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Probability of EMC Failure and Sensitivity Analysis

with regard to Uncertain Variables by Reliability

Methods
Mourad Larbi, Philippe Besnier, Senior Member, IEEE and Bernard Pecqueux

Abstract— In this work, we use a statistical ap-
proach to treat a risk analysis of an EMC default.
This approach relies upon reliability methods from
probabilistic engineering mechanics. An estimation of a
probability of failure (i.e. probability that the induced
current by crosstalk causes a malfunction of a device
connected at the end of a cable) and a sensitivity
analysis of this probability of failure is carried out by
taking into account uncertainties on input parameters.
The reliability methods introduced in this work allow
to compute a probability of failure with a relative low
computational cost compared to Monte Carlo simula-
tion.

Index Terms— Electromagnetic susceptibility, trans-
mission line, uncertainty propagation, reliability prob-
lem, failure probability, sensitivity analysis.

I. Introduction

Since few years, many statistical approaches have been
introduced in EMC1. It becomes a rather natural approach
when dealing with physical phenomena that depends on
numerous uncertain variables conditioning the interference
levels. The development of these statistical techniques
in the EMC area allowed for example to estimate the
expectation and the standard deviation of an interest
response depending on various random variables [1]–[3].

Only few approaches deal with estimation of extreme
values in EMC [4]. However, it is a very relevant way to
look at risk analysis. A typical case would be a detection
of malfunction of a device connected to a wire end when
illuminated by an electromagnetic field [5].

Moreover, such a device may differ from one to another
due to manufacturing conditions. In this case, a set of de-
vices would be ideally represented by a probability density
function (pdf) of failure with regard to, for instance, the
level of current applied to its input. Thus, a reliability
analysis of an EMC system has to take into account the
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probability that the interfering current reaches a certain
value and the probability of having a device failure for the
specific current magnitude.

In this paper, we will first introduce the reliability analy-
sis tools (from the probabilistic mechanics [6], [7]) allowing
to estimate a failure probability denoted Pf defined as
the probability of exceeding a certain threshold value. We
will then provide factors indicating the sensitivity of this
failure probability with respect to input parameters of the
physical phenomenon. In Section III, we will apply these
tools to analyse the risk of an EMC default by taking into
account the uncertainty on input parameters influencing
levels of interference for a simple example of crosstalk in
a two wire transmission line.

II. Methods for reliability analysis

Due to the lack of knowledge regarding the input param-
eters of a set of equations, the analyst is constrained by
using a statistical modelling by means of random variables
describing the available information on the distribution
of input parameters. Thus, the response of a numerical
model (i.e. representing a physical phenomenon) becomes
also uncertain. The purpose of reliability analysis consists
in determining the probability of failure of a system and
in providing a hierarchization of the input parameters
(sensitivity analysis). This is based on the definition of
a limit state function that is now introduced [8].

A. The limit state function

Let a random vector X of size M (containing M random
variables, possibly correlated) describing the uncertainties
identified in model inputs. The assessment of the reliability
of a system relies on a limit state function g depending on
vector of input parameters X defined as:

g : RM −→ R

X −→ yS − M(X),
(1)

where M is the numerical simulation model used and yS
is a determined threshold. The limit state function g is
formulated as:

• Df = {x; g(x) ≤ 0} defines the failure domain of the
system;

• Ds = {x; g(x) > 0} defines the safe domain;
• ∂D = {x; g(x) = 0} is the limit state surface.
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We denote now by fX the joint pdf of random vector X,
the probability of failure Pf of the system is then written:

Pf = P(g(x) ≤ 0) =

∫

Df

fX(x) dx. (2)

In most cases, the integral defined in (2) has to be
resolved by means of numerical methods such as Monte
Carlo simulation (MCS). That requires numerous evalua-
tions of the limit state function g, and of the numerical
model M. To overcome this limitation, approximation
methods for reliability analysis [6] have been developed
to compute the probability of failure at a relative low
computational cost compared to MCS. These methods are
based on the identification of the so-called design point
which is now presented.

B. Transformation of the input variable space and identi-
fication of the design point

The principle of reliability methods is based on the
transformation of the reliability problem from the physical
space to the standard Gaussian space, in which reduced
centered Gaussian variables are uncorrelated.

