Laurent Bétermin 
  
Bravais Lattices

Keywords: AMS Classification: Primary 82B20, Secondary 52C15, 35Q40 Lattice energy, Theta functions, Triangular lattice, Crystallization, Interaction potentials, Lennard-Jones potential, Yukawa potential, Completely monotonic functions, Ground state

la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction and statement of the main results

The two-dimensional crystallization phenomenon -that is to say the formation of periodic structures in matter, most of the time at very low temperatures, -is well known and observed. For instance, similarly to [START_REF] Nosenko | Nonlinear Interaction of Compressional Waves in a 2D Dusty Plasma Crystal[END_REF], the following may be mentioned : Langmuir monolayers, Wigner crystal1 , rare gas atoms adsorbed on graphite, colloidal suspensions, dusty plasma and, from another point of view, vortices in superconductors. In all these cases, particle interactions are complex (quantum effects, kinetic energy, forces related to the environment) and this implies that the physical and mathematical understanding of this kind of problem is highly complicated. However, we would like to know the precise mechanisms that favour the emergence of these periodic structures in order to predict crystal shapes or to build new materials.

Semiempirical model potential with experimentally determined parameters are widely used in various physical and chemical problems, and for instance in Monte Carlo simulation studies of clusters and condensed matter. A widespread model is the radial potential, also called "two-body potential", which corresponds to interaction only depending on distances between particles. This kind of potential, based on approximations, seems to be effective to show the behaviour of matter at very low temperature, when potential energy dominates the others. There are many examples, that can be found in [START_REF] Kaplan | Intermolecular Interactions : Physical Picture, Computational Methods, Model Potentials[END_REF], but they are usually constructed, except for very simple models such as Hard-sphere, with inverse power laws and exponential functions, easily calculated with a computer if we consider a very large number of particles. For instance we can cite :

• the Lennard-Jones potential r → a 2 r x 2 -a 1 r x 1 , where the attractive term corresponds to the dispersion dipole-dipole (van der Waals : ∼ r -6 ) interaction, initially proposed by Lennard-Jones in [START_REF] Lennard-Jones | The Determination of Molecular Fields II. From the Equation of State of a Gas[END_REF] to study the thermodynamic properties of rare gases and now widely used to study various systems, the best know being for (x 1 , x 2 ) = (6, 12);

• the Buckingham potential r → a 1 e -αra 2 r 6 -a 3 r 8 proposed by Buckingham in [START_REF] Buckingham | The Classical Equation of State of Gaseous Helium, Neon and Argon[END_REF] and including attractive terms due to the dispersion dipole-dipole (∼ r -6 ) and dipole-quadrupole (∼ r -8 ) interactions, and repulsive terms approximated by an exponential function;

• the purely repulsive screened Coulomb potential r → a e -br r , also called "Yukawa potential", proposed by Bohr in [START_REF] Bohr | The Penetration of Atomic Particles Through Matter[END_REF] for short atom-atom distances and used for describing interactions in colloidal suspensions, dusty plasmas and Thomas-Fermi model for solids [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF][START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF];

• the Born-Mayer potential r → ae -br used by Born and Mayer in [START_REF] Born | Zur Gittertheorie der Ionenkristalle[END_REF] in their study of the properties of ionic crystals in order to describe the repulsion of closed shells of ions.

Many mathematical works 2 were conducted with various assumptions on particles interaction : hard sphere potentials [START_REF] Heitmann | The Ground State for Sticky Disks[END_REF][START_REF] Radin | The Ground State for Soft Disks[END_REF]; oscillating potentials [START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF]; radial (parametrized or not) potentials [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF][START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF][START_REF] Li | On the Crystallization of 2D Hexagonal Lattices[END_REF][START_REF] Yeung | Minimizing Atomic Configurations of Short Range Pair Potentials in Two Dimensions: Crystallization in the Wulff Shape[END_REF]; molecular simulations with radial potentials [START_REF] Marcotte | Unusual Ground States via Monotonic Convex Pair Potentials[END_REF][START_REF] Rechtsman | Optimized Interactions for Targeted Self-Assembly: Application to a Honeycomb Lattice[END_REF][START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF]; three-body (radial and angle parts) potentials [START_REF] Mainini | Finite Crystallization in the Square Lattice[END_REF][START_REF] Mainini | Crystallization in Carbon Nanostructures[END_REF][START_REF] Mainini | Crystalline and Isoperimetric Square Configurations[END_REF]; radial potentials and crystallization among Bravais lattices (Number Theory results and applications) [START_REF] Ennola | A Lemma about the Epstein Zeta-Function[END_REF][START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF][START_REF] Cassels | On a Problem of Rankin about the Epstein Zeta-Function[END_REF][START_REF] Osgood | Extremals of Determinants of Laplacians[END_REF][START_REF] Gruber | Application of an Idea of Voronoi to Lattice Zeta Functions[END_REF][START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF][START_REF] Coulangeon | Spherical Designs and Zeta Functions of Lattices[END_REF][START_REF] Coulangeon | Spherical Designs and Heights of Euclidean Lattices[END_REF][START_REF] Sarnak | Minima of Epstein's Zeta Function and Heights of Flat Tori[END_REF][START_REF] Montgomery | Minimal Theta Functions[END_REF][START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]; vortices, in superconductors, among Bravais lattice configurations [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Zhang | On the Minimizer of Renormalized Energy related to Ginzburg-Landau Model[END_REF][START_REF] Bétermin | Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere[END_REF]. Writing these problems in terms of energy minimization is common to all these studies. Furthermore, in many cases, triangular lattices (also called "Abrikosov lattices" in Ginzburg-Landau theory [START_REF] Abrikosov | The Magnetic Properties of Superconducting Alloys[END_REF], or sometimes "hexagonal lattices"), which achieves the best-packing configuration in two dimensions, is a minimizer for the corresponding energy.

Fig. 1 : Triangular lattice

A clue to understanding this optimality, which is claimed in [14, p. 139]3 , is the fact that triangular lattice minimizes, among Bravais lattices, at fixed density, energies

L → E f [L] := p∈L\{0} f ( p 2 )
where . denotes Euclidean norm in R 2 and f : R * + → R is a completely monotonic function, i.e. ∀k ∈ N, ∀r ∈ R * + , (-1) k f (k) (r) ≥ 0. Moreover, Cohn and Kumar conjectured, in [14, Conjecture 9.4], that the triangular lattice seems to minimize energies E f among complex lattices, i.e. union of Bravais lattices, with a fixed density. Hence, it is not surprising, as for the Lennard-Jones potential we studied in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], that some non-convex sums of completely monotonic functions give triangular minimizer for their energies at high fixed density. We observed this behaviour in works of Torquato et al. [START_REF] Marcotte | Unusual Ground States via Monotonic Convex Pair Potentials[END_REF][START_REF] Rechtsman | Optimized Interactions for Targeted Self-Assembly: Application to a Honeycomb Lattice[END_REF]. However, it is important to distinguish mathematical results and physical consistency. Indeed, at very high density i.e. when particles are sufficiently close, kinetic and quantum effects cannot be ignored and our model fails. For instance, Wigner crystal appears if the density is sufficiently low and matter obviously cannot be too condensed. Nevertheless, this kind of result is interesting, whether in Number Theory or in Mathematical Physics and this study of energy among Bravais lattices is the first important step in the search for global ground state, i.e. minimizer among all configurations. For instance, we have recently found in [START_REF] Bétermin | Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere[END_REF] a deep connexion between behaviour of vortices in the Ginzburg-Landau theory, and more precisely works of Sandier and Serfaty [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2D Coulomb Gases and the Renormalized Energy[END_REF][START_REF] Serfaty | Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies[END_REF], and optimal logarithmic energy on the unit sphere related to Smale 7th Problem. Thus the optimality of triangular lattice, among Bravais lattices, for a renormalized energy W , which is a kind of Coulomb energy between points in the whole plane, gives important information about optimal asymptotic expansion of spherical logarithmic energy thanks to works by Saff et al. [START_REF] Rakhmanov | Minimal Discrete Energy on the Sphere[END_REF][START_REF] Brauchart | The Next-Order Term for Optimal Riesz and Logarithmic Energy Asymptotics on the Sphere[END_REF]. The aim of this paper is to prove this minimality of triangular lattice at high density, with the same strategy as in our previous work [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], that is to say the use of Montgomery result [START_REF] Montgomery | Minimal Theta Functions[END_REF] about optimality of triangular lattice at a fixed density for theta functions

L → θ L (α) := p∈L\{0} e -2πα p 2 ,
for some general admissible4 potentials f , summable on lattices and such that their inverse Laplace transform µ f exists on [0, +∞). Hence, as in the classical "Riemann's trick" that we used in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], we can write an integral representation of energy E f which we deduce a sufficient condition for minimality of triangular lattice among Bravais lattices of fixed density 5 . This is precisely the aim of our first main theorem, which we now state.

Theorem 1.1. For any admissible potential f , for any A > 0 and any Bravais lattice L of area A, there exists a constant C A , which not depends on L, such that

E f [L] = π A +∞ 1 θ L y 2A -1 y -1 µ f π yA + µ f πy A dy + C A (1.1)
where µ f is the inverse Laplace transform of f . Moreover, if

y -1 µ f π yA + µ f πy A ≥ 0 a.e. on [1, +∞) (1.2)
then the triangular lattice of area A, i.e.

Λ A = 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3/2) , is the unique minimizer of L → E f [L],
up to rotation, among Bravais lattices of fixed area A.

Sufficient condition (1.2) can be applied for some general functions f . More precisely we will consider the following potentials6 , defined for r > 0, which we will explain the interest throughout the paper :

• Sums of screened coulombian potentials :

ϕ a,x (r) = n i=1 a i e -x i r r , with 0 < x 1 < x 2 ... < x n , a i ∈ R * for all 1 ≤ i ≤ n and n i=1 a i ≥ 0;
• Sums of inverse power laws :

V a,x (r) = n i=1 a i r x i , with 1 < x 1 < x 2 < ... < x n , a i ∈ R * for all 1 ≤ i ≤ n and a n > 0;
• Potentials with exponential decay :

f a,x,b,t (r) = V a,x (r) + m i=1 b i e -t i √ r , with 3/2 < x 1 < x 2 < ... < x n , a i ∈ R * + for all 1 ≤ i ≤ n, a n > 0, b j , t j ∈ R * for all 1 ≤ j ≤ m.
Thus, even though our method is not optimal, we will give explicit area bounds in Propositions 5.1, 6.3, 6.10 and 7.2, with respect to potential parameters, above which minimizer is triangular and we give conditions on parameters, for potentials ϕ AR a,x and V LJ a,x in order to get a triangular global minimizer, i.e. without area constraint, in particular when the potential has a well. This is the aim of our second theorem.

