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GENEALOGIES OF TWO LINKED NEUTRAL LOCI AFTER A SELECTIVE SWEEP IN A LARGE
POPULATION OF VARYING SIZE

REBEKKA BRINK-SPALINK AND CHARLINE SMADI

ABSTRACT. We study the impact of a hard selective sweep on the genealogy of partially linked neu-
tral loci in the vicinity of the positively selected allele. We consider a sexual population of varying
size and, focusing on two neighboring loci, derive an approximate formula for the neutral geneal-
ogy of a sample of individuals taken at the end of the sweep. We prove that the stochasticity of the
population size has a major impact on this genealogy and apply our results to the derivation of the
linkage disequilibrium between neutral loci, a statistic which is frequently used to detect recent se-
lection on genetic data. Furthermore, we provide a deeper insight into the dynamics of the mutant
and wild type population during the different stages of a selective sweep.

INTRODUCTION

We study the hitchhiking effect of a beneficial mutation in a sexual haploid population of vary-
ing size. We assume that a mutation occurs in one individual of a monomorphic population
and that individuals carrying the new allele a are better adapted to the current environment and
spread in the population. We suppose that the mutant allele a eventually replaces the resident
one, A, and study the influence of this fixation on the neutral gene genealogy of a sample taken
at the end of the selective sweep. That is, in each sampled individual we consider the same set
of partially linked loci including the locus where the advantageous mutation occurred. We then
trace back the ancestral lineages of all loci in the sample until the beginning of the sweep and
update the genetic relationships whenever a coalescence or a recombination (see Definition 4.1)
changes the ancestry of one or several loci. Our main result is the derivation of a sampling formula
for the ancestral partition of two neutral loci situated in the vicinity of the selected allele. Such
a result allows us to derive the expression of the linkage disequilibrium (see Section 2) which is
more and more used to understand past evolutionary and demographic events [18, 29].

The first studies of hitchhiking, initiated by Maynard Smith and Haigh [31], have modeled the
mutant population size as the solution of a deterministic logistic equation [23, 17, 33, 32]. Barton
[3] was the first to point out the importance of the stochasticity of the mutant population size.
Following this paper, a series of works took into account this randomness during the sweep. In
[12, 28] Schweinsberg and Durrett based their analysis on a Moran model with selection and re-
combination, while Etheridge and coauthors [13] worked with the diffusion limit of such discrete
population models. Then Brink-Spalink and Sturm [4], Pfaffelhuber and Studeny [25] and Leo-
card [20] extended the respective findings of these two approaches for the ancestry of one neutral
locus to the two-locus (resp. multiple-locus) case.
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2 GENEALOGIES OF TWO NEUTRAL LOCI AFTER A SELECTIVE SWEEP

However, in all these models, the population size was constant and each individual had a “fit-
ness” only dependent on its type and not on the population state. The fundamental idea of Dar-
win is that the individual traits have an influence on the interactions between individuals, which
in turn generate selection on the different traits. In this paper we aim at modeling precisely these
interactions by extending the model introduced in [30] where the author considered only one
neutral locus. Such an eco-evolutionary approach has been introduced by Metz and coauthors
[22] and has been made rigorous in the seminal paper of Fournier and Méléard [15]. Then it was
further developed by Champagnat, Méléard and coauthors (see [5, 7, 6] and references therein)
for the haploid asexual case and by Collet, Méléard and Metz [8] and Coron and coauthors [10, 9]
for the diploid sexual case.

The population dynamics, described in Section 1, is a multitype birth and death Markov pro-
cess with competition. We represent the carrying capacity of the underlying environment by a
scaling parameter K ∈ N and state results in the limit for large K . In [5] it was shown that such
kind of invasion processes can be divided into three phases (see Figure 2): an initial phase in
which the fraction of a-individuals does not exceed a fixed value ε> 0 and where the dynamics of
the wild type population is nearly undisturbed by the invading type. A second phase where both
types account for a non-negligible percentage of the population and where the dynamics of the
population can be well approximated by a deterministic competitive Lotka-Volterra system. And
finally a third phase where the roles of the types are interchanged and the wild type population
is near extinction. The durations of the first and third phases of the selective sweep are of order
logK whereas the second phase only lasts an amount of time of order 1.

In Section 3 we precisely describe these three phases and introduce two couplings of the pop-
ulation process, key tools to study the dynamics of the A- and a-populations. Section 4 is devoted
to the proofs of the main theorems on the ancestral partition of the two neutral alleles. Sections 5
to 7 are dedicated to the proofs of auxiliary statements. In Section 2 we compare our findings with
previous results and apply them to the derivation of the linkage disequilibrium after a selective
sweep. Finally, we state technical results needed in the proofs in the Appendix.

1. MODEL AND RESULTS

We consider a three locus model: one locus under selection, SL, with alleles in A := {A, a} and
two neighboring neutral loci N 1 and N 2 with alleles in the finite sets B and C respectively. We
denote by E = A ×B×C the type space. Two geometric alignments are possible: either the two
neutral loci are adjacent (geometry SL − N 1− N 2), or they are separated by the selected locus
(geometry N 1−SL −N 2). We introduce the model and notations for the adjacent geometry and
their analogues for the separated one can be deduced in a straightforward manner.