To identify the design point, the first step consists in
rewriting the integral (2) in the standard Gaussian space
by using an isoprobabilistic transformation T : X −→ ξ.
Various transformations (e.g. Rosenblatt or Nataf trans-
formation [6], [7]) have been proposed for the probabilistic
transformation of physical input random variables. Rosen-
blatt transformation is applied when the joint probabi-
lity distribution is known (a rich information but rarely
available) while the Nataf transformation requires only
the knowledge of marginal distributions of input variables
and their correlations (a poor information but generally
available). Once the Rosenblatt or Nataf transformation
is applied, the obtained standard Gaussian random vari-
ables are transformed to uncorrelated standard Gaussian
random variables [7]. Thus, (2) is reformulated in the
uncorrelated Gaussian random variables space as follows:

Pf =

∫

g(T−1(ξ))≤0

φM (ξ) dξ =

∫

G(ξ)≤0

φM (ξ) dξ1 . . . dξM ,

(3)
where G(ξ) = g(T−1(ξ)) and φM is the standard multi-
normal pdf. This pdf is maximal at the origin and decays
exponentially with ‖ξ‖2. Thus the points having the most
significant contribution in the integral (3) are those of the
failure domain that are the nearest to the origin of the
standard Gaussian space.

The second step of the method is to identify the so-
called design point ξ∗ (or Most Probable Point (MPP) of
failure), which is the point of the failure domain nearest
to the origin in the standard Gaussian space. This point
is the solution of a constrained optimization problem:

P ∗ = ξ∗ = Arg min
ξ∈RM

{
‖ξ‖2 : G(ξ) ≤ 0

}
. (4)

Various algorithms can be used to solve the optimization
problem (4) such as the improved Hasofer-Lind-Rackwitz-
Fiessler (iHLRF) algorithm given in [9]. Having found the

Fig. 1. Linearisation of the limit state function in FORM.

design point ξ∗, the so-called Hasofer-Lind reliability index
β is defined as the distance of the design point to the origin
in the standard Gaussian space:

β = sign(G(0)) · ‖ξ∗‖, (5)

where sign(G(0)) is positive if 0 is in the safe domain and
negative otherwise.

Once the design point is obtained, the third step is to
perform Taylor series expansions of the limit state function
at this point. These techniques are now presented.

C. Computation of the failure probability from the design
point

1) Principle of FORM and SORM approximations: The
first order reliability method (FORM) performs a first-
order Taylor series expansion of the limit state function
G at the design point ξ

∗ for computing a first order
approximation of the failure probability. This means to
substitute the failure domain by the half space defined
by a tangent hyperplane to the limit state surface at the
design point ξ∗ (Fig. 1). The equation of the hyperplane
denoted by G̃ at the design point ξ∗ may be researched as
[8]:

G̃(ξ) = G(ξ∗) + ∇G(ξ∗)T · (ξ − ξ∗)

=
∇G(ξ∗)T

‖∇G(ξ∗)‖
· (ξ − ξ∗) = −αT · (ξ − ξ∗)

= β − αT · ξ = 0,

(6)

where (.)T denotes the transposition, and the components

of the unit vector α = −
∇G(ξ∗)

‖∇G(ξ∗)‖
are the direction

cosines of the gradient vector at the design point. More-
over, (6) has been obtained from G(ξ∗) = 0 since ξ∗ is on
the limit state surface ∂D and normalizing the limit state
function by ‖∇G(ξ∗)‖.

Thus, the first order approximation of Pf is written as
[8]:

Pf =

∫

G(ξ)≤0

φM (ξ) dξ ≈

∫

Hyp(ξ∗)

φM (ξ) dξ1 . . . dξM .

(7)
Starting from the premise that the Gaussian random
variables are uncorrelated, it is possible to demonstrate
that (7) is given by [6], [7]:

Pf ≈ Pf,FORM = Φ(−β), (8)
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where Φ is the cumulative distribution function (CDF) of
a unidimensional standard Gaussian random variable.