Theorem 1.2. Let functions ϕ a,x , ϕ AR a,x , V a,x , V LJ a,x and f a,x,b,t be defined as before.

A. Minimality at high density. If f ∈ {ϕ a,x , V a,x , f a,x,b,t } then there exists A 0 > 0 such that for any 0 < A ≤ A 0 , Λ A is the unique minimizer, up to rotation, of L → E f [L] among Bravais lattices of fixed area A.

B. Global optimality without an area constraint. We have the following two cases 1. Let ϕ AR a,x be the attractive-repulsive potential defined by

ϕ AR a,x (r) = a 2 e -x 2 r r -a 1 e -x 1 r r ,
where 0 < a 1 < a 2 and 0 <

x 1 < x 2 . If a 1 , a 2 , x 1 , x 2 satisfy a 1 1 + x 1 x 2 π a 2 (1 + π) e 1- x 1 x 2 π ≥ 1 and a 1 (a 1 x 2 + x 1 (a 2 -a 1 )π) a 2 x 2 (a 1 + (a 2 -a 1 )π) e 1- x 1 x 2 a 2 a 1 -1 π ≥ 1, (1.3) then the minimizer of L → E ϕ AR a,x [L]
among all Bravais lattices is unique, up to rotation, and triangular. In particular it is true if a 2 = 2a 1 and x 1 ≤ 0.695x 2 .

2. Let V LJ a,x be the Lennard-Jones type potential defined by

V LJ a,x (r) = a 2 r x 2 - a 1 r x 1 , with 1 < x 1 < x 2 and (a 1 , a 2 ) ∈ (0, +∞) 2 . We set h(t) = π -t Γ(t)t. If h(x 2 ) ≤ h(x 1 ) then the minimizer L a,x of L → E V LJ a,x [L]
among all Bravais lattices is unique, up to rotation, and triangular. Moreover its area is

|L a,x | = a 2 x 2 ζ Λ 1 (2x 2 ) a 1 x 1 ζ Λ 1 (2x 1 ) 1 x 2 -x 1 .
In particular, it is true if (x 1 , x 2 ) ∈ {(1.5, 2); (1.5, 2.5); (1.5, 3); (2, 2.5); (2; 3)} 7 .

7 See Section 6.4 for numerical values.

We proceed as follows, we start below with some preliminaries where we recall Montgomery result about optimality of Λ A for theta functions θ L and we give the definition of admissible potential. Then we prove in Section 3 the optimality of Λ A for every A when f is completely monotonic and we give an example of strictly convex, decreasing and positive potential V such that Λ A is not a minimizer of E f for some A. Theorem 1.1 is proved in Section 4, with some general applications. Furthermore we discuss optimality and improvement of this method. Finally we prove our Theorem 1.2 in next sections where we present the interest, in molecular simulation, of studied potentials and we prove additional results. Throughout the paper, we give numerical results and examples.

Preliminaries

Bravais lattices, zeta functions and theta functions

We briefly recall our notations in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]. Throughout this paper, . will denote the Euclidean norm in R 2 . Let L = Zu ⊕ Zv be a Bravais lattice of R 2 , then by Engel's theorem (see [START_REF] Engel | Geometric Crystallography. An Axiomatic Introduction to Crystallography[END_REF]), we can choose u and v such that u ≤ v and ( u, v) ∈ π 3 , π 2 in order to obtain the unicity of the lattice, up to rotations and translations and the fact that the lattice is parametrized by its both first lengths u and v . We note

|L| = u ∧ v = u v |sin( u, v)| the area 8 of L which is in fact the area of its primitive cell. Let Λ A = 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3 
/2) be the triangular lattice of area A, then u is called the length of this lattice.

For real s > 2, the Epstein zeta function of a Bravais lattice L is defined by

ζ L (s) = p∈L * 1 p s .
where L * := L\{0}. As proved in [13, Proposition 10.5.5 and Proposition 10.5.7], we can write ζ L (s) in term of L-function or Hurwitz zeta-function. More precisely, for L = Z 2 and L = Λ 1 the triangular lattice of area 1, we have, for any s > 1, where Θ L is the Jacobi theta function of the lattice L defined for Im(z) > 0. Then, for any α > 0, Λ A is the unique minimizer of L → θ L (α), up to rotation, among Bravais lattices of area A.

ζ Z 2 (2s) = 4L -4 (s)ζ(s) = 4 -s+1 ζ(s) [ζ(s, 1/4) -ζ(s, 3/4)] , (2.1) 
ζ Λ 1 (2s) = 6 √ 3 2 s ζ(s)L -3 (s) = 6 √ 3 2 s 3 -s ζ(s) [ζ(s, 1/3) -ζ(s, 2/3)] , (2.2 
Remark 2.2. This result implies that the triangular lattice is the unique minimizer, up to rotation, of L → ζ L (s) among Bravais lattices with density fixed for any s > 2 which is also proved by Rankin in [START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF], Cassels in [START_REF] Cassels | On a Problem of Rankin about the Epstein Zeta-Function[END_REF], Ennola in [START_REF] Ennola | On a Problem about the Epstein Zeta-Function[END_REF] and Diananda in [START_REF] Diananda | Notes on Two Lemmas concerning the Epstein Zeta-Function[END_REF]. Montgomery deduced this fact by the famous "Riemann's trick" (see [START_REF] Terras | Harmonic Analysis on Symmetric Spaces and Applications[END_REF] or [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF] for a proof): for any If f is admissible, we define, for any Bravais lattice L of R 2 ,

L such that D = 1, for Re(s) > 1, ζ L (2s)Γ(s)(2π) -s = 1 s -1 - 1 s + ∞ 1 (θ L (α) -1)(α s + α 1-s ) dα α . ( 2 
E f [L] := p∈L * f ( p 2 )
which is the quadratic energy per point of lattice L created by potential f . Remark 2.4. As a consequence of [47, Theorem 5.17, Theorem 5.18], we get, by direct application of inversion integral formula :

• There exists an unique inverse Laplace transform µ f9 , which is continuous on (0, +∞);

• We have µ f (0) = 0.

Remark 2.5. This definition excludes two-dimensional Coulomb potential r →log r because all its quadratic energies are infinite. However we can define a renormalized energy as in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] or in [START_REF] Hardin | Periodic Discrete Energy for Long-Range Potentials[END_REF].

Completely monotonic functions

The class of completely monotonic functions is central in our work. Indeed, as we will see in Sec.

3, these functions have good properties for our problem of minimization among lattices with fixed area thanks to the Montgomery theorem 2.1.

Definition 2.2. A C ∞ function f : (0, +∞) → R + is said to be completely monotonic if, for any k ∈ N and any r > 0, (-1) k f (k) (r) ≥ 0.

Examples 2.6. We can find a lot of examples of completely monotonic functions in [START_REF] Miller | Completely Monotonic Functions[END_REF]. Here we give only some interesting classical admissible potentials f :

• V x (r) = r -x , x > 1; • V a,x (r) = n i=1 a i r -x i
where a i > 0 and x i > 1 for all i;

• f α (r) = e -ar α , a > 0, α ∈ (0, 1], see [41, Corollary 1];

• Modified Bessel function, i.e. one of the two solutions of r 2 y ′′ + ry ′ -(r 2 + ν 2 )y = 0 which goes to 0 at infinity, is

K ν (r) = +∞ 0 e -r cosh t cosh(νt)dt, ν ∈ R. Moreover, r → K ν ( √ r) is
also completely monotonic (despite we thought in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]).

• V SC (r) = e -a √ r √ r , a > 0; • ϕ a (r) = e -ar r , a > 0.
Remark 2.7. We remark that if r → f (r) is completely monotonic, it is not generally the case for r → f (r 2 ). For instance r → e -r is completely monotonic, but r → e -r 2 does not check this property.

Now we give the famous connection between completely monotonic function and Laplace transform due to Bernstein in [START_REF] Bernstein | Sur les Fonctions Absolument Monotones[END_REF].

Theorem 2.8. (Hausdorff-Bernstein-Widder Theorem) A function f : R * + → R is completely monotonic on R + if and only if it is the Laplace transform of a finite non-negative Borel measure µ on R + , i.e.

f (r) = L[µ](r) = +∞ 0 e -rt dµ(t).
Remark 2.9. If f is admissible and completely monotonic, then dµ(t) = µ f (t)dt and µ f (t) ≥ 0, a.e. on (0, +∞).

Remark 2.10. Actually Schoenberg proved in [START_REF] Schoenberg | Metric Spaces and Completely Monotone Functions[END_REF] that r → f (r) is completely monotonic if and only if r → f (r 2 ) is a positive definite function in R, i.e. for any N ∈ N\{0, 1}, any x 1 , ..., x N ∈ R and any c 1 , ..., c N ∈ R, we have

N i,j=1 c i c j f (|x i -x j | 2 ) ≥ 0
or, by Bochner Theorem (see [START_REF] Bochner | Monotone Funktionen, Stieltjes Integrale und Harmonische Analyse[END_REF]), if and only if r → f (r 2 ) is the Fourier transform of a positive finite Borel measure on R.

Positivity of Fourier transform of a radial potential is a key point in crystallization problems. Indeed Nijboer and Ventevogel proved in [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF] that it is a necessary condition for a periodic ground state (Bravais lattices) and Süto studied in his work [START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF] potentials f such that f (k) ≥ 0 and f (k) = 0 for any k > R 0 and proved some interesting crystallization results at high densities.

Unfortunately, as Likos explained in [START_REF] Likos | Going to Ground[END_REF], this kind of potential, oscillating and with inverse power law decay, seems to be difficult to achieve physically.