Whenever a reproduction event takes place, recombinations between SL and N 1 or between
N 1 and N 2 occur independently with probabilities r1 and r2, respectively. These probabilities de-
pend on the parameter K , representing the environment’s carrying capacity, but for the purpose
of readability we do not indicate this dependence. We assume a regime of weak recombination:

limsup
K→∞

r j logK <∞, j = 1,2.(1.1)

This is motivated by Theorem 2 in [30] which states that this is the good scale to observe a signa-
ture on the neutral allele distribution. If the recombination probabilities are larger (which means
that neutral loci are more distant from the selected locus), there are many recombinations and the
sweep does not modify the neutral diversity at these sites. Recombinations may lead to a mixing
of the parental genetic material in the newborn, and hence, parents with types αβγ and α′β′γ′ in
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E can generate the following offspring:

possible genotype event probability

αβγ,α′β′γ′ no recombination (1− r1)(1− r2)

αβ′γ′,α′βγ one recombination between SL and N 1 r1(1− r2)

αβγ′,α′β′γ one recombination between N 1 and N 2 (1− r1)r2

αβ′γ,α′βγ′ two recombinations r1r2

We will see in the sequel that the probability to witness a birth event with two simultaneous re-
combinations in the neutral genealogy of a uniformly chosen individual is very small.

As we assume the loci N 1 and N 2 to be neutral, the ecological parameters of an individual
only depend on the allele α at the locus under selection. Let us denote by fα the fertility of an
individual with type α. In the spirit of [8], such an individual gives birth at rate fα (female role),
and has a probability proportional to fα to be chosen as the father in a given birth event (male
role). Denoting the complementary type of the allele α by ᾱ we get the following result for the
birth rate of individuals of type αβγ ∈ E :

bK
αβγ(n) = (1− r1)(1− r2) fαnαβγ+ r1(1− r2) fαnα

fαnαβγ+ fᾱnᾱβγ
fana + f AnA

+(1− r1)r2 fα

∑
β′∈B

∑
γ′∈C nαβγ′( fαnαβ′γ+ fᾱnᾱβ′γ)

fana + f AnA

+r1r2 fα

∑
β′∈B

∑
γ′∈C nαβ′γ( fαnαβγ′ + fᾱnᾱβγ′)

fana + f AnA
,(1.2)

where nαβγ (resp. nα) denotes the current number of αβγ-individuals (resp. α-individuals) and
n = (nαβγ, (α,β,γ) ∈ E ) is the current state of the population. An α-individual can die either from
a natural death (rate Dα), or from type-dependent competition: the parameter Cα,α′ models the
impact an individual of type α′ has on an individual of type α, where (α,α′) ∈ A 2. The strength
of the competition also depends on the carrying capacity K . This results in the total death rate of
individuals carrying the alleles αβγ ∈ E :

d K
αβγ(n) =

(
Dα+

Cα,A

K
nA + Cα,a

K
na

)
nαβγ.(1.3)

Hence the population process

N K = (N K (t ), t ≥ 0) =
(
(N K

αβγ(t ))(α,β,γ)∈E , t ≥ 0
)
,

where N K
αβγ

(t ) denotes the number of αβγ-individuals at time t , is a multitype birth and death

process with rates given in (1.2) and (1.3). We will often work with the trait population process
((N K

A (t ), N K
a (t )), t ≥ 0), where N K

α (t ) denotes the number of α-individuals at time t . This is also a
birth and death process with birth and death rates given by:

bK
α (n) = ∑

(β,γ)∈B×C

bK
αβγ(n) = fαnα and d K

α (n) = ∑
(β,γ)∈B×C

d K
αβγ(n) =

(
Dα+

Cα,A

K
nA + Cα,a

K
na

)
nα.(1.4)

As a quantity summarizing the advantage or disadvantage a mutant with allele typeα has in an
ᾱ-population at equilibrium, we introduce the so-called invasion fitness Sαᾱ through

(1.5) Sαᾱ := fα−Dα−Cα,ᾱn̄ᾱ,

where the equilibrium density n̄α is defined by

n̄α := fα−Dα

Cα,α
.(1.6)
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The role of the invasion fitness Sαᾱ and the definition of the equilibrium density n̄α follow from
the properties of the two-dimensional competitive Lotka-Volterra system:

(1.7) ṅ(z)
α = ( fα−Dα−Cα,An(z)

A −Cα,an(z)
a )n(z)

α , z ∈RA
+ , n(z)

α (0) = zα, α ∈A .

If we assume

(1.8) n̄A > 0, n̄a > 0, and S Aa < 0 < Sa A ,

then n̄α is the equilibrium size of a monomorphicα-population and the system (1.7) has a unique
stable equilibrium (0, n̄a) and two unstable steady states (n̄A ,0) and (0,0). Thanks to Theorem 2.1
p. 456 in [14] we can prove that if N K

A (0) and N K
a (0) are of order K and K is large, the rescaled

process (N K
A /K , N K

a /K ) is very close to the solution of (1.7) during any finite time interval. The
invasion fitness Sa A corresponds to the per capita initial growth rate of the mutant a when it
appears in a monomorphic population of individuals A at their equilibrium size n̄AK . Hence the
dynamics of the allele a is very dependent on the properties of the system (1.7) and it is proven in
[5] that under Condition (1.8) one mutant a has a positive probability to fix in the population and
replace a wild type A. More precisely, if we use the convention

(1.9) P(K )(.) :=P(.|N K
A (0) = bn̄AK c, N K

a (0) = 1),

Equation (39) in [5] states that

(1.10) lim
K→∞

P(K )(FixK ) = Sa A

fa
=: s,

where s is called the rescaled invasion fitness, and the extinction time of the A-population and
the event of fixation of the a-allele are rigorously defined as follows:

T K
ext := inf

{
t ≥ 0 : N K

A (t ) = 0
}

, and FixK := {
T K

ext <∞, N K
a (T K

ext) > 0
}
.(1.11)

From this point onward, we fix d in N. We aim at quantifying the effect of the selective sweep on
the neutral diversity. Our method consists in tracing back the neutral genealogies of d individuals
sampled uniformly at the end of the sweep (time T K

ext) until the beginning of the sweep. Two event
types (see Definition 4.1) may affect the relationships of the sampled neutral alleles: coalescences
correspond to the merging of the neutral genealogies of two individuals at one or two neutral
loci, and recombinations redistribute the selected and neutral alleles of one individual into two
groups carried by its two parents. We will represent the neutral genealogies by a partition ΘK

d
which belongs to the set P ∗

d of marked partitions of {(i ,k), i ∈ {1, ...,d},k ∈ {1,2}} with (at most)
one block distinguished by the mark ∗. In this notation (i ,1) and (i ,2) are the neutral alleles at
loci N 1 and N 2 of the i th sampled individual. Let us define rigorously the random partitionΘK

d :

Definition 1.1. Sample d individuals uniformly and without replacement at the end of the sweep
(time T K

ext). Follow the genealogies of the first and second neutral alleles of the i -th sampled individ-
ual, (i ,1) and (i ,2) for i ∈ {1, ...,d}. Then the partition ΘK

d ∈P ∗
d is defined as follows: each block of

the partition ΘK
d is composed of all those neutral alleles which originate from the same individual

alive at the beginning of the sweep; the block containing the descendants of the mutant a (if such a
block exists) is distinguished by the mark ∗.

We will show in Theorems 1 and 2 that when K is large the partition ΘK
d belongs with a proba-

bility close to one to a subset ∆d of P ∗
d , which is defined as follows:

Definition 1.2. ∆d is the subset of P ∗
d consisting of those partitions whose unmarked blocks (if

there are any) are either singletons or pairs of the form {(i ,1), (i ,2)} for one i ∈ {1, ...,d}.

Example 1. In the example represented in Figure 1, the marked partition π(ex) belongs to ∆d :

π(ex) =
{

{(1,1), (1,2), (2,1), (5,2)}∗, {(2,2)}, {(3,1), (3,2)}, {(4,1)}, {(4,2)}, {(5,1)}
}

.



GENEALOGIES OF TWO NEUTRAL LOCI AFTER A SELECTIVE SWEEP 5

FIGURE 1. Example of genealogy for a 5-sample: dark blue neutral alleles origi-
nate from the mutant and light blue ones from an A-individual. We indicate the
selected allele, A or a, associated with the neutral alleles during the sweep. It
can change when a recombination occurs. Bold lines represent the A(green)- and
a(red)-population sizes. In this example, the two neutral alleles of the first in-
dividual, the first neutral allele of the second individual and the second neutral
allele of the fifth individual originate from the mutant; the two neutral alleles of
the third individual originate from the same A-individual, whereas the two neu-
tral alleles of the fourth individual originate from two distinct A-individuals.

For a partition π ∈P ∗
d , we define for some possible ancestral relationships the number of indi-

viduals in the sample whose two neutral loci are related in that particular way:

Definition 1.3. Let d ∈N and π ∈P ∗
d . Then we set:

|π|1 = #{ 1 ≤ i ≤ d such that (i ,1) and (i ,2) belong to the marked block }
|π|2 = #{ 1 ≤ i ≤ d such that (i ,1) belongs to the marked block and {(i ,2)} is an unmarked block}
|π|3 = #{ 1 ≤ i ≤ d such that (i ,2) belongs to the marked block and {(i ,1)} is an unmarked block}
|π|4 = #{ 1 ≤ i ≤ d such that {(i ,1), (i ,2)} is an unmarked block}
|π|5 = #{ 1 ≤ i ≤ d such that {(i ,1)} and {(i ,2)} are two distinct unmarked blocks}

To express the limit distribution of the partitionΘK
d we need to introduce:

(1.12) q1 := e
− fa r1 logK

Sa A , q2 := e
− fa r2 logK

Sa A , q̄2 := e
− fa r2 logK

|S Aa | and q3 := r1

r1 + r2(1− f A/ fa)
(q f A/ fa

2 −q1q2),

where the invasion fitnesses have been defined in (1.5) and s in (1.10). We did not make any
assumption on the sign of fa(r1+r2)− f Ar2, but q3 can be written in the form δ(e−µ−e−ν)/(ν−µ)
for (δ,µ,ν) ∈R3+ so that it is well defined and non-negative. It is easy to check that q3 ≤ 1. We now
define five non-negative numbers (pk ,1 ≤ k ≤ 5) which will quantify the law of ΘK

d for large K in
Theorem 1:

p1 := q1q2[1− (1−q1)(1− q̄2)], p2 := q1[(1−q1q2)−q2q̄2(1−q1)],(1.13)

p3 := q1q2(1− q̄2)(1−q1), p4 := q̄2q3 and p5 := (1−q1)(1−q1q2(1− q̄2))− q̄2q3.

Note that
∑

1≤k≤5 pk = 1. Finally, we introduce an assumption which summarizes all the as-
sumptions made in this work:

Assumption 1. (N K
A (0), N K

a (0)) = (bn̄AK c,1) and Conditions (1.1) on the recombination probability
and (1.8) on the equilibrium densities and fitnesses hold.