However, the approximation (7) may sometimes be
insufficient. Thus, the so-called second order reliability
methods (SORM) have been proposed to provide a sec-
ond order approximation of the probability of failure. It
consists in replacing the limit state surface by a quadratic
surface around the design point ξ∗. Two types of SORM
approximations are generally used: the so-called curvature-
fitting SORM [10] and the point-fitting SORM [11]. In this
paper, we only present the curvature-fitting SORM but
the reader can refer to [11] for a review of point-fitting
SORM. The idea of curvature-fitting SORM is based on
the computation of the Hessian matrix of the limit state
function at the design point ξ∗. After using a rotation of
the coordinate system in the standard Gaussian space (i.e.
v = R · ξ), the limit state function may be rewritten as
[8]:

G(ξ) ≈ β − vM +

M−1∑

i=1

1

2
κiv

2
i , (9)

where {κi, i = 1, . . . ,M − 1} stand for the curvature
of the approximate paraboloïd around the design point.
[10] has proposed the first formula to express the second
order approximation of the probability of failure, but [12]
improved it by the following:

Pf ≈ Pf,SORM = Φ(−β)

M−1∏

i=1

1√
1 −

φ(β)

Φ(−β)
κi

. (10)

The SORM approximation of the probability of failure
in (10) proposes to correct the term obtained by FORM
approximation in (8).

2) Importance sampling: The FORM-SORM approxi-
mations of the probability of failure Pf are obtained at
a low computational cost compared to MCS. Otherwise,
several drawbacks can be encountered when dealing with
complex problems such as:

• the design point ξ
∗ found after solving the optimiza-

tion problem (4) may have been incorrectly identified
(i.e. ξ∗ is a local minima instead of being a global
minima);

• the quality of approximations of the probability of
failure in (8) and (10) may not be sufficient.

To get over these limitations, a complementary ap-
proach called importance sampling (IS) has been intro-
duced [13]. Since the weight of Pf is mainly localized
around the design point ξ∗, the method consists in concen-
trating the sampling around this point (Fig. 2) by selecting
an importance sampling density (ISD) ψ [7]. In practice,
ψ can be selected as a M -dimensional reduced Gaussian
density function centered around the design point ξ∗, i.e.
ψ(ξ) = φM (ξ − ξ

∗). As shown in Appendix, this method
provides an estimation of the probability of failure.

Fig. 2. Sampling concentrated around the design point ξ∗.

D. Measurement of local sensitivity

Further information called importance factors may be
derived from FORM analysis introduced in Section II-C.1.
Their interest is to determine the weight of each input
random variable of the physical model on the probability of
failure. We therefore are interested by the influence of each
random variable on the failure of the system, measured by
the reliability index β at the design point ξ∗.

1) Sensitivity of the reliability index to the variables:
Starting from the linearised limit state function G̃ com-
puted by FORM in (6), we notice that the direction cosines
of α represent the sensitivity of the reliability index β to
the independent standard Gaussian variables as:

α =
∂β

∂ξ

∣∣∣∣
ξ∗

. (11)

Otherwise, the variance of the linearised limit state func-
tion G̃ is defined by:

Var
[
G̃
]

= αT · Cov [ξ, ξ] · α, (12)

since the standard Gaussian variables are independent.
Using the fact that Cov [ξ, ξ] = Var [ξ] = IM , where IM is
the identity matrix of size M , and since α is a unit vector,
the variance of G̃ becomes:

Var
[
G̃
]

=

M∑

i=1

α2
i = 1. (13)

This means that the importance factors α2
i represents the

proportion of the variance associated to the variable ξi.
When the physical input random variables X are inde-
pendent, each physical variable Xi is associated to each
standard Gaussian variable ξi. In this case, the coefficients
α2
i directly provide a measure of importance of each phys-

ical input random variable Xi. When the physical input
random variables are correlated, the importance vector γ
using the Jacobian of the probabilistic transformation T
has to be introduced [7].

2) Sensitivity of the reliability index to the distribution
parameters: Besides the sensitivity of the reliability index
β to each random variable, the sensitivity of β to the
distribution parameters (expectation, standard deviation,
...) can be derived. However, the obtained sensitivities by
deriving β with respect to the distribution parameters do
not enable an importance comparison between different
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distribution parameters. In order to bypass this problem,
a normalisation of sensitivities is carried out to get the
elasticities of parameters defined by:

ǫpiλ
=
piλ
β

∂β

∂piλ

∣∣∣∣
ξ∗

, (14)

where piλ is the λ-th distribution parameter of the variable
Xi, i = 1, . . . ,M . Note that once again, when the physical
input random variables Xi, i = 1, . . . ,M are correlated,
the Jacobian matrix of the probabilistic transformation
T must be introduced for computing the elasticities of
parameters (see [7] for further details).