Actually it is more common to use Fourier transform in problems of minimization of lattice energy because we have the Poisson summation formula and the natural periodicity of sinus and cosinus. Furthermore, applications of classical formula allows to obtain some interesting results, as in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF]Proposition 9.3]. However we will show in Section 4 that inverse Laplace transform also seems well adapted to our problem and gives simple calculations. Indeed, Fourier methods as in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF][START_REF] Süto | Crystalline Ground States for Classical Particles[END_REF][START_REF] Süto | Ground State at High Density[END_REF] is good for more general minimization problems and our method is a better choice for minimization among Bravais lattices because of integral representation (1.1).

Cauchy's bound for positive root of a polynomial

In this part, we recall Cauchy's rule explained in [12, Note III, Scolie 3, page 388] for upper bound of polynomial's positive roots (see also [START_REF] Vigklas | Upper Bound on the Values of the Positive Roots of Polynomials[END_REF] for simple proof).

Theorem 2.11. (Cauchy's rule) Let P a polynomial of degree n > 0 defined by

P (X) = n i=0 α i X i , α n > 0 where α i < 0 for at least one i, 0 ≤ i ≤ n -1.
If λ is the number of negative coefficients, then an upper bound on the values of the positive roots of P is given by

M P = max i;α i <0 -λα i α n 1 n-i
Remark 2.12. This Theorem stays true for upper bound on the values of the positive zero of any function p defined by

p(y) = n i=1 α i y ν i , α n > 0
where 0 < ν 1 < ... < ν n are real numbers and we obtain

M p = max i;α i <0 -λα i α n 1 νn-ν i . (2.5)
This result will be useful for technical reasons in the following sections, because we will want positive zeros less than 1 to apply our sufficient condition inTheorem 1.1 and to prove Theorem 1.2.A.

Completely monotonic functions and optimality of Λ A

In this part we begin to state a simple fact connecting positivity of inverse Laplace transform and minimality among lattices at fixed area. Furthermore we will give an example of strictly convex, decreasing, positive potential for which there exists areas so that the triangular lattice is not a minimizer among Bravais lattices with fixed area.

Optimality at any density

The following proposition, claimed by Cohn and Kumar in [14, page 139], is a natural consequence of Montgomery and Hausdorff-Bernstein-Widder Theorems.

Proposition 3.1. Let f be an admissible potential. If f is completely monotonic then, for any A > 0, Λ A is the unique minimizer, up to rotation, of

L → E f [L] = p∈L * f ( p 2 )
among lattices of fixed area A.

Proof. As f is admissible, we can write,

f (r) = +∞ 0 e -rt µ f (t)dt
and it follows that

E f [L] = p∈L * f ( p 2 ) = p∈L * +∞ 0 e -t p 2 µ f (t)dt = +∞ 0 p∈L * e -t p 2 µ f (t)dt = +∞ 0 θ L t 2π -1 µ f (t)dt and E f [L] -E f [Λ A ] = +∞ 0 θ L t 2π -θ Λ A t 2π µ f (t)dt.
If f is completely monotonic, by Theorem 2.8, µ f (r) ≥ 0 for almost every r ∈ (0, +∞). Moreover, by Montgomery Theorem 2.1, for any t > 0 and any Bravais lattice L of area A,

θ L t 2π -θ Λ A t 2π ≥ 0, hence E f [L] ≥ E f [Λ A ]
for any L such that |L| = A and Λ A is the unique minimizer of the energy among Bravais lattices of fixed area A.

Remark 3.2. We can imagine that the reciprocal is true, i.e. if f is not completely monotonic, then there exists A 0 such that Λ A 0 is not a minimizer among Bravais lattices of area A 0 fixed. In next subsection will give an explicit example correlated with Marcotte, Stillinger and Torquato results in [START_REF] Marcotte | Unusual Ground States via Monotonic Convex Pair Potentials[END_REF] about the existence of unusual ground states with convex decreasing positive potential.

Examples 3.3. A direct consequence of this theorem is the minimality of triangular lattice among lattices for any fixed area for the following energies :

• E Vx [L] = ζ L (2x),
x > 1 is the first natural example given by Montgomery in [START_REF] Montgomery | Minimal Theta Functions[END_REF],

• E Va,x [L] = n i=1 a i ζ L (2x i )
where a i > 0 and x i > 1 for all i,

• E fα [L] = p∈L * e -a p 2α , α ∈ (0, 1], in particular E f 1/2 [L] = p∈L * e -a p , • E Kν ( √ .) [L] = p∈L * K ν ( p ) , ν ∈ R
which generalizes our study of lattice energy with potential K 0 in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF] in Thomas-Fermi model case;

• E V SC [L] =
p∈L * e -a p p , a > 0, which corresponds to lattice energy for screened Coulomb potential interaction and can explain formation of triangular Wigner crystal at low density [START_REF] Grimes | Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons[END_REF];

• E ϕa [L] =
p∈L * e -a p 2 p 2 , a > 0.

Repulsive potential and triangular lattice

In this section we give an example of stricly convex decreasing positive radial potential V so that, for some densities, a minimizer of E V among Bravais lattices of density fixed cannot be triangular. As Ventevogel and Nijboer proved in [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF], a convex decreasing positive potential allows to obtain, in one dimension and for any fixed density, a dilated of lattice Z as unique minimizer among all configurations. Thus the two-dimensional case is deeply different.

Let V (r) = 14 r 2 - 40 r 3 + 35 r 4 (3.1)
be the potential and

E V [L] = 14ζ L (4) -40ζ L (6) + 35ζ L (8)
the energy per point of a Bravais lattice L. • V is strictly positive, strictly decreasing and strictly convex on (0, +∞);

• There exists A 1 , A 2 such that Λ A is not a minimizer of E V among all Bravais lattices of area A ∈ (A 1 , A 2 ).
Proof. We have

V (r) = 14r 2 -40r + 35 r 4
and the discriminant of polynomial 14X 2 -40X +35 is ∆ 1 = -360 < 0, hence V (r) > 0 on (0, +∞). We compute

V ′ (r) = -4(7r 2 -30r + 35) r 5
and the discriminant of 7X 2 -30X + 35 is ∆ 2 = -80 < 0, therefore V ′ (r) < 0, i.e. V is strictly decreasing on (0, +∞). Moreover, we have

V ′′ (r) = 4(21r 2 -120r + 175) r 6
and the discriminant of 21X 2 -120X + 175 is ∆ 3 = -300 < 0, then V ′′ (r) > 0 on (0, +∞), i.e. V is strictly convex on (0, +∞).

For the second point, we have the following equivalences

E V [L] ≥ E V [Λ A ] for any |L| = A ⇐⇒ 14ζ L (4) -40ζ L (6) + 35ζ L (8) ≥ 14ζ Λ A (4) -40ζ Λ A (6) + 35ζ Λ A (8) ≥ 0 for any |L| = A ⇐⇒ 14 A 2 (ζ L (4) -ζ Λ 1 (4)) + 40 A 3 (ζ L (6) -ζ Λ 1 (6)) + 35 A 4 (ζ L (8) -ζ Λ 1 (8)) ≥ 0 for any |L| = 1 ⇐⇒ 14 (ζ L (4) -ζ Λ 1 (4)) A 2 -40 (ζ L (6) -ζ Λ 1 (6)) A + 35 (ζ L (8) -ζ Λ 1 (8)) ≥ 0 for any |L| = 1 ⇐⇒ P L (A) ≥ 0 for any |L| = 1 where the discriminant of P L (A) = 14 (ζ L (4) -ζ Λ 1 (4)) A 2 -40 (ζ L (6) -ζ Λ 1 (6)) A+35 (ζ L (8) -ζ Λ 1 (8)) is ∆(L) = 1600 (ζ L (6) -ζ Λ 1 (6)) 2 -1960 (ζ L (4) -ζ Λ 1 (4)) (ζ L (8) -ζ Λ 1 (8)) .
For L = Z 2 the square lattice of area 1, we obtain ∆(Z 2 ) ≈ 24.231435 > 0 then there exist two positive numbers A 1 and A 2 such that P Z 2 (A) < 0 for any A 1 < A < A 2 . Hence, Λ A is not a minimizer of E V among Bravais lattices with fixed area A if A 1 < A < A 2 . More precisely we get A 1 ≈ 2.3152307 and A 2 ≈ 3.759353.

Remark 3.5. It follows, from the previous proof, that function r → V (r 2 ) is also strictly positive, strictly decreasing and strictly convex on (0, +∞).

Remark 3.6. Actually, the previous proof implies that, for any

A ∈ (A 1 , A 2 ), E V [ √ AZ 2 ] < E V [Λ A ].
Moreover, this interval seems numerically to be optimal, i.e. for any A ∈ [A 1 , A 2 ], Λ A seems to be the unique minimizer, up to rotation, of L → E f [L] among Bravais lattices of fixed area A.

Sufficient condition and first applications

Now we study the case of non completely monotonic potential f , i.e. µ f is negative on a subset of (0, +∞) of positive Lebesgue measure.