With Definitions 1.1, 1.2 and 1.3 in mind, we can now state our main results:
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Theorem 1 (Geometry SL−N 1−N 2). Under Assumption 1, we have for every π ∈P ∗
d

lim
K→∞

∣∣∣P(K )(ΘK
d =π|FixK )−1{π∈∆d }p1

|π|1 p2
|π|2 p3

|π|3 p4
|π|4 p5

|π|5
∣∣∣= 0.

Notice that when K is large,ΘK
d belongs to ∆d with a probability close to one, and that

(p1
|π|1 p2

|π|2 p3
|π|3 p4

|π|4 p5
|π|5 ,π ∈∆d )

is a probability on ∆d (depending on K ). Moreover, this result implies that the d sampled indi-
viduals have asymptotically independent neutral genealogies. With high probability, the neutral
alleles of a given sampled individual i either originate from the first mutant a and belong to the
marked block, or escape the sweep and originate from an A individual. In this case they belong to
an unmarked block which is of the form {(i ,1)}, {(i ,2)} or {(i ,1), (i ,2)}, according to Definition 1.3.
As a consequence, if some neutral alleles of two distinct sampled individuals escape the sweep,
they originate from distinct A-individuals with high probability. However, the genealogies of the
two neutral alleles of a given individual are not independent. For example the probability that
(i ,1) and (i ,2) escape the sweep is p4+p5; the probability that (i ,1) (resp. (i ,2)) escapes the sweep
is p3 +p4 +p5 (resp. p2 +p4 +p5), and for every K ∈N such that r1 6= 0

(p3 +p4 +p5)(p2 +p4 +p5) = (1−q1)(1−q1q2) < (1−q1)(1−q1q2 +q1q2q̄2) = p4 +p5.

This is due to the fact that if (backwards in time) a recombination first occurs between SL and N 1,
the neutral allele at N 2, linked to N 1, also escapes the sweep. As the term q1q2q̄2 does not tend
to 0 when K goes to infinity under Condition (1.1), the only possibility to have an equality in the
limit is the case where r1 logK ¿ 1 or in other words when the probability to see a recombination
between SL and N 1 is negligible.

Let us now consider the separated geometry, N 1−SL−N 2:

Theorem 2 (Geometry N 1−SL−N 2). Under Assumption 1, we have for every π ∈P ∗
d

lim
K→∞

∣∣∣P(K )(ΘK
d =π|FixK )−1{π∈∆d }[q1q2]|π|1 [q1(1−q2)]|π|2 [(1−q1)q2]|π|3 [(1−q1)(1−q2)]|π|5

∣∣∣= 0.

Again the neutral genealogies of the d sampled individuals are asymptotically independent.
Furthermore, we have independence between the neutral loci. Indeed the result stated in The-
orem 2 means that a neutral allele at locus N k escapes the sweep with probability 1− qk inde-
pendently of all other neutral alleles, including the allele at the other neutral locus of the same
individual. This is due to the fact that in the separated geometry a recombination between SL
and one neutral locus has no impact on the genetic background of the allele at the other neutral
locus. Note in particular that there is no block of the form {(i ,1), (i ,2)} in the limit partition, as the
two neutral alleles have a very small probability to recombine at the same time.

2. APPLICATION AND COMPARISON WITH PREVIOUS WORK

From this point onward we will write Nα (resp. Nαβγ) instead of N K
α (resp. N K

αβγ
) and P instead

of P(K ) for the sake of readability.

2.1. Linkage disequilibrium. The linkage disequilibrium (LD) is the non-uniform association of
alleles at several loci. For sake of simplicity we suppose for this application that B = {β, β̄} and
C = {γ, γ̄}. The LD between the two neutral loci in theα-population at time t can be expressed by:

D(α, t ) :=
∣∣∣∣∣ Nαβγ(t )

Nα(t )
− Nαβγ(t )+Nαβγ̄(t )

Nα(t )

Nαβγ(t )+Nαβ̄γ(t )

Nα(t )

∣∣∣∣∣ .

In other words it corresponds to the absolute value of the difference between the frequency of the
combination of alleles β and γ and the product of frequencies of allele β and of allele γ. We can
check that the value of D(α, t ) does not depend on the choice of (β,γ) ∈ B×C . Theoretical and
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empirical studies have shown that LD is an important signature of selection [1, 24, 19, 26, 27, 35].
Initially, biologists only focused on the LD between the selected locus and a neighboring locus.
The expected effect of selective sweeps was then to increase the level of LD as the genetic variation
is reduced. However, as first observed by Gillespie [16], then followed by [18, 32, 21], "linked
selection can reduce variation without building up high levels of linkage disequilibrium, contrary
to our intuition". Suppose that the LD between the neutral loci in the A-population was zero
at the beginning of the sweep (which is a classical assumption, see [34] for instance), and recall
(1.12). Let D (g a) (and D (g s)) denote the LD between loci N 1 and N 2 for the adjacent (SL−N 1−N 2)
(and separated (N 1−SL−N 2)) geometry. Then the patterns of LD are the following:

Proposition 1. Suppose that D(A,0)(g a) = D(A,0)(g s) = 0 and that the first mutant is of type aβγ ∈
E . Denote by uβ and uγ the initial proportions of alleles β and γ in the A-population. Then under
Assumption 1

lim
K→∞

∣∣∣E[D (g a)(a,T K
ext)|FixK ]− (1−uβ)(1−uγ)(1−q1)q1q2q̄2

∣∣∣= lim
K→∞

E[D (g s)(a,T K
ext)|FixK ] = 0.