E. Computation of the failure probability in large dimen-
sions

1) Subset simulation: In the reliability analysis, FORM,
SORM and IS are classic tools allowing the engineer to
solve the problem most of the time [8]. However, although
these techniques are relatively robust, when the complex-
ity of the problem increases (with for example a large
number of the uncertain input parameter) the construction
of a good ISD may be problematic [14]. Therefore, a new
simulation method called subset simulation (SS) has been
developed in [14] for estimating small failure probabilities
in high dimensions.

Supposing that the failure event Df is rare, the ap-
proach introduced in [14] consists in estimating the failure
probability Pf by introducing more frequent intermediate
conditional failure events Dfi

, i = 1, . . . , R called subsets
defined as Df1

⊃ Df2
⊃ . . . ⊃ DfR

= Df . The several
intermediate subsets are defined by Dfi

= {g(x) ≤ ti, i =
1, . . . , R} where the set of thresholds {ti, i = 1, . . . , R} is
a decreasing sequence with tR = 0. Thus, the failure pro-
bability Pf is given by definition of conditional probability
as follows:

Pf = P (Df ) = P (DfR
) = P

(
R⋂

i=1

Dfi

)

= P
(
DfR

| DfR−1

)
· P

(
R−1⋂

i=1

Dfi

)

= . . . = P (Df1
)
R∏

i=2

P
(
Dfi

| Dfi−1

)
.

(15)

The principle of the SS is to estimate the probability
of failure Pf by estimating the quantities P (Df1

) and the
conditional probabilities {P

(
Dfi

| Dfi−1

)
, i = 2, . . . , R}

[14]. The estimation of these quantities depends in practice
on the several subsets Dfi

, i = 1, . . . , R and their associ-
ated thresholds ti. The intermediate thresholds {ti, i =
1, . . . , R} should be chosen in order to get intermediate
conditional failure probabilities that are not too small to
be well estimated. A target probability value P cf has to
be chosen in practice (generally P cf ≈ 0.1 − 0.2 [14]).
The estimation of the first threshold t1 is carried out
by MCS where P (Df1

) = P cf . The following thresholds
{ti, i = 2, . . . , R} associated to the conditional failure

events {Dfi
| Dfi−1

}, i = 2, . . . , R are generated by
Markov Chains Monte Carlo (MCMC) based on a modified
Metropolis-Hastings (MMH) algorithm [14]. This tech-
nique is carried out until a negative threshold is obtained.
Once that step is achieved, this means that the searched
limit state surface {g(x) = 0} has been found (i.e. this
is the R-step and the negative threshold tR takes the
value 0). Finally the last conditional failure probability
{P
(
DfR

| DfR−1

)
} is estimated [14].

In the next section, we propose to use these reliability
analysis tools in the context of a simple crosstalk problem
in transmission lines.

III. Computation and sensitivity analysis of the
failure probability in a crosstalk problem

The results given in this section have been obtained by
the open-source toolbox FERUM 4.1 [15] (Finite Element
Reliability Using Matlabr), coupled to a computer code
based on the transmission line theory using the BLT2

equation formalism.

A. Presentation of the crosstalk configuration under study

In order to study the impact of uncertainties of input
parameters on electromagnetic interferences, we examined
an example of a two-wire lossless transmission line above
a PEC3 (Fig. 3). The two wires have the same length
denoted Lg. Wire n◦1 is located at a height denoted h1

above the PEC being fed by an electromotive force e = 1
V. Two loads denoted R1 and R2 are connected at the
ends of this wire. Wire n◦2 is placed at a height denoted
h2 above the PEC and is loaded by two resistances denoted
R3 and R4. We are interested in computing the induced
current at the opposite end of the wire n◦2, denoted
I2(Lg). It depends on the following random variables:

• R1 is a variable uniformly distributed between 1 Ω
and 10 Ω;

• R2 and R3 are variables uniformly distributed be-
tween 10 kΩ and 100 kΩ;

• h1 and h2 are uniform random variables between 1.5
cm and 2.5 cm and vary independently from each
other;

• Lg of the two-wire cable is a uniform random variable
between 9.5 m and 10.5 m.

Furthermore, R4 is set to 10 Ω, the distance d between
the two wires is set to 1 cm and the diameter of each wire
dm is 1 mm. The objective of the study is to estimate a
probability of failure Pf defined as the probability that the
maximum of the induced current evaluated in a predefined
frequency band ∆f exceeds a threshold denoted It: Pf =
P (max∆f I2(Lg) > It).