Integral representation and sufficient condition : Proof of Theorem 1.1

Proof. Let L be a Bravais lattice of area A and f an admissible potential. Firstly we prove the integral representation 1.1 of energy E f [L] :

E f [L] := p∈L * f ( p 2 ) = π A +∞ 1 θ L y 2A -1 y -1 µ f π yA + µ f πy A dy + π A +∞ 1 µ f π yA (y -1 -y -2 )dy.
Indeed, for a Bravais lattice L of R 2 with |L| = 1/2, we have, as in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], by t = 2πu, u = y -1 and Montgomery's identity θ L (y -1 ) = yθ L (y) (proved in [START_REF] Montgomery | Minimal Theta Functions[END_REF]) :

E f [L] := p∈L * f ( p 2 ) = p∈L * +∞ 0 e -t p 2 µ f (t)dt = 2π p∈L * +∞ 0 e -2πu p 2 µ f (2πu)dt = 2π +∞ 0 [θ L (u) -1] µ f (2πu)du = 2π 1 0 [θ L (u) -1] µ f (2πu)du + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du = 2π +∞ 1 θ L (y -1 ) -1 µ f 2π y dy y 2 + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du = 2π +∞ 1 [yθ L (y) -1] µ f 2π y dy y 2 + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du = 2π +∞ 1 θ L (y)µ f 2π y dy y + 2π +∞ 1 [θ L (u) -1] µ f (2πu)du -2π +∞ 1 µ f 2π y dy y 2 = 2π +∞ 1 [θ L (y) -1] y -1 µ f 2π y + µ f (2πy) dy + 2π +∞ 1 µ f 2π y (y -1 -y -2 )dy
Now we have, by change of variable t = y -1 ,

+∞ 1 µ f 2π y (y -1 -y -2 )dy ≤ 1 0 |µ f (2πt)| (t -1 -1)dt < +∞
because µ f is continuous on R * + , µ f (0) = 0 and t → t -1 is integrable at the neighbourhood of 0. Hence, for L such that |L| = A, we have

E f [L] = p∈L * f ( p 2 ) = p∈ L * f (2A p 2 ) where L = √ 2A L, | L| = 1/2. By identities µ f (k.) = 1 k µ f . k and θ L(s) = θ L s 2A , we get E f [L] = π A +∞ 1 θ L y 2A -1 y -1 µ f π yA + µ f πy A dy + π A +∞ 1 µ f π yA (y -1 -y -2 )dy and C A := π A +∞ 1 µ f π yA (y -1 -y -2
) is a finite constant which not depends on L. Now our sufficient condition is clear because, for any Bravais lattice L of area A, we have

E f [L] -E f [Λ A ] = π A +∞ 1 θ L y 2A -θ Λ A y 2A g A (y)dy.
By Montgomery theorem, θ L (u)θ Λ A (u) ≥ 0 for any u ≥ 1 and any L. Thus, if

y -1 µ f π yA + µ f πy A ≥ 1 for a.e. y ≥ 1 then it follows that E f [L] -E f [Λ A ] ≥ 0
and Λ A is the unique minimizer of E f , up to rotation, among lattices of fixed area A.

Minimization at high density for differentiable inverse Laplace transform

In this part we give two results, in the case of differentiable inverse Laplace transform, which are based on our Theorem 1.1.

Proposition 4.1. Let f be an admissible potential such that

µ f is C 1 with derivative µ ′ f . If 1. µ f (y) ≥ 0 on π A , +∞ , 2. µ ′ f π A y ≥ 1 y 3 µ ′ f π Ay for any y ≥ 1,
then Λ A is the unique minimizer, of E f , up to rotation, among Bravais lattices of fixed area A.

Proof. We write, for any y ≥ 1,

g A (y) := y -1 µ f π yA + µ f πy A = u A (y) y with u A (y) := µ f π yA + yµ f πy A .
Therefore, we get

u ′ A (y) = µ f πy A + πy A µ ′ f π A y -y -3 µ ′ f π Ay .
Assumption 1. implies that µ f πy A ≥ 0 for any y ≥ 1. Moreover, it is clear that point 2. means that µ ′

f π A y -y -3 µ ′ f π
Ay ≥ 0 for any y ≥ 1, hence u ′ A (y) ≥ 0 for any y ≥ 1. As

u A (1) = 2µ f π A ≥ 0
we have u A (y) ≥ 0 for any y ≥ 1 and it follows that g A (y) ≥ 0 ∀y ≥ 1 and by Theorem 1.1, Λ A is the unique minimizer, up to rotation, of E f among Bravais lattices of fixed area A.

Corollary 4.2. If f is an admissible potential such that its inverse Laplace transform µ f is convex on (0, +∞), then there exists A 0 > 0 such that for any A ∈ (0, A 0 ), Λ A is the unique minimizer of E f , up to rotation, among Bravais lattices of fixed area A.

Proof. As µ f is convex, there exists r 0 > 0 such that, for any r ≥ r 0 , µ f (r) ≥ 0. Moreover, for any y ≥ 1,

µ ′ f π A y ≥ µ ′ f π Ay because π Ay ≤ πy A
and µ f is convex. Hence, as y -3 ≤ 1 for any y ≥ 1, we get both points 1. and 2. of Proposition 4.1 for any A such that 0 < A ≤ A 0 := π r 0 .

Remarks about our method

As we saw in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], for Lennard-Jones case, our method is not optimal to finding all areas such that Λ A is the unique minimizer, up to rotation, of E f among Bravais lattices of fixed area A. The general and difficult main problem is to find all A such that, for any Bravais lattice L of area A,

E f [L] -E f [Λ A ] = π A +∞ 1 θ L y 2A -θ Λ A y 2A g A (y)dy ≥ 0 where g A (y) := y -1 µ f π yA + µ f πy A
. We can imagine that even if g A is not positive almost everywhere on [1, +∞), the positive part of this integral can compensate the negative one. For instance, if we consider, as in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], f (r) = r -6 -2r -3 , then

g A (y) = π 2 A 2 π 3 A 3 5! (y 6 + y -5 ) -y 3 -y -2
and we plot graphs of y → π 3 A 3 5! (y 6 + y -5 )y 3y -2 for A = 0.8 (on the left) and A = 1 (on the right). Thus a fine study, with respect to lattices L and real y, of the behaviour of positive function

∆ L (y) := θ L y 2A -θ Λ A y 2A
is necessary. However we find it difficult at this time. Indeed, which would be not possible, because r → re -π A yr is never completely monotonic for y ≥ 1.

•

Hence comparing

y A 1 ∆ L (y)g A (y)dy and +∞ y A ∆ L (y)g A (y)dy seems difficult, even improving our method is possible (see [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF] for numerical values).

Sums of screened Coulomb potentials

In this part, we give the first simple example of application of Theorem 1.1. We consider non convex sums of screened Coulomb potentials and we prove minimality of Λ A at high density and global minimality of a triangular lattice among all Bravais lattices. As a proof of Theorem 1.2.A for this potential, we purpose to give an explicit bound for the minimality at high density as follows Proposition 5.1. Assume 0 < x 1 < ... < x n and let A such that

A ≤ min min k∈Ka π x k+1 - n i=1 a i k i=1 a i , π x n
then Λ A is the unique minimizer of E ϕa,x , up to rotation, among Bravais lattices of fixed area A.

Proof. We compute easily, because L -1 [r -1 e -x i r ](y) = 1 [x i ,+∞) (y) for any x i > 0 and any y ≥ 0,

µ ϕa,x (y) = n i=1 a i 1 [x i ,+∞) (y)
and it follows that, for any y ≥ 1,

g A (y) := 1 y n i=1 1 [x i ,+∞) π yA + n i=1 a i 1 [x i ,+∞) πy A = 1 y n i=1 a i 1 1, π Ax i (y) + n i=1 a i 1 Ax i π ,+∞ (y).
As, by assumption, A ≤ π x n , we have, for any 1

≤ i ≤ n -1, π Ax i ≥ π Ax i+1 ≥ 1.
Hence we get

g A (y) =                      (1 + y -1 ) n i=1 a i if 1 ≤ y ≤ π Axn k i=1 a i y + n i=1 a i if π Ax k+1 < y ≤ π Ax k , for any 1 ≤ k ≤ n -1 n i=1 a i if y > π Ax 1 .
As n i=1 a i ≥ 0 and, for any k ∈ K a , k i=1 a i ≥ 0, we obtain

∀y ∈ 1, π Ax n k ∈Ka π Ax k+1 , π Ax k ∪ π Ax 1 , +∞ , g A (y) ≥ 0. Now if k ∈ K a , as A ≤ min k∈Ka π x k+1 - n i=1 a i k i=1 a i , we get, for any y ∈ π Ax k+1 , π Ax k , k i=1 a i y + n i=1 a i ≥ Ax k+1 π k i=1 a i + n i=1 a i ≥ 0
and it follows that g A (y) ≥ 0 for any y ≥ 1. By Theorem 1.1, Λ A is the unique minimizer of E ϕa,x , up to rotation, among Bravais lattices of fixed area A.

Global minimality : Proof of Theorem 1.2.B.1

Now we focus on particular "attractive-repulsive" case

• a = (-a 1 , a 2 ) where 0 < a 1 < a 2 ;

• x = (x 1 , x 2 ) with 0 < x 1 < x 2 .
Therefore we define, for any y > 0,

ϕ AR a,x (r) := a 2 e -x 2 r r -a 1 e -x 1 r r .
Now, let us prove Theorem 1.2.B.1.

Proof. Firstly we study variations of ϕ x,a to prove the existence of global minimizer L a,x among all Bravais lattices and upper bound α a,x for its area. Afterward we prove that inequalities (1.3) are equivalent with

α a,x ≤ min π x 2 , π x 2 a 2 a 1 -1 .
Thus, by direct application of Theorem 5.1, if A ≤ min π x 2 , π x 2 a 2 a 1 -1 , Λ A is the unique minimizer among Bravais lattices of fixed area A, therefore L a,x is triangular and unique.

STEP 1 : Variations of function ϕ a,x

We have, for any r > 0,

ϕ ′ a,x (r) = 1 r 2 a 1 (1 + x 1 r)e -x 1 r -a 2 (1 + x 2 r)e -x 2 r
and it follows that

ϕ ′ a,x (r) ≥ 0 ⇐⇒ g a,x (r) := (x 2 -x 1 )r + ln(1 + x 1 r) -ln(1 + x 2 r) + ln a 1 a 2 ≥ 0.
As, for any r > 0,

g ′ a,x (r) = (x 2 -x 1 ) x 1 x 2 r 2 + (x 1 + x 2 )r (1 + x 1 r)(1 + x 2 r) > 0,
g a,x is an increasing function on (0, +∞). We have a 2 > a 1 , therefore ln a 1 a 2 < 0 and there exists α a,x such that ∀r ∈ (0, α a,x ], g a,x (r) ≤ 0, and ∀r > α a,x , g a,x (r) > 0.

Thus we get ϕ a,x is a decreasing function on (0, α a,x ] and an increasing function on (α a,x , +∞).