Hence the LD between two neutral loci is very dependent on the relative position of the se-
lected locus (between the two neutral loci or adjacent to these latter, more or less close to one of
them,...). By using this property it is possible to construct statistical tests (see [21] for example) to
distinguish loci which have undergone a recent selective event, and further the selection strength
during this event.

2.2. Previous work. In [28] the authors gave an approximate sampling formula for the genealogy
of one neutral locus during a selective sweep. In their work, the population evolved as a two-locus
modified Moran model with recombination, selection, and in particular constant population size.
They introduced the fitness sSD of the mutant a as follows: when one of the iid exponential clocks
of the living individuals rings, one picks two individuals uniformly at random (with replacement),
one dies, and the other one gives birth. But a replacement of an a-individual by an A-individual
is rejected with probability sSD . In this case, nothing happens. In [30], the author studied the one
neutral locus version of the here presented model. It was shown that the ancestral relationships
in a sample taken at the end of the sweep correspond to the ones derived in [28] when we equal
the fitness of [28] and the rescaled invasion fitness sSD = Sa A/ fa and when we have the equality
|S Aa |/ f A = Sa A/ fa (in this case the first and third phases have the same duration, Sa A logK / fa).

In [4], the authors generalized the model introduced in [28] towards two neutral loci and used
similar methods to derive a corresponding statement for the genealogy of a sample taken at the
end of the sweep. If we however make the analogous comparison and try to match our result
for the adjacent geometry with the statement from [4], we observe an interesting phenomenon:
the probabilities of the different types of ancestry only coincide if the birth rates of a- and A-
individuals are the same, that is, if fa = f A holds true. In biology, the fitness describes the ability
to both survive and reproduce, and can be defined by the average contribution of an individual
with a given genotype to the gene pool of the next generation. Hence a mutation which affects the
fitness of an individual in a given environment can either act on the fertility ( fα in our model), or
on the death rate, intrinsic (Dα) or by competition (Cα,α′), or on both. Our result is comparable to
that of [28] if the mutation only affects the death rate (and still if sSD = Sa A/ fa = |S Aa |/ f A).

In [25], instead of a birth and death process, the authors modeled the population with a struc-
tured coalescent. It is shown that this process can be approximated by a marked Yule tree where
the different marks are realized by Poisson processes and indicate a recombination of one or two
loci into the wild type background. The impact of the third phase is taken into account by a cer-
tain refinement prior to the beginning of the coalescent which leads to the same effect of splitting
of the two neutral loci as it is seen here. We again find similarities with our results when f A = fa . In
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contrast, the techniques and precision used in [25] yield that coalescent events with A-individuals
cannot be ignored, that is, there are neutral loci of different individuals from the sample which
have the same type-A-ancestor. The structure of the sample is therefore different from our results
here. Notice that it is also the case of the second approximate sampling formula stated in [28],
which is more precise than the first one.

3. DYNAMICS OF THE SWEEP AND COUPLINGS

3.1. Description of the three phases. We only need to focus on the trajectories of the population
process where the mutant allele a goes to fixation and replaces the resident allele A. Champag-
nat has described these trajectories in [5] and in particular divided the sweep into three phases
with distinct A- and a-population dynamics (see Figure 2). In the sequel, ε will be a positive real
number independent of K , as small as needed for the different approximations to hold.

FIGURE 2. The three phases of a selective sweep The y-axis corresponds to the
two type populations sizes (A in black, a in red), and the x-axis to the time. In this
simulation, K = 1000, ( f A , fa) = (2,3),Dα = 0.5,α ∈A , C A,A =C A,a =Ca,A =Ca,a =
1. We have also indicated some of the notations introduced in Section 3.1

First phase. The resident population size stays close to its equilibrium value n̄AK as long as the
mutant population size has not hit bεK c: if we introduce the finite subset ofN

(3.1) I K
ε :=

[
K

(
n̄A −2ε

C A,a

C A,A

)
,K

(
n̄A +2ε

C A,a

C A,A

)]
∩N,

and the stopping times T K
ε and SK

ε , which denote respectively the hitting time of bεK c by the
mutant population size and the exit time of I K

ε by the resident population size,

(3.2) T K
ε := inf{t ≥ 0, Na(t ) = bεK c} and SK

ε := inf{t ≥ 0, NA(t ) ∉ I K
ε },

then we can deduce from [5] (see Equations (A.5) and (A.6) in [30] for the details of the derivation)
that the events FixK , {T K

ε ≤ SK
ε } and {T K

ε <∞} are very close:

(3.3) limsup
K→∞

P({T K
ε ≤ SK

ε }
i

FixK ) ≤ cε, and limsup
K→∞

P({T K
ε <∞}

i
FixK ) ≤ cε,

for a finite c and ε small enough, where we recall convention (1.9). In this context,
a

is the sym-
metric difference: for two sets B and C , B

a
C = (B∩C c )∪(C ∩B c ). From this point onwards, "first

phase" will denote the time interval [0,T K
ε ] when the a-population size is smaller than bεK c.
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Second phase. When NA and Na are of order K , the rescaled population process (NA/K , Na/K ) is
well approximated by the Lotka-Volterra system (1.7). Moreover, under Condition (1.8) the system
(1.7) has a unique attracting equilibrium (0, n̄a) for initial condition z satisfying za > 0, where n̄a

has been defined in (1.6). In particular, if we introduce for (nA ,na) ∈N2 the notation,