In order to deal with extreme current values, we have
chosen a frequency band for which wires are in resonance
state. The interest of such case study is to adopt the
point of view of an EMC engineer. At early design stage,

2Baum-Liu-Tesche
3Perfect Electric Conductor
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Fig. 3. Two wires above a PEC with the following uniform random
variables: the loads R1, R2, R3, the heights h1, h2 and the length Lg

of the wires.

one has a modest information on the input parameters of
the system such as cable positions or input impedances.
However, it is necessary to ensure that I2(Lg) does not
cause a malfunction of a device connected at the end of a
cable. Otherwise, one is interested by the precautions to
take on input parameters to avoid that the system fails.

B. Preliminary analysis of the performances of FORM

1) Illustration of FORM in a simple problem: To show
the performances of a FORM analysis, the crosstalk prob-
lem presented in Section III-A has been simplified. Indeed,
only resistances R1 and R2 (Fig. 3) have been considered
as random variables in this simplified problem with the
same probability distributions. All other random variables
of the initial configuration are fixed to their mean values:
R3 = 55 kΩ, h1 = h2 = 2 cm and Lg = 10 m.

The aim of this simplified crosstalk problem is to high-
light the good approximation of the failure probability
Pf established by FORM and SORM which relies upon
the approximation of the limit state function g. Thus, we
have selected an arbitrarily fixed threshold It = 73 mA,
and we computed Pf = P (max∆f I2(Lg) > It) by FORM
and SORM analysis. The failure probabilities Pf,FORM and
Pf,SORM are then compared to a reference result obtained
by 10,000 realizations from MCS, Pf,MCS = 0.049 ± 4%.
Note that 10,000 realizations were carried out to achieve
a trade-off between computation time and accuracy of
the estimation of Pf . Thus, the approximation of the
failure probability obtained by FORM is Pf,FORM = 0.069
using 106 calls to the computer code. To improve the
precision of the result obtained by FORM, we use a SORM
approximation which provides Pf,SORM = 0.049 using 5
additional calls to the computer code. Note that SORM
is carried out once the design point ξ

∗ was identified with
FORM. We notice that the results provided by FORM
and especially SORM are quite satisfactory in so far as
there is a little difference between them and those obtained
from a MCS with 10,000 realizations. In order to give a
representation of the approximation of the failure proba-
bility Pf computed by FORM analysis, we represented
2,000 realizations of g with respect to the loads R1 and
R2 in the physical space in Fig. 4(a) and in the Gaussian
space in Fig. 4(b). An illustration of the approximation of

the limit state function G by a tangent hyperplane at the
design point ξ∗ carried by FORM analysis in the Gaussian
space is also shown in Fig. 4(b). Thus, we see that the
tangent hyperplane (in black) established by FORM at the
design point ξ∗ (in green) separates the realizations of the
limit state function G which are in the failure domain (in
magenta) and those in the safe domain (in blue). The red
realization in Fig. 4(a) is the mean of the random vector
X = {R1, R2}T in the physical space which is transformed
to the origin of the Gaussian space in Fig. 4(b).

2) Illustration of FORM in the crosstalk configuration
under study: As shown above, FORM and SORM provide
a good approximation of the failure probability Pf when
the problem considered is very simple (i.e. with two
input random variables). Let us go back to the initial
configuration presented in Section III-A (with six input
random variables). First, it is interesting to observe the
behaviour of the induced current I2(Lg) in resonance
regime. Thus, a representation of the induced current
I2(Lg) in the frequency band [5-10 MHz] has been given
by 10 realizations from MCS in Fig. 5. We observe an
important variability of I2(Lg) by means of resonance
phenomena which appear around frequencies fn such as
fn = (2n+1)·c/4 ·Lg, where n ∈ N, Lg is the length of the
line and c is the speed of light. The first frequency resonant
of the line is 7.5 MHz. However, a particular pattern of the
curve is observed due to the combination of inductive and
capacitive coupling.