STEP 2 : The existence of global minimizer for E ϕa,x Variations of function ϕ a,x and the fact that lim r→0 r>0 ϕ a,x (r) = +∞ and goes to 0 at infinity implies that global minimizer exists. Indeed, this problem can be viewed like a minimization problem of a three variables function. By previous limits we can restrict this problem with variables in a compact set, and by continuity this problem has a solution L a,x . Moreover, if v a,x > √ α a,x then a contraction of Rv a,x also gives a lattice with less energy. Thus we have u a,x ≤ v a,x ≤ √ α a,x . Now, because |L a,x | ≤ u a,x v a,x , we get10 

|L a,x | ≤ α a,x . Now it is not difficult to check that ϕ ′ a,x π x 2 ≥ 0 ⇐⇒ a 1 1 + x 1 x 2 π a 2 (1 + π) e 1- x 1 x 2 π ≥ 1 and ϕ ′ a,x π x 2 a 2 a 1 -1 ≥ 0 ⇐⇒ a 1 (a 1 x 2 + x 1 (a 2 -a 1 )π) a 2 x 2 (a 1 + (a 2 -a 1 )π) e 1- x 1 x 2 a 2 a 1 -1 π ≥ 1 hence (5.
2) holds and L a,x is unique and triangular by Theorem 5.1 as explained at the beginning of the proof.

STEP 4 : Example

If we take a 2 = 2a 1 then a 1 (a 1 x 2 + x 1 (a 2 -a 1 )π) a 2 x 2 (a 1 + (a 2 -a 1 )π) e 1- x 1 x 2 a 2 a 1 -1 π = a 1 1 + x 1 x 2 π a 2 (1 + π) e 1- x 1 x 2 π = 1 2(1 + π) (1 + x 1 x 2 π)e 1- x 1 x 2 π .
Now we set X = x 1 x 2 π and our condition becomes

(1 + X) 2(1 + π) e -X+π ≥ 1, which is equivalent with g(X) := -X + log(1 + X) -log(2 + 2π) + π ≥ 0.
As g ′ (X) = -X 1+X ≥ 0 on R + , then g decreases and there exists X > 0 such that g( X) = 0. Numerically, we found X > 2.186, hence if X ≤ 2.186, which corresponds to

x 1 x 2 π ≤ 2.186, i.e. x 1 ≤ 2.186 π x 2 ≈ 0.695825x 2 , then g(X) ≥ 0. In particular, it is true if x 1 ≤ 0.695x 2 .
Example 5.2. For instance, we can choose (x 1 , x 2 ) = (1, 2). Thus, global minimizer of

L → E ϕa,x [L] = p∈L * ϕ a,x ( p 2 ) = 2a 1 p∈L * e -2 p 2 p 2 -a 1 p∈L * e -p 2 p 2
is unique, up to rotation, and triangular. Hence we can construct potential with arbitrary deep well (using parameter a 1 ) and with triangular global minimizer.

Fig. 4 :

Graph of r → ϕ a,x (r 2 ) = 2a 1 e -2r 2 r 2 -a 1 e -r 2 r 2 for a 1 ∈ {1, 6, 25}.
Remark 5.3. This kind of potential seems not to be used in molecular simulation but this prediction of triangular ground state could be observed in the future. Furthermore our Theorem 1.2.B.1 allows to better understand ground state for parametrized potential with repulsion at short distance and quick decay at large distance, as in [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF] where Theil proved global minimality of a triangular lattice among all configurations if the potential's well is sufficiently narrow, i.e. with repulsion and decay sufficiently strong.

Nonconvex sums of inverse power laws

In this part, we generalize our result in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], which tackled only the classical Lennard-Jones case, for any nonconvex sums of inverse power potentials, that is to say optimality of triangular lattice Λ A at for high densities and non-optimality of this one for low densities. Furthermore we show that our method allows to obtain global minimizer, i.e. minimizer among all Bravais lattices without constraint of area, of Lennard-Jones type energies with small parameters.

6.1 Definition and proof of Theorem 1.2.A for V a,x Definition 6.1. Let n ≥ 1 be an integer and, for a = (a 1 , ..., a n ) ∈ (R * ) n such that a n > 0, and

x = (x 1 , ..., x n ) ∈ (R + ) n such that 1 < x 1 < ... < x n , let V a,x (r) = n i=1 a i r x i .
We set I -:= {i; a i < 0}, I + := {i; a i > 0} and α i :=

a i π x i -1 Γ(x i )
. Moreover we assume that I -= ∅ (otherwise V a,x is completely monotonic).

Remark 6.1. In order to minimize E Va,x among lattices, we should assume a n > 0 because we have V a,x (r) ∼ a n r -xn as r → 0. Indeed we have V a,x (r) → +∞ as r → 0 and V a,x (r) → 0 as r → +∞ therefore there exists minimizer of E Va,x among Bravais lattices with fixed area. If

a n < 0, it is sufficient to do u → 0 to get E Va,x [L] → -∞. Example 6.
2. This kind of potential is widely used in molecular simulation. Indeed, besides Lennard-Jones potentials that we will study in the next subsection, it is sometimes necessary to consider some modifications of it. For instance, the (12 -6 -4) potential proposed by Mason and Schamp in [START_REF] Mason | Mobility of Gaseous lons in Weak Electric Fields 1[END_REF], defined by V (r) = a 3 r 12 -a 2 r 6 -a 1 r 4 , describes the interaction of ions with neutral systems. For instance, in fullerene C 60 , this potential describes interaction between a carbon atom in the polyatomic ion and a buffer gas helium atom. An other example, proposed by Klein and Hanley in [START_REF] Klein | m-6-8 Potential Function[END_REF][START_REF] Hanley | Application of the m-6-8 Potential to Simple Gases[END_REF] for description of rare gases, more precise than Lennard-Jones, is the potential defined, for m > 8, by

V (r) = a 3 r m - a 2 r 6 - a 1 r 8 .
As in previous section, we give an explicit bounds for the minimality of Λ A at high density in the following proposition.

Proposition 6.3. If we have

A ≤ π min i∈I - a n Γ(x i ) 2♯{I -}|a i |Γ(x n ) 1 xn-x i (6.1)
then Λ A is the unique minimizer of E Va,x , up to rotation, among Bravais lattices of fixed area A.

Proof. By usual formula, we have

µ Va,x (y) = n i=1 a i Γ(x i ) y x i -1
and it follows that

g A (y) := y -1 µ Va,x π yA + µ Va,x πy A = n i=1 α i A x i -1 (y -x i + y x i -1 ) = y -xn n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ).
We set

p a,x (y) := n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ).
We notice that the term of high order is αn A xn-1 y 2xn-1 with α n > 0 and the number of negative coefficients is 2♯{I -}. Thus, by Cauchy's rule 2.11 and more precisely generalization 2.5, an upper bound on the values of the positive zero of p a,x is

M pa,x := max i∈I - 2♯{I -}|α i |A xn-x i α n 1 xn-x i , 2♯{I -}|α i |A xn-x i α n 1 xn+x i -1 . because 2x n -1 -(x n -x i ) = x n + x i -1 and 2x n -1 -(x n + x i -1) = x n -x i . We notice that A ≤ π min i∈I - a n Γ(x i ) 2♯{I -}|a i |Γ(x n ) 1 xn-x i = min i∈I - α n 2♯{I -}|α i | 1 xn-x i ⇐⇒ A ≤ α n 2♯{I -}|α i | 1 xn-x i , ∀i ∈ I - ⇐⇒ 2A xn-x i ♯{I -}|α i | α n ≤ 1, ∀i ∈ I - ⇐⇒ M pa,x ≤ 1
therefore the assumption implies that the largest zero of p a,x is less than 1. As α n > 0, it follows that p a,x (y) ≥ 0 for any y ≥ M pa,x and then g A (y) ≥ 0 for any y ≥ 1 and by Theorem 1.1, if (6.1) holds, then Λ A is the unique minimizer of E Va,x among Bravais lattices of fixed area A.

Remark 6.4. This result seems to be natural because for r close to 0, V a,x (r) ∼ a n r -xn and for any A, Λ A is the unique minimizer of L → ζ L (2x n ) among Bravais lattices of fixed area A. However, if we fix A, u and v can be as larger as we want and the behavior of V a,x can be unusual. Furthermore, in the case

V a,x (r) = a 1 r x 1 + a 2 r x 2 + a 3 r x 3
where a 1 , a 3 are positive and a 2 negative, our bound (6.1) does not depend on a 1 . For instance, if a = (p, -3, 1) and x = (2, 4, 6), then, for any p,

π min i∈I - a n Γ(x i ) ♯{I -}|a i |Γ(x n ) 1 xn-x i = π Γ(4) 6Γ (6) 1/2 
≈ 0.2867869 which corresponds to triangular lattices of length ≈ 0.5754589. 

π min i∈I - a n Γ(x i ) ♯{I -}|a i |Γ(x n ) 1 xn-x i = π 35Γ(3) 80Γ(4) 1 = 7π 48 ≈ 0.4581488,
which corresponds to triangular lattice of length ≈ 0.7273408. Thus, for A ≤ 7π 48 , Λ A is the unique minimizer of E V , up to rotation, among Bravais lattices of fixed area A. 

Non-optimality of Λ A at low density

A ≥ inf L =Λ 1 |L|=1 max i∈I + ♯{I + }a i (ζ L (2x i ) -ζ Λ 1 (2x i )) |a 1 |(ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 xn-x i , (6.2) 
that is to say if A is sufficiently large, then Λ A is not a minimizer of E Va,x among Bravais lattices of fixed area A.

Proof. Let L A = √ AL 1 be a Bravais lattice of area A, with |L 1 | = 1, then E Va,x [Λ A ] -E Va,x [L A ] = n i=1 a i (ζ Λ A (2x i ) -ζ L A (2x i )) = n i=1 a i A x i (ζ Λ 1 (2x i ) -ζ L 1 (2x i )) = A -xn n i=1 a i (ζ Λ 1 (2x i ) -ζ L 1 (2x i ))A xn-x i .
We set

p a,x,L 1 (A) := n i=1 a i (ζ Λ 1 (2x i ) -ζ L 1 (2x i ))A xn-x i .
As a 1 < 0 and, for any s > 1,

ζ Λ 1 (2s) -ζ L 1 (2s) ≤ 0,
because Λ 1 is the unique minimizer of L → ζ L (2s) among Bravais lattices of area 1, we can apply Cauchy's rule 2.11, and more precisely its generalization (2.5). The number of negative coefficient of p a,x,L 1 is exactly ♯{I + } and an upper bound on the values of the positive zero of p a,x,L 1 for given L 1 , is

M pa,x (L 1 ) := max i∈I + ♯{I + }a i (ζ L 1 (2x i ) -ζ Λ 1 (2x i )) |a 1 |(ζ L 1 (2x 1 ) -ζ Λ 1 (2x 1 )) 1 xn-x i .
Hence, for any L such that |L| = 1, if A ≥ M pa,x (L) then p a,x,L (A) ≥ 0. We conclude that if (6.2) holds, then E Va,x [Λ A ] -E Va,x [L A ] ≥ 0 and Λ A cannot be a minimizer of E Va,x among Bravais lattices of fixed area A. Remark 6.7. To compute explicitly a lower bound for A such that Λ A is not a minimizer of energy E Va,x , we can take L = Z 2 in (6.2) and use equalities (2.1) and (2.2) (see next subsection for computations in Lennard-Jones case).