(3.4) P(nA ,na )(.) :=P(.|NA(0) = nA , Na(0) = na),

then Theorem 3 (b) in [5] implies:

(3.5) lim
K→∞

sup
z∈Γ

P(bzAK c,bza K c)

(
sup

0≤t≤tε,α∈A

∣∣∣ Nα(t )
K −n(z)

α (t )
∣∣∣≥ δ)

= 0,

for every δ> 0, where

(3.6) Γ :=
{

z ∈RA
+ ,bzAK c ∈ I K

ε , za ∈ [ε/2,ε]
}

,

(3.7) tε(z) := inf
{

s ≥ 0,∀t ≥ s,n(z)
A (t ) ∈ [0,ε2/2],n(z)

a (t ) ∈ [n̄a −ε/2, n̄a +ε/2]
}
,

and

(3.8) tε := sup{tε(z), z ∈ Γ} <∞.

In the sequel, "second phase" will denote the time interval [T K
ε ,T K

ε + tε] when the population
process is close to the solution of the system (1.7).

Third phase. Equation (3.5) also implies that

(3.9) lim
K→∞

P
(

NA(T K
ε +tε)

K ∈ [ω1,ω2],
∣∣∣ Na (T K

ε +tε)
K − n̄a

∣∣∣≤ ε,
∣∣∣( NA (T K

ε )
K ,

Na (T K
ε )

K

)
∈ Γ

)
= 1,

where

(3.10) 2ω1 := inf{n(z)
A (tε), z ∈ Γ} > 0, and ω2 := sup{n(z)

A (tε), z ∈ Γ} ≤ ε2.

The "third phase", which corresponds to the time interval [T K
ε + tε,T K

ext], can be seen as the sym-
metric counterpart of the first phase, where the roles of A and a are interchanged: during the
extinction of the A-population, the a-population size stays close to its equilibrium value n̄aK .

Let us introduce the positive real number M ′′ := 3+ ( fa +Ca,A)/Ca,a and the finite subset ofN

(3.11) J K
ε :=

[
K

(
n̄a −M ′′ε

)
,K

(
n̄a +M ′′ε

)]
∩N.

Let us also introduce the times T (K ,A)
u and S(K ,a)

ε , which are two stopping times for the process
restarted after the second phase, and denote respectively the hitting times of buK c by the A-
population for u ∈R+, and the exit time of J K

ε by the a-population during the third phase,

(3.12) T (K ,A)
u := inf{t ≥ 0, NA(T K

ε + tε+ t ) = buK c}, S(K ,a)
ε := inf{t ≥ 0, Na(T K

ε + tε+ t ) ∉ J K
ε }.

If we define the event

(3.13) N K
ε := {T K

ε ≤ SK
ε }∩

{
NA (T K

ε +tε)
K ∈ [ω1,ω2],

∣∣∣ Na (T K
ε +tε)
K − n̄a

∣∣∣≤ ε},

we get from the proof of Lemma 3 in [5] that for a finite c and ε small enough,
(3.14)

limsup
K→∞

{
P(FixK

i
[N K

ε ∩ {T (K ,A)
0 < T (K ,A)

ε ∧S(K ,a)
ε }])+P(FixK

i
[N K

ε ∩ {T (K ,A)
0 < T (K ,A)

ε }])
}
≤ cε.

In other words, the fixation event FixK is very close to the following succession of events:

• The a-population size hits bεK c before the A-population size has escaped the vicinity of
its equilibrium I K

ε (first phase)
• The rescaled population process N /K is close to the deterministic competitive Lotka-

Volterra system during the second phase
• The A-population size gets extinct before hitting bεK c and before the a-population size

has escaped the vicinity of its equilibrium J K
ε (third phase)
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This justifies the use of the couplings described in the next section.

3.2. Couplings for the first and third phases. We are interested in the law of the neutral genealo-
gies on the event FixK . Equations (3.3) and (3.14) imply that it is enough to concentrate our at-
tention on the event N K

ε ∩ {T (K ,A)
0 < T (K ,A)

ε }, but the dynamics of the population process N con-
ditionally on this event is complex to study. Indeed it boils down to studying the dynamics of a
process when we condition on a future event ({T K

ε ≤ SK
ε } for the first phase and {T (K ,A)

0 < T (K ,A)
ε }

for the third one). Hence the idea is to couple the population process with two processes, Ñ and
˜̃N , whose laws are easier to study. In particular the A-population size and the number of births of

A-individuals will be easy to control for the process Ñ during the first phase, and the a-population

size and the number of births of a-individuals will be easy to control for the process ˜̃N during the
third phase. These processes will satisfy:

(3.15) limsup
K→∞

P({∃t ≤ T K
ε , N (t ) 6= Ñ (t )},T K

ε <∞) ≤ cε.

(3.16) limsup
K→∞

P({∃ 0 ≤ t ≤ T (K ,A)
0 , N (T K

ε +tε+t ) 6= ˜̃N (T K
ε +tε+t )},T (K ,A)

0 < T (K ,A)
ε |N K

ε <∞) ≤ cε.