We want now to approximate the failure probability
Pf by FORM analysis with a threshold value It = 70
mA. Thus, the failure probability obtained by FORM is
Pf,FORM = 0.139 with 142 calls to the computer code.
In a second time, an approximation by SORM analysis
indicates Pf,SORM = 0.082 with 27 additional calls to
the computer code. The reference result, obtained by
10,000 realizations from MCS is Pf,MCS = 0.087 ± 3%.
In this case, we notice a significant gap between the result
provided by FORM and the reference result. This shows
the limitations of FORM analysis when the complexity
of the problem increases. In order to show again the
approximation of the limit state function g carried out
by FORM, 2,000 evaluations of the limit state function
g from MCS are represented on the axis of the random
load R1 in the physical space in Fig. 6(a). After using
the probabilistic transformation (from physical space to
Gaussian space), FORM performs an approximation of the
surface state limit by a tangent hyperplane (in black) at
the design point ξ∗ (in green) in Fig. 6(b). In this case,
we see for example on the axis of the Gaussian random
variable ξ1 that the realizations of g in the safe domain
(in blue) and those in the failure domain (in magenta)
are not very well separated. This allows to highlight
the limitations of the FORM analysis that may poorly
approximate the failure domain. This is due to the limit
state function g which has a non-linear and too irregular
shape in the frequency band [5-10 MHz]. Moreover, the
approximation of the limit state function g established by
SORM was sufficient in this case. However, if the number
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of input random variables increases again, SORM could
also be insufficient to approximate the failure probability
Pf . In order to overcome possible difficulties of FORM
and SORM, the approaches by IS and SS introduced in
Sections II-C.2 and II-E.1, which are more robust with
regard to the complexity of the problem, will be used in
the following analysis.

C. Susceptibility of a device connected to wire n◦2

The first part of Section III was devoted to the estima-
tion of extreme values probability of the induced current
I2(Lg). However, an EMC engineer aims at estimating
the probability of having an immunity problem of the
connected device whose input impedance is R4. A failure
pdf of the device is supposed to be known. The following
part describes a procedure to compute the probability of
having a failure for the device.

1) Integration of failure device in the crosstalk problem:
In the crosstalk study considered, rather than choosing
the load R4 as a random variable, we fixed R4 to 10 Ω.
Indeed, R4 has been chosen in this way to represent a
set of devices (having a known impedance) manufactured
under the same conditions and connected at the end of a
cable. Since each device may differ from each other owing
to manufacturing conditions, each of them has its own
probability of failure and therefore the set of devices can
be represented by a failure pdf (provided from experiments
or theoretical analysis).

Starting from the knowledge of the failure probability
of the device, the purpose of the study becomes now
to estimate the probability of failure Pf,sys of a system
defined as: the probability of having a device failure Dfd

if the maximum of the induced current computed in the
frequency band ∆f = [5-10 MHz] reaches this threshold
value. In terms of probabilities, this means to estimate
the following quantity:

Pf,sys = P

(
Dfd

| max
∆f

I2(Lg)

)
· P

(
max
∆f

I2(Lg)

)
, (16)
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Fig. 6. (a) Evaluation of the limit state function g with respect to the component random variable R1 (among the six random variables)
in the physical space (a) and in the space of the corresponding Gaussian random variable (b) obtained by 2,000 realizations from MCS.
Realizations in the safe domain are in blue and those in the failure domain are in magenta. The red realization is the evaluation of g for
the mean value of R1 and the green realization is the component ξ∗

1 of the design point ξ∗ at which the FORM hyperplane (in black) is
determined.

where P (Dfd
| max∆f I2(Lg)) denotes the conditional pro-

bability of Dfd
given max∆f I2(Lg).

For the only purpose of illustration, an histogram of
max∆f I2(Lg) has been built up from 10,000 realizations
from MCS. It is shown in blue in Fig. 7. The probability
of having a device failure P (Dfd

) is supposed to follow a
Gaussian distribution with a mean of 80 mA and a stand-
ard deviation of 6 mA. The corresponding pdf appears
in red in Fig. 7. Two cases may occur. In the first case,
no intersection takes place between the upper values of
the histogram of max∆f I2(Lg) and the lower values of
currents for which P (Dfd

) is significant. In this case, Pf,sys

may be considered to be zero and the device is reliable with
a very high level of probability. Curves of Fig. 7 figure out
the opposite situation. Since the two curves overlap, Pf,sys

given by (16) will be significantly different from zero.

2) Computation of the failure probability of the EMC
system: The failure probability Pf,sys of the EMC system
is computed in discretizing the device failure domain (the
filled area under the failure pdf) as:

Pf,sys ≈

N∑

i=1

[
P(Dfd

| max
∆f

I2(Lg)) ∈ [I2min
+ (i− 1) · ∆i,

I2min
+ i · ∆i]

]
·

[
P(max

∆f
I2(Lg) ≥ I2min

+ i · ∆i)

− P(max
∆f

I2(Lg) ≥ I2min
+ (i− 1) · ∆i)

]
.