Lennard-Jones type potentials : proofs of Theorems 1.2.A and 1.2.B.2 and numerical results

Now we want to study more precisely the class of Lennard-Jones type potential. In [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF] we studied classical (12 -6) Lennard-Jones potential V LJ (r) = r -12 -2r -6 , such that its minimizer is 1, and we proved that the minimizer of its energy among lattices with fixed area A is triangular for small A and it cannot be triangular for large A. Here we prove that our method gives interesting results for this kind of potential.

Let 1 < x 1 < x 2 and a 1 , a 2 ∈ (0, +∞), we define Lennard-Jones type potential by

V LJ a,x (r) := a 2 r x 2 - a 1 r x 1 , ∀r > 0.
Example 6.8. We can cite various Lennard-Jones type potentials used in molecular simulation or in the study of social aggregation (see [START_REF] Mogilner | Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation[END_REF]), besides the classical V LJ . For instance the (12 -10) potential V (r) = a 2 r 12 -a 1 r 10 describes hydrogen bonds (see [START_REF] Gelin | Side-Chain Torsional Potentials: Effect of Dipeptide, Protein, and Solvent Environment[END_REF]). A (6 -4) potential V (r) = a 2 r 6 -a 1 r 4 is also used for finding energetically favourable regions in protein binding sites (see [START_REF] Goodford | A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules[END_REF] for details). Lemma 6.9.

Let 1 < x 1 < x 2 , then function r → V LJ a,x (r 2 ) is decreasing on 0, a 2 x 2 a 1 x 1 1 2(x 2 -x 1 )
and increasing on a 2 x 2 a 1 x 1

1 2(x 2 -x 1 ) , +∞ . Proof. The first derivative of this function is r → -2a 2 x 2 r -2x 2 -1 + 2a 1 x 1 r -2x 1 -1 and (V LJ a,x ) ′ (r) ≥ 0 ⇐⇒ r ≥ a 2 x 2 a 1 x 1 1 2(x 2 -x 1 )
. Fig. 6 :

Graph of r → V LJ a,x (r 2 )
Obviously, the form of potential V LJ a,x implies that minimizer among lattices exists. Indeed, if we fix the area, one of the distance in the lattice cannot be too small otherwise lattice energy goes to infinity (see [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]Proposition 2.3] for details).

As in our previous work [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], the following upper bound for area such that triangular lattice is the unique minimizer for our energy is not optimal but the best for our method. Moreover, its upper bound is better than we apply Cauchy's rule (Proposition 6.3) but the method is specific for this kind of potential. Proposition 6.10. (Lennard-Jones at high density)

If A ≤ π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1 , then Λ A is
the unique minimizer of E V LJ a,x , up to rotation, among lattices of area A fixed. Proof. We have, by proof of Theorem 6.3, for any y ≥ 1,

g A (y) = α 2 A x 2 -1 y -x 2 + y x 2 -1 - α 1 A x 1 -1 y -x 1 + y x 1 -1 = y -x 2 A x 1 -1 gA (y)
where gA (y) =

α 2 A x 2 -x 1 y 2x 2 -1 -α 1 y x 2 +x 1 -1 -α 1 y x 2 -x 1 + α 2 A x 2 -x 1 . We compute g′ A (y) = (2x 2 -1)α 2 A x 2 -x 1 y 2x 2 -2 -α 1 (x 2 + x 1 -1)y x 2 +x 1 -2 -α 1 (x 2 -x 1 )y x 2 -x 1 -1 = y x 2 -x 1 -1 u A (y) where u A (y) = (2x 2 -1)α 2 A x 2 -x 1 y x 2 +x 1 -1 -α 1 (x 2 + x 1 -1)y 2x 1 -1 -α 1 (x 2 -x 1 ). Moreover u ′ A (r) = (x 2 + x 1 -1)y 2x 1 -2 (2x 2 -1)α 2 A x 2 -x 1 y x 2 -x 1 -α 1 (2x 1 -1) . We have u ′ A (ȳ) = 0 ⇐⇒ ȳ = α 1 (2x 1 -1)A x 2 -x 1 α 2 (2x 2 -1) 1 x 2 -x 1 = A π a 1 Γ(x 2 ) a 2 Γ(x 1 ) 1 x 2 -x 1 2x 1 -1 2x 2 -1 1 x 2 -x 1 . If A ≤ π a 2 Γ(x 1 ) a 1 Γ(x 2 )
1

x 2 -x 1 then ȳ < 1 and u ′ A (y) > 0 on [1; +∞), i.e. u A is an increasing function on [1; +∞). Furthermore we have

u A (1) = (2x 2 -1) α 2 A x 2 -x 1 -α 1 = (2x 2 -1) a 2 π x 2 -1 A x 2 -x 1 Γ(x 2 ) - a 1 π x 2 -1 Γ(x 1 ) ≥ 0
and g′ A is positive on [1, +∞). Thus gA is increasing on [1, +∞) and, always by assumption, [1, +∞) and by Theorem 1.1, Λ A is the unique minimizer of E V LJ a,x , up to rotation, among Bravais lattices of fixed area A. Remark 6.11. This bound is optimal for our method because, g A (1) = 0 for A = π a 2 Γ(x 1 ) a 1 Γ(x 2 )

g A (1) = 2 α 2 A x 2 -x 1 -α 1 ≥ 0 hence g A (y) ≥ 0 on
1 x 2 -x 1
and A → g A (1) is a decreasing function.

Example 6.12. For V (r) = 1 r 6 -2 r 3 which corresponds to Lennard-Jones energy in our case in [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], we find

π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1 = π Γ(3) 2Γ (6) 1/3 
= π 120 1/3 . Now we prove that for small parameters, the global minimizer among all Bravais lattices -without area constraint -of our energy is unique and triangular. We follow some ideas from our previous paper [START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF] which cannot be apply for classical Lennard-Jones potential V LJ (r) = r -12 -2r -6 . Lemma 6.13. (Upper bound for global minimizer's area) Let L a,x a global minimizer of E V LJ a,x among all Bravais lattices, then

|L a,x | ≤ a 2 x 2 a 1 x 1 1 x 2 -x 1 .
Proof. Same argument of STEP 3 in the proof of Theorem 1.2.B.1.

Thus we can prove Theorem 1.2.B.2 :

Proof. Let L a,x be a global minimizer of E V LJ a,x . We have

h(x 2 ) ≤ h(x 1 ) ⇐⇒ π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1 ≥ a 2 x 2 a 1 x 1 1 x 2 -x 1
then by Lemma 6.13 we get

|L a,x | ≤ π a 2 Γ(x 1 ) a 1 Γ(x 2 ) 1 x 2 -x 1
and by Proposition 6.10, the minimizer among lattices of area |L a,x | fixed is unique and triangular, hence the global minimizer of the energy is unique and triangular. Furthermore, let

f (r) := E V LJ a,x [rΛ 1 ] = a 2 ζ Λ 1 (2x 2 )r -2x 2 -a 1 ζ Λ 1 (2x 1 )r -2x 1 then we have f ′ (r) = -2a 2 x 2 ζ Λ 1 (2x 2 )r -2x 2 -1 + 2a 1 x 1 ζ Λ 1 (2x 1 )r -2x 1 -1 and f ′ (r) ≥ 0 ⇐⇒ r ≥ a 2 x 2 ζ Λ 1 (2x 2 ) a 1 x 1 ζ Λ 1 (2x 1 ) 1 2(x 2 -x 1 )
.

Hence the minimizer of E

V LJ a,x among triangular lattices is Λ |La,x| with |L a,x | = a 2 x 2 ζ Λ 1 (2x 2 ) a 1 x 1 ζ Λ 1 (2x 1 ) 1 x 2 -x 1 .
Remark 6.14. For an easy numerical computation of global minimizer's area, we can use formula (2.2) to obtain

|L a,x | = 1 2 √ 3 a 2 x 2 ζ(x 2 )(ζ(x 2 , 1/3) -ζ(x 2 , 2/3)) a 1 x 1 ζ(x 1 )(ζ(x 1 , 1/3) -ζ(x 1 , 2/3)) 1 x 2 -x 1 .
Remark 6.15. We can apply the previous Theorem to x = (2, 3), and r → V LJ a,x (r 2 ) is a (6 -4) potential. Moreover we can choose a 1 and a 2 such that the well is as deep as we want. 

(x) = Γ ′ (x) Γ(x)
is the digamma function defined on (0, +∞).

Proof. We have h ′ (t) = Γ(t) + tΓ(t)t log πΓ(t) and

h ′ (t) ≥ 0 ⇐⇒ ψ(t) + 1 t ≥ log π.
We use the famous identity ψ(t) + 1 t = ψ(1 + t) for any t > 0 and we obtain, because ψ is increasing on (0, +∞), h ′ (t) ≥ 0 ⇐⇒ t ≥ ψ -1 (log π) -1.

Remark 6.17. We compute ψ -1 (log π) -1 ≈ 2.6284732 and we define M = 1 such that h(M ) = h(1). We have M ≈ 4.6022909. Thus, if we want apply the previous theorem, it is clear that x 1 < ψ -1 (log π) -1 and x 2 < M . Moreover, if we choose x 1 ∈ (1, ψ -1 (log π) -1), we can choose x 2 ∈ (x 1 , M x 1 ) where M x 1 = x 1 is such that h(M x 1 ) = h(x 1 ).