Let α be in A and n be inNE . Denote n(α) the α component of the population state:

(3.17) n(α) = ∑
(β,γ)∈B×C

nαβγeαβγ,

where (eαβγ, (α,β,γ) ∈ E ) is the canonical basis of RE . We are now able to introduce a process
needed to describe the couplings:

Definition 3.1. We call a Moran process of typeαwith recombination a process MR(n(α)) with values
inNα×B×C , initial state n(α), and which evolves as follows:

• After an exponential time with parameter fαn̄αK we pick uniformly and with replacement
three individuals and draw a Bernoulli variable R with parameter r2

• The first individual dies, the second one gives birth to an individual carrying its alleles at
loci SL and N 1

• If R = 0, there is no recombination and the allele at locus N 2 of the newborn is also inherited
from the second individual; if R = 1 there is a recombination between N 1 and N 2 and the
newborn inherits its second neutral allele from the third individual

• We again draw an exponential variable with parameter fαn̄αK and restart the procedure

Let us first describe the coupling with Ñ : N and Ñ are equal up to time SK
ε ; after this time the A

individuals in the population process Ñ follow a Moran process with recombination independent
of the a-individuals. We choose an individual in the A-population and decide that this individual
exerts a competition C A,a ÑA/K on each a-individual and the probability that an a-individual
recombine with this A-individual is f A ÑA/( f A ÑA + fa Ña) at each birth of an a-individual. To
choose the individual A which interacts with the a-population we introduce a total order ≺ on
the pairs (β,γ) ∈B×C and define for every t ≥ SK

ε ,

bc(t ) := {(β,γ) ∈B×C , ÑAβγ(t ) 6= 0,∀(β′,γ′) 6= (β,γ) ∈B×C , ÑAβ′γ′(t ) 6= 0 ⇒ (β,γ) ≺ (β′,γ′)},

the minimum label of the A-individuals in the process Ñ at time t . The process Ñ is defined by:

Ñ (t ) = 1t<SK
ε

N (t )+1t≥SK
ε

(
MR(N (A)(SK

ε ))(t −SK
ε )+ ∑

(β,γ)∈B×C

eaβγ

[∫ t

SK
ε

∫
R+

Q(1)(d s,dθ)1{0<θ− ∑
(β′ ,γ′)≺(β,γ)

bK
aβ′γ′ (ÑA(s−)e Abc(s−),Ñ (a)(s−))≤bK

aβγ(ÑA (s−)e Abc(s−),Ñ (a)(s−))}(3.18)

−
∫ t

SK
ε

∫
R+

Q(2)(d s,dθ)1{0<θ− ∑
(β′ ,γ′)≺(β,γ)

d K
aβ′γ′ (ÑA(s−)e Abc(s−),Ñ (a)(s−))≤d K

aβγ(ÑA(s−)e Abc(s−),Ñ (a)(s−))}

])
,
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where MR(N (A)) has been defined in Definition 3.1, Q(1) and Q(2) are two independent Poisson
Point processes with density d sdθ, also independent of MR(N (A)). Note that Ñ is a Markov process.

The coupling with the process ˜̃N is simpler: we assume that N K
ε from (3.13) holds; N and ˜̃N

are equal up to time T K
ε + tε+ S(K ,a)

ε ∧T (K ,A)
ε . Then the a-individuals in the population process

˜̃N follow a Moran process with recombination independent of the A-individuals, and each Aβγ-
population evolves as a birth and death process with individual birth and death rates f A and f A +
|S Aa |, independent of the a-individuals and the Aβ′γ′-populations with (β,γ) 6= (β′,γ′):

(3.19) ˜̃N (T K
ε + tε+ t ) = 1t<S(K ,a)

ε
N (T K

ε + tε+ t )+1t≥S(K ,a)
ε

(
MR(N (a)(S(K ,a)

ε ))(t −S(K ,a)
ε )+

+ ∑
(β,γ)∈B×C

e Aβγ

[∫ T K
ε +tε+t

T K
ε +tε+S(K ,a)

ε

∫
R+

Qβγ(d s,dθ)
{

1
{0<θ≤ f A

˜̃NAβγ(s−)}
−1

{0<θ− f A
˜̃NAβγ(s−)≤( f A+|S Aa |) ˜̃NAβγ(s−)}

}])
,

where MR(N (a)) has been defined in Definition 3.1 and is independent of the sequence of inde-
pendent Poisson measures (Qβγ, (β,γ) ∈B×C ), with intensity d sdθ. The process ˜̃N is also Mar-
kovian.

Inequality (3.15) follows from (3.3). Moreover, from the proof of Lemma 3 in [5] we know that

liminf
K→∞

P(T (K ,A)
0 < T (K ,A)

ε ∧S(K ,a)
ε |N K

ε ) ≥ 1− cε

for a finite c and ε small enough. Adding (3.14) we get that (3.16) is also satisfied. Hence we will

study the processes Ñ and ˜̃N and deduce properties of the dynamics of the process N during the
first and third phases.

4. PROOFS OF THE MAIN RESULTS

4.1. Events impacting the genealogies in each phase. Let us now summarize the results on the
genealogies for the three successive phases of the sweep that we will derive in Sections 6 and 7.

First phase: As explained in the previous section, we work with the process Ñ to study the first
phase. Let us introduce the jump times of Ñ :

(4.1) τK
0 = 0 and τK

m = inf{t > τK
m−1, Ñ (t ) 6= Ñ (τK

m−1)}, m ≥ 1.

The number of jumps during the first phase is denoted by J K (1):

(4.2) J K (1) := inf{m ∈N, Ña(τK
m) = bεK c}.