(17)

I2min
corresponds to the lower limit of the current below

which P (Dfd
) is negligible. We select I2min

to be about
three times the standard deviation below the mean, i.e.
I2min

= 60 mA. The step ∆i is chosen to be slightly
below the standard deviation, as a trade-off between com-
putation time and accuracy of estimation of Pf,sys. The

Fig. 7. Histogram of the maximum induced current I2(Lg) in the
frequency band [5 − 10 MHz] (blue color) and Gaussian pdf of the
device failure R4 (red color). The filled area under the Gaussian
pdf is the failure probability Pf,sys of the system. R1 is uniformly
distributed between 1 Ω and 10 Ω.

summation is stopped at N discrete intervals for which
P(max∆f I2(Lg) ≥ I2min

+ N · ∆i) is negligible. For N
intervals, one needs (N+1) estimation of P(max∆f I2(Lg))
with FORM, SORM, IS or SS. Namely in the case of Fig.
7, N = 4 intervals are selected with I2min

= 60 mA, ∆i = 5
mA. Thus, the upper evaluation is done for I2(Lg) = 80
mA, for which the probability to exceed such a value has
been found negligible, e.g. 7.9 · 10−4 ± 71% by SS.

The failure probability Pf,sys computed by FORM,
SORM, IS and SS as well as their number of calls to
the model nsys are listed in Table I. The total failure
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TABLE I

Comparison of Reliability Methods in [5-10 MHz] when R1

is Uniformly Distributed Between 1 Ω and 10 Ω

FORM SORM IS SS MCS

Pf,sys (%) 3.26 1.97
[1.67 -
2.11]

[1.66 -
2.36]

[2.00 -
2.19]

nsys 1113 135a 1100 1800 10000

a
in addition to FORM.

probability of the EMC system computed by FORM is
around 3.2% while those computed by SORM, IS and SS
are around 2%. The number of calls to the model used
by each method is respectively 1113, 135, 1100 and 1800.
The results obtained are compared to the reference result
obtained by 10,000 realizations from MCS, Pf,sys,MCS =
[2.00 − 2.19%]. We notice that the results provided by
SORM, IS and SS are quite satisfactory as much as
the difference between them and the reference result is
very low. Numbers within brackets indicate the confidence
interval determined from IS, SS and MCS estimations. On
the other side, the reduction of the number of calls to the
model is significant.

3) Sensitivity of the failure probability Pf,sys of the EMC
system: The failure probability Pf,sys of the EMC sys-
tem computed previously has been obtained around 2%.
During the FORM analysis, we obtained the importance
factors introduced in Section II-D.1. Thus, the importance
factors on the failure probability for exceeding the thresh-
old value It = 60 mA (i.e. the lowest current value for
which the system begins to be faulty) are R1 = 95%,
R2 = 2% and R3 = 2%. Other input variables are
negligible. This shows that the input variable that an
EMC engineer has to control to avoid that the system
fails is the load R1. However, the importance factors do
not give any information on the measures to be taken in
order to avoid a possible failure of the system. In order to
obtain this information, we need to exploit the elasticities
of parameters introduced in Section II-D.2 thanks to
FORM analysis for the threshold value It = 60 mA. A
representation of elasticities of the lower bound (the upper
bound could have been chosen but it was less influential)
of each input variable defined by bar plots appears in Fig.
8. For example, an increase of lower bounds R1min

= 1 Ω
of the load R1 and h1min

= 1.5 cm of the height h1 of the
wire n◦1 will cause a decrease of the failure probability
Pf,sys of the EMC system (here an increase of R1min

= 1 Ω
will have more impact than h1min

= 1.5 cm since the bar
plot is the largest). Inversely, an increase of lower bounds
R2min

= 10 kΩ and R3min
= 10 kΩ will entail an increase

of the failure probability Pf,sys while the lower bounds
h2min

= 1.5 cm (of the height h2) and Lgmin = 9.5 m
(of the length Lg of the wires) are negligible. We now
suppose that the system designer is able to specify a
more restrictive lower bound for R1, increasing it from
1 Ω to 2 Ω. We recompute, in the same way, the failure
probability Pf,sys with the same random variables than
previously but now the load R1 is uniformly distributed

R1_min R2_min R3_min h1_min h2_min Lg_min
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ǫ

Fig. 8. Elasticities of the lower bound of each input random variable
calculated by FORM analysis for the threshold value It = 60 mA.