Fig. 8 : Graph of h

Unfortunately we can only choose x 2 and x 1 such that 1 < x 1 < x 2 < 4.6022909 and Lennard Jones case (x 2 = 6 and x 1 = 3) is not covered by our Theorem 1.2.B.2.

We compute, for different values of (x 1 , x 2 ) satisfying h(x 2 ) < h(x 1 ) and for a = (1, 1) :

• the value of the minimizer of y → V LJ a,x (y 2 ), i.e. y min a,x :=

x 2 x 1 1 2(x 2 -x 1 )

,

• the value of the length of triangular global minimizer, i.e. L a,x , i.e. r a,x := 2|La,x| √ 3 ,

• the density11 of L a,x , i.e. d a,x := |L a,x | -1 .

x 2

x 

A ≤ inf |L|=1,L =Λ 1 a 2 (ζ L (2x 2 ) -ζ Λ 1 (2x 2 )) a 1 (ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 x 2 -x 1 ,
i.e. if A is sufficiently large, Λ A is not a minimizer of E V LJ a,x among lattices of fixed area A.

Proof. We apply directly Proposition 6.6 with ♯{I + } = 1 and inf

L =Λ 1 |L|=1 max i∈I + ♯{I + }a i (ζ L (2x i ) -ζ Λ 1 (2x i )) |a 1 |(ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 xn-x i = inf |L|=1,L =Λ 1 a 2 (ζ L (2x 2 ) -ζ Λ 1 (2x 2 )) a 1 (ζ L (2x 1 ) -ζ Λ 1 (2x 1 )) 1 x 2 -x 1 .
Remark 6.19. More precisely we can found an explicit computable bound (but not optimal) if we take L = Z 2 and use (2.1) and (2.2). We give here densities d 0 such that for any 0

< d < d 0 , E V LJ a,x [d -1/2 Z 2 ] ≤ E V LJ a,x [d -1/2 Λ 1 ],
i.e. square lattice have less energy than triangular lattice, with a 1 = a 2 = 1.

x 2

x 1 1. 

) ∈ (R * ) n with a n > 0, x = (x 1 , ..., x n ) be such that 3/2 < x 1 < x 2 < ... < x n , b = (b 1 , ..., b m ) ∈ (R * ) m and t = (t 1 , ..., t m ) ∈ (R * ) m , we define f a,x,b,t (r) := n i=1 a i r -x i + m j=1
b j e -t j √ r .

We set I -:= {i; a i < 0} and B := m j=1 |b j |t j .

Remark 7.1. As explained in [START_REF] Koishi | Large-scale Molecular-dynamics Simulation of Nanoscale Hydrophobic Interaction and Nanobubble Formation[END_REF], Fumi and Tosi proposed in [START_REF] Fumi | Ionic Sizes and Born Repulsive Parameters in the NaCl-type Alkali Halides-I The Huggins-Mayer and Pauling Forms[END_REF] a potential for interaction between ions N a + and Cl -defined by

V (r) = a 1 r + b 1 e -t 1 r - a 2 r 6 - a 3 r 8 .
Obviously, potential r → a 1 r is not admissible but the form of V is close to f a,x,b,t .

Let us prove Theorem 1.2.A for this potential.

Proposition 7.2. If we have

A ≤ min π min i∈I - a n Γ(x i ) (2♯{I -} + 2)|a i |Γ(x n ) 1 xn-x i , a n π xn+1 (♯{I -} + 1)BΓ(x n ) 1 xn+1/2 (7.1)
then Λ A is the unique minimizer of E f a,x,b,t , up to rotation, among Bravais lattices of fixed area A.

Proof. As we have, by classical formula, for a > 0,

L -1 [e - √ a. ](y) = √ a 2 √ π y -3/2 e - a 4y 
, taking a = t 2 j for any 1 ≤ j ≤ m and setting α i =

a i π x i -1 Γ(x i )
, we obtain, for any y > 0,

µ f a,x,b,t (y) = n i=1 α i y x i -1 + m j=1 b j t j 2 √ π y -3/2 e - t 2 j 4y ≥ n i=1 α i y x i -1 - B 2 √ π y -3/2
and it follows that

g A (y) := y -1 µ f a,x,b,t π yA + µ f a,x,b,t πy A ≥ n i=1 α i A x i -1 (y -x i + y x i -1 ) - BA 3/2 2π 2 √ y - BA 3/2 2π 2 y 3/2 = y -xn n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ) - BA 3/2 2π 2 y xn+1/2 - BA 3/2 2π 2 y xn-3/2 .
We set

p a,x,b,t (y) := n i=1 α i A x i -1 (y xn-x i + y xn+x i -1 ) - BA 3/2 2π 2 y xn+1/2 - BA 3/2 2π 2 y xn-3/2
and we notice that, for any 1 ≤ i ≤ n,

x n -

x i = x n + 1/2 x n -x i = x n -3/2 x n + x i -1 = x n + 1/2 x n + x i -1 = x n -3/2
because x i > 3/2. Hence the higher order term is αn A xn-1 y 2xn-1 with α n > 0, and the number of negative terms is 2♯{I -} + 2. Thus, by Cauchy's rule (2.5), an upper bound on the values of the positive zero of p a,x,b,t is

M p a,x,b,t := max max i∈I - (2♯{I -} + 2)|α i |A xn-x i α n 1 xn+x i -1 , max i∈I - (2♯{I -} + 2)|α i |A xn-x i α n 1 xn-x i , B(2♯{I -} + 2)A xn+1/2 2π 2 α n 1 xn-3/2 , B(2♯{I -} + 2)A xn+1/2 2π 2 α n 1 xn+1/2    .

Now we have

A ≤ min π min i∈I - a n Γ(x i ) (2♯{I -} + 2)|a i |Γ(x n ) 1 xn-x i , 2a n π xn+1 (2♯{I -} + 2)BΓ(x n ) 1 xn+1/2 29 ⇐⇒ ∀i ∈ I -, A ≤ π a n Γ(x i ) (2♯{I -} + 2)|a i |Γ(x n ) 1 xn-x i and A ≤ 2a n π xn+1 (2♯{I -} + 2)BΓ(x n ) 1 xn+1/2 ⇐⇒ ∀i ∈ I -, (2♯{I -} + 2)|α i |A xn-x i α n ≤ 1 and B(2♯{I -} + 2)A xn+1/2 2π 2 α n ≤ 1 ⇐⇒ M p a,x,b,t ≤ 1, therefore if y ≥ 1 ≥ M p a,
x,b,t then p a,x,b,t (y) ≥ 0 hence g A (y) ≥ 0 and by Theorem 1.1, Λ A is the unique minimizer of E f a,x,b,t among Bravais lattices of fixed area A.

Corollary 7.3. If I -= ∅ and A ≤ a n π xn+1 BΓ(x n ) 1 xn+1/2
then Λ A is the unique minimizer of E f a,x,b,t among Bravais lattices of fixed area A.

Remark 7.4. Obviously, for any A 0 , there exists B sufficiently small such that for any A ∈ (0, A 0 ], Λ A 0 is the unique minimizer of our energy among Bravais lattices of fixed area A. We will study a simple particular case in next subsection in order to illustrate this fact. Furthermore we skipped the completely monotonic case but in the next following part we will give explicit condition for complete monotonicity in a simple case (see Proposition 7.6).

Example : opposite of Buckingham type potential

In this part we study opposite of Buckingham type potential. Indeed, we cannot study Buckingham potential V B (r) = a 1 e -αra 2 r 6 -a 3 r 8 because lim r→0 V B (r) = -∞ and lim r→+∞ V B (r) = 0 and it is sufficient to do u → 0 in order to have E V B [L] → -∞. Hence we choose to treat simple general approximation of its opposite, welladapted for our problem of minimization among Bravais lattices. Moreover we simplify notations in order to have only two parameters : Definition 7.2. For a = (a 1 , a 2 ) ∈ (0, +∞) 2 and for x = (x 1 , x 2 ) ∈ (0, +∞) × (3/2, +∞), we define, for r > 0, f a,x (r) = a 2 r -x 2a 1 e -x 1 √ r .

Lemma 7.5. (Variations of potential r → f a,x (r 2 )) We have the following two cases :

1. if (2x 2 + 1) ln 2x 2 + 1 x 1 -1 ≤ ln 2a 2 x 2 a 1 x 1 , then r → f a,x (r 2 ) is decreasing on (0, +∞);

2. if (2x 2 + 1) ln 2x 2 + 1 x 1 -1 > ln 2a 2 x 2 a 1 x 1 then there exists r m , r M ∈ (0, +∞) such that

r m < 2x 2 +1
x 1

< r M and r → f a,x (r 2 ) is decreasing on intervals (0, r m ) and (r M , +∞) and increasing on (r m , r M ).

Proof. We have f (r) := f a,x (r 2 ) = a 2 r -2x 2a 1 e -x 1 r and f ′ (r) = -2a 2 x 2 r 2x 2 +1 + a 1 x 1 e -x 1 r .

Thus we get

f ′ (r) ≥ 0 ⇐⇒ e -x 1 r r 2x 2 +1 ≥ 2a 2 x 2 a 1 x 1 ⇐⇒ g(r) ≥ 0 where g(r) = -x 1 r + (2x 2 + 1) ln rln 2a 2 x 2 a 1 x 1 .

As g ′ (r) = -x 1 r + 2x 2 + 1 r , g is increasing on 0, 2x 2 +1

x 1 and decreasing on 2x 2 +1

x 1 , +∞ . Moreover g(r) goes to -∞ as r → 0 or r → +∞. Hence if g 2x 2 +1

x 1 ≤ 0, i.e.

(2x 2 + 1) ln 2x 2 + 1 x 1 -1 ≤ ln 2a 2 x 2 a 1 x 1 then g(r) ≤ 0 and f ′ (r) ≤ 0 on (0, +∞), i.e. f is decreasing on (0, +∞). Furthermore, if g 2x 2 +1

x 1 > 0 then there exists r m , r M such that r m < 2x 2 +1

x 1

< r M and f is decreasing on intervals (0, r m ) and (r M , +∞) and increasing on (r m , r M ). Proposition 7.6. We have the following two cases : Now, if f a,x is not completely monotonic, we apply directly Proposition 7.2 to obtain second point. Third point is clear because for any (a 1 , a 2 ) ∈ (0, +∞) 2 and any x 2 > 3/2,

x 1 → a 2 π x 2 +1 a 1 x 1 Γ(x 2 ) 1 x 2 +1/2
is an increasing function which goes to infinity as x 1 → 0. Moreover the form of the potential y → f a,x (y 2 ) is such that the decay to 0 at infinity is slow as x 1 goes to 0. Remark 7.8. Our argument used in proofs of Theorem 1.2, based on variations of potential, can't be applied for our potentials f a,x .

