the Gaussian pdf is the failure probability P f,sys of the system. R 1 is uniformly distributed between 2 Ω and 10 Ω.

TABLE I

 I Comparison of Reliability Methods in[START_REF] Genender | Combination of the failure probability with a random angle of incidence of the radiated interference[END_REF][START_REF] Ditlevsen | Structural reliability methods[END_REF][START_REF] Lemaire | Structural reliability[END_REF][START_REF] Sudret | Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods[END_REF][START_REF] Zhang | Two improved algorithms for reliability analysis[END_REF][START_REF] Breitung | Asymptotic approximations for multinormal integrals[END_REF] when R 1 is Uniformly Distributed Between 1 Ω and 10 Ω We notice that the results provided by SORM, IS and SS are quite satisfactory as much as the difference between them and the reference result is very low. Numbers within brackets indicate the confidence interval determined from IS, SS and MCS estimations. On the other side, the reduction of the number of calls to the model is significant.

	FORM SORM	IS	SS	MCS
	P f,sys (%)	3.26	1.97	[1.67 -2.11]	[1.66 -2.36]	[2.00 -2.19]
	n sys	1113	135 a	1100	1800	10000
	a in addition to FORM.				
	probability of the EMC system computed by FORM is
	around 3.2% while those computed by SORM, IS and SS
	are around 2%. The number of calls to the model used
	by each method is respectively 1113, 135, 1100 and 1800.
	The results obtained are compared to the reference result
	obtained by 10,000 realizations from MCS, P f,sys,MCS =
	[2.00 -2.19%].					

TABLE II

 II Comparison of Reliability Methods in [5-10 MHz] when R 1 is Uniformly Distributed Between 2 Ω and 10 Ω

		FORM SORM	IS	SS	MCS
	P f,sys (%)	1.36	0.74	[0.67 -0.85]	[0.53 -0.94]	[0.73 -0.80]
	n sys	984	108 a	900	1558	10000

a in addition to FORM.
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Appendix

Probability of Failure Estimated from the Importance Sampling Technique

The probability of failure P f can be rewritten as:

where ½ D f is the indicator function of the failure domain taking the value 1 in the failure domain and 0 in the safe domain. The expression (18) can be reformulated as the expectation E ψ [•] with respect to the ISD ψ:

An estimator of P f is then provided by Monte Carlo simulation (see Fig. 2):

where the sample set {ξ (k) , k = 1, . . . , N } is now from the sampling density function ψ. It is also possible to provide an estimator of the variance of P f :