Fig. 9. Histogram of the maximum induced current I2(Lg) in the
frequency band [5 − 10 MHz] (blue color) and Gaussian pdf of the
device failure R4 (red color). The filled area under the Gaussian
pdf is the failure probability Pf,sys of the system. R1 is uniformly
distributed between 2 Ω and 10 Ω.

between 2 Ω and 10 Ω. Once again, 10,000 evaluations of
the maximum of the induced current I2(Lg) from MCS
allowed to represent the failure probability Pf,sys in Fig.
9. This failure probability Pf,sys is represented by the filled
area under the failure pdf of device. We notice that this
filled area has been reduced compared to that of Fig. 7
(which corresponds to the case where R1min

= 1 Ω), we
only need to use N=3 intervals.

The results of Pf,sys obtained by reliability methods and
their respective numbers of calls to the model nsys are
listed in Table II. The failure probability results to less
than Pf,sys = 1% by reliability methods. Once again the
results provided by SORM, IS and SS are close to the
reference result obtained by 10,000 realizations from MCS.
As an indication, the probability that the maximum of the
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induced current I2(Lg) exceeds 60 mA switch from 30%
when R1 was uniformly distributed between 1 Ω and 10 Ω,
to 22% when R1 is uniformly distributed between 2 Ω and
10 Ω. This shows the impact of a slight modification of the
load R1.

TABLE II

Comparison of Reliability Methods in [5-10 MHz] when R1

is Uniformly Distributed Between 2 Ω and 10 Ω

FORM SORM IS SS MCS

Pf,sys (%) 1.36 0.74
[0.67 -
0.85]

[0.53 -
0.94]

[0.73 -
0.80]

nsys 984 108a 900 1558 10000

a
in addition to FORM.

IV. Conclusion

In this work, we have proposed various reliability meth-
ods allowing to compute a probability of failure in an
EMC context, i.e the probability that the induced current
exceeds a threshold value by taking into account uncer-
tainties on input parameters of a numerical model.

These methods at a low computational cost compared
to Monte Carlo simulation, estimate rather well the pro-
bability of failure when we treat a simple problem (e.g.
with two input random variables). However, when the
problem becomes more complex with an increasing of the
number of input random variables, classic methods such
as FORM and SORM can fail in estimating a probability
of failure (even if in this work, SORM still provided good
approximations of the failure probability). This leads to
use more efficient methods such as importance sampling
(IS) and subset simulation (SS).

These tools of reliability analysis enable a quick estima-
tion of risks starting from “vague” information on input
parameters such as cable positions or input impedances,
which is believed to be useful for EMC engineers.

Given the knowledge of the probability of failure of a
device, we may provide the solution of the estimation
problem of the risk of failure for the device, once the
probability of exceeding current thresholds at its input
is determined through reliability methods. Choosing a
simple crosstalk problem enables performing Monte Carlo
simulations with relatively low cost computations in order
to provide reference results. The advantage of reliability
methods should be more pronounced for more complex
problems with high dimensions. This extension is the
object of further work.
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Appendix
Probability of Failure Estimated from the

Importance Sampling Technique

The probability of failure Pf can be rewritten as:

Pf =

∫

RM

1Df
φM (ξ) dξ

=

∫

RM

1Df

φM (ξ)

ψ(ξ)
ψ(ξ) dξ,

(18)

where 1Df
is the indicator function of the failure domain

taking the value 1 in the failure domain and 0 in the safe
domain. The expression (18) can be reformulated as the
expectation Eψ [·] with respect to the ISD ψ:

Pf = Eψ

[
1Df

φM (ξ)

ψ(ξ)

]
. (19)

An estimator of Pf is then provided by Monte Carlo
simulation (see Fig. 2):

Pf,IS =
1

N

N∑

k=1

1

(k)
Df

φM (ξ(k))

ψ(ξ(k))
, (20)

where the sample set {ξ(k), k = 1, . . . , N} is now from the
sampling density function ψ. It is also possible to provide
an estimator of the variance of Pf :

V̂ar[Pf,IS] ≈
1

N − 1


 1

N

N∑

k=1



1

(k)
Df

(
φM (ξ(k))

ψ(ξ(k))

)2

− P 2

f,IS


 .

(21)
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