  ) where ζ is the classical Riemann zeta function ζ(s) := +∞ i=1 n -s , L D defined by L D (s) := x) -s is the Hurwitz zeta function. Hence both these special values are easily computable. Now we recall fundamental Montgomery's Theorem about optimality of Λ A among Bravais lattices for theta functions : Theorem 2.1. (Montgomery, [43]) For any real number α > 0 and a Bravais lattice L, let θ L (α) := Θ L (iα) = p∈L e -2πα p 2 , (2.3)
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 2 Fig. 2 : Graph of r → V (r 2 ) Proposition 3.4. (Strictly convex potential and non optimality of triangular lattice) Let V be given by (3.1), then

Fig. 3 : 1 g

 31 Fig. 3 : Black zone is

5. 1

 1 Definition and proof of Theorem 1.2.A for ϕ a,x Definition 5.1. Let n ∈ N * . For coefficients a = (a 1 , ..., a n ) ∈ (R * ) n such that n i=1 a i ≥ 0 and for x = (x 1 , ..., x n ) ∈ (R * + ) n , we define ϕ a,x (r) := n i=1 a i e -x i r r and we set K a := k; k i=1 a i < 0 .

STEP 3 :

 3 Upper bound for |L a,x | and conclusion Let L a,x = Zu a,x ⊕ Zv a,x . If u a,x > √ α a,x then a contraction of all distances yields a new lattice with smaller energy because, by STEP 1, r → ϕ a,x (r 2 ) is an increasing function on ( √ α a,x , +∞).

Fig. 5 : 1 r

 51 Fig. 5 : Graphs of V a,x (r 2 ) = p r 4 -3 r 8 + 1 r 12 for p = 1 (on the left) and p = 2.5 (on the right) Example 6.5. For our counterexample (3.1), i.e. V (r) = 14 r 2 -40 r 3 + 35 r 4 , a = (14, -40, 35), x = (2, 3, 4) and ♯{I -} = 1, hence

Proposition 6 . 6 .

 66 If a 1 < 0 and

Fig. 7 : 6 - a 1 r 4

 764 Fig. 7 : Graphs of r → 1 r 6 -a 1 r 4 for a 1 ∈ {1, 2, 3}. Now we explain a method to choose x 1 , x 2 in order to have a triangular global minimizer and we give several numerical values. Lemma 6.16. (Variations of h) Function h is a decreasing function on [1, ψ -1 (log π) -1) and increasing on [ψ -1 (log π)-1, +∞) where ψ(x) = Γ ′ (x) Γ(x)is the digamma function defined on (0, +∞).

Fig. 9 :

 9 Fig. 9 : Graph of r → f a,x (r 2 ) for a = (1, 1), x = (5, 6) on the left and a = (1, 2), x = (1, 6) on the right.

Example 7 . 7 .for any x 1 ≤

 771 For instance, we can choose a = (1, 1), x 2 = 6 and A 0 = 1. Thus we get C 1 , Λ 1 is the unique minimizer of E fa,x among Bravais lattices of unit fixed area.

Fig. 10 :

 10 Fig. 10 : Graph of y → f a,x (y 2 ) = 1 y 12e -x 1 y for x 1 ∈ {0.01, 0.1, 1}.

  for any Bravais lattice L of area A,

	lim y→+∞ A p∈L * π p 2 e -π ∆ L (y) = 0 A y p 2 + • if complete monotonicity is a necessary condition to optimality of Λ ⇐⇒ ∀A, ∀L, ∀y ≥ 1, -and ∆ L exponentially decreases ; π A p∈Λ * A p 2 e -π A y p 2 ≤ 0 ⇐⇒ ∀A, ∀L, ∀y ≥ 1, p∈Λ * A p 2 e -π p∈L * A y p 2 ≤ p 2 e -π A y p 2

A for any fixed area A, then function y → ∆ L (y) is not decreasing on [1, +∞) for any A and any L with area A. Indeed, ∆ L is decreasing on (1, +∞) if and only if for any t ≥ 1, ∆ ′ L (y) ≤ 0, i.e.

∀A, ∀L, ∆ L decreases on (1, +∞)

Table 1 .

 1 Some values of (y min a,x , r a,x , d a,x ) Obviously, we have non-optimality of Λ A if A is sufficiently large, given by Proposition 6.6 :

	1	1.1	1.5	2
	1.5	(1.47, 0.64, 2.78)		
	2	(1.39, 0.80, 1.82) (1.33, 0.95, 1.27)	
	2.5	(1.34, 0.90, 1.45) (1.29, 1.02, 1.10) (1.25, 1.10, 0.96)
	3	(1.30, 0.95, 1.27) (1.26, 1.06, 1.03) (1.22, 1.11, 0.93)
	3.5	(1.27, 0.99, 1.19) (1.24, 1.08, 1.00)	
	4	(1.25, 1.01, 1.14)		
	Proposition 6.18. (Lennard-Jones at low density) Triangular lattice Λ A is a minimizer of
	E V LJ a,x among lattices of area A fixed if and only if		

Table 2 .

 2 Non-optimal critical densities for non-optimality of triangular lattice.

			1	1.5	2	3	4	5	6	7	8	9
		1.5	0.05							
		2	0.14 0.31						
		2.5	0.21 0.37 0.43					
		3	0.27 0.41 0.47					
		3.5	0.31 0.45 0.50 0.58				
		4	0.35 0.48 0.53 0.61				
		5	0.42 0.53 0.58 0.65 0.71			
		6	0.47 0.58 0.63 0.69 0.74 0.78		
		7	0.52 0.62 0.66 0.72 0.77 0.80 0.83	
		8	0.56 0.65 0.69 0.75 0.79 0.82 0.84 0.86
		9	0.60 0.68 0.72 0.77 0.81 0.84 0.86 0.88 0.89
		10	0.62 0.70 0.74 0.79 0.83 0.85 0.87 0.89 0.90 0.91
	7 Potentials with exponential decay			
	7.1	Definition and prove of Theorem 1.1.A for f a,x,b,t	

Definition 7.1. Let a = (a 1 , ..., a n

  then for any A > 0, Λ A is the unique minimizer of E fa,x , up to rotation, among Bravais lattices of fixed area A. then Λ A is the unique minimizer of E fa,x , up to rotation, among Bravais lattices with fixed area A. Moreover, for any a ∈ (0, +∞) 2 , x 2 > 3/2, A 0 > 0 and any x 1 such that0 < x 1 ≤ C A 0 := a 2 π x 2 +1Indeed, we have∀y > 0, µ fa,x (y) ≥ 0 ⇐⇒ e x 2 1 /4y y x 2 +1/2 ≥ a 1 x 1 Γ(x 2 ) 2 √ πa 2 +2, +∞ . As g goes to +∞ as y goes to 0 or +∞, it is clear that

	Proof. By classical formula, we get			
			µ fa,x (y) =	a 2 Γ(x 2 )	y x 2 -1 -	a 1 x 1 2 √ π	y -3/2 e -	x 2 1 4y .
	Our theorem is a consequence of Proposition 3.1 because
	∀y > 0, µ fa,x (y) ≥ 0 ⇐⇒ (x 2 + 1/2) 1 + ln	x 2 1 4x 2 + 2	≥ ln	a 1 x 1 Γ(x 2 ) 2 √ πa 2	.
				⇐⇒	x 2 1 4y	+ (x 2 + 1/2) ln y -ln	a 1 x 1 Γ(x 2 ) 2 √ πa 2	≥ 0.
	We set	g(y) =	x 2 1 4y	+ (x 2 + 1/2) ln y -ln	a 1 x 1 Γ(x 2 ) 2 √ πa 2
	x 2 1 4y 2 + x 2 +1/2 y 4x 2 ∀y > 0, g(y) ≥ 0 ⇐⇒ g . It follows that g is decreasing on 0, and we have g ′ (y) = -x 2 1 x 2 1 4x 2 + 2 ≥ 0	x 2 1 4x 2 +2 and increasing on
			⇐⇒ (x 2 + 1/2) 1 + ln	x 2 1 4x 2 + 2	≥ ln	a 1 x 1 Γ(x 2 ) 2 √ πa 2	.
	• If it holds		(x 2 + 1/2) 1 + ln	x 2 1 4x 2 + 2	≥ ln	a 1 x 1 Γ(x 2 ) 2 √ πa 2
	• If it holds A ≤	a 2 π x 2 +1 a 1 x 1 Γ(x 2 )	1 x 2 +1/2	and (x 2 + 1/2) 1 + ln	x 2 1 4x 2 + 2	< ln	a 1 x 1 Γ(x 2 ) 2 √ πa 2
								x 2 +1/2 a 1 A 0

Γ(x 2 ) ,

Λ A is the unique minimizer of E fa,x , up to rotation, among Bravais lattices of fixed area A ∈ (0, A 0 ].

In a system of interacting electrons, where the coulomb interaction energy between them sufficiently dominates the kinetic energy or thermal fluctuations

We cite only papers about 2D problems.

A proof of this assertion will be given in Section 3.1.

A rigorous definition will be given in preliminaries.

Actually, as in[START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], we will write all our results in terms of area, that is to say the inverse of the density.

It is important to distinguish potential f and the function r → f (r 2 ) that we sum on lattices to compute E f .

We choose, as in[START_REF] Bétermin | Minimization of Energy per Particle among Bravais Lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], to write results in terms of area and not in terms of density (which is its inverse).

We will sometimes write L and L -1 for Laplace and inverse Laplace operators.

This argument appears in [4, Proposition 4.1, ii)] and in[START_REF] Mogilner | Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation[END_REF] in order to prove that the distance between two animals in a swarm is less than a specific "confort distance" between them, which minimizes a certain function.

Here we exceptionally give values of densities -and not areas -more used in molecular simulations.
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