Coalescence and recombination events are defined as follows (see Figure 3):

Definition 4.1. We sample two distinct individuals at time τK
m and denote by αβγ and α′β′γ′ their

type.
We say that β and β′ coalesce at time τK

m if they are carried by two distinct individuals at time
τK

m and by the same individual at time τK
m−1. Seen forwards in time it corresponds to a birth and

hence a copy of the neutral allele. Seen backwards in time it corresponds to the fusion of two neutral
alleles into one, carried by one parent of the newborn. We define in the same way coalescent events
at locus N 2 (resp. loci N 1 and N 2) for alleles γ and γ′ (resp. allele pairings (β,γ) and (β′,γ′)).

We say thatβ (and/or γ) recombines at time τK
m from theα- to theα′-population if the individual

carrying the allele β (and/or γ) at time τK
m is a newborn, carries the allele α inherited from it first

parent, and has inherited its allele β (and/or γ) from a different individual carrying allele α′.

We are only interested in recombinations which provoke new associations of alleles. In particu-
lar, in the adjacent geometry SL−N 1−N 2 we will not consider the simultaneous recombinations
of a pair (β,γ) within the α-population.

Let us now describe the genealogical scenarios which modify the ancestral relationships be-
tween the neutral alleles of one individual and occur with positive probability when K is large.
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FIGURE 3. Illustration of Definition 4.1: the newborn (individual k) has inher-
ited the selected allele from its "white" parent and the two neutral alleles from its
"blue" parent; hence the encircled neutral loci (of individuals i and k) coalesce at
time τK

m . In terms of recombinations, the two neutral loci of the newborn individ-
ual recombine at time τK

m from the a- to the A-population

Let us first focus on the first phase and pick uniformly an individual i from the a-population at
time T̃ K

ε . We introduce for the adjacent geometry SL−N 1−N 2:

N R(i )(1) : there is no recombination into the A-population affecting (i ,1) or (i ,2)

and both neutral loci of the i -individual originate from the first mutant,

R2(i )(1) : only the neutral allele (i ,2) is affected by a recombination with the A-population,

hence (i ,1) originates from the first mutant and (i ,2) from an A-individual,

R12(i )(1) : one recombination between SL and N 1 from the a- into the A-population occurs

and both neutral alleles (i ,1) and (i ,2) originate from the same A-individual,

[2,1]r ec
A,i : first (backwards in time) (i ,2) recombines into the A-population, then (i ,1)

recombines into the A-population and connects to a different individual than (i ,2).

[12,2]r ec
A,i : first (backwards in time) the tuple {(i ,1), (i ,2)} recombines into the A-population,

then a second recombination splits the two neutral loci inside the A-population.

R1|2(i )(1,g a) : [2,1]r ec,1
A,i ∪ [12,2]r ec,1

A,i (see Figure 4)

FIGURE 4. Illustration of events [2,1]r ec
A,i (individual 1) and [12,2]r ec

A,i (individual 2)

Finally, we introduce a conditional probability for the process Ñ :

(4.3) P(1)(.) =P(.|J K (1) <∞),

where J K (1) has been defined in (4.2). Hence, recalling the definition of (q1, q2, q3) in (1.12) we
will prove in Section 6:



GENEALOGIES OF TWO NEUTRAL LOCI AFTER A SELECTIVE SWEEP 13

Proposition 2 (Neutral genealogies during the first phase, geometry SL − N 1− N 2). Let i be an
a-individual sampled uniformly at the end of the first phase (time T̃ K

ε ). Under Assumption 1, there
exist two finite constants c and ε0 such that for every ε≤ ε0,

limsup
K→∞

{∣∣∣P(1)(N R(i )(1))−q1q2

∣∣∣+ ∣∣∣P(1)(R2(i )(1))−q1(1−q2)
∣∣∣

+
∣∣∣P(1)(R12(i )(1))−q3

∣∣∣+ ∣∣∣P(1)(R1|2(i )(1,g a))− (1−q1 −q3)
∣∣∣}≤ cε.

For large K , the sum of the four probabilities of Proposition 2 equals one up to a constant times
ε. Hence, in the limit we only observe the events described on page 12. The probabilities of the
first two events are quite intuitive: broadly speaking, the probability to have no recombination at
a birth event is 1−r1−r2, the birth rate is fa and the duration of the first phase is logK /Sa A . Hence
under P(1), the probability of the event N R(i )(1) is approximately

(1− (r1 + r2)) fa logK /Sa A ∼ exp(−(r1 + r2)) fa logK /Sa A = q1q2.

Similarly the probability to have no recombination between SL and N 1 is close to q1 and subtract-
ing the probability of N R(i )(1) we get this of R2(i )(1). The probabilities of R12(i )(1) and R1|2(i )(1,g a)

are more complex. The proofs rely on a fine study of the different possible scenarios.

Let us now introduce the possible genealogical trajectories for the separated geometry N 1−
SL−N 2 during the first phase:

N R(i )(1),R2(i )(1) : defined as for the adjacent geometry SL−N 1−N 2

R1(i )(1) : only (i ,1) is affected by a recombination with the A-population;

(i ,2) originates from the first mutant and (i ,1) from an A-individual

R1|2(i )(1,g s) : (i ,1) and (i ,2) are affected by a recombination with the

A-population; they originate from two distinct A-individuals

In Section 6 we will prove the following asymptotics for the separated geometry N 1−SL−N 2:

Proposition 3 (Neutral genealogies during the first phase, geometry N 1− SL − N 2). Let i be an
a-individual sampled uniformly at the end of the first phase (time T̃ K

ε ). Under Assumption 1, there
exist two finite constants c and ε0 such that for every ε≤ ε0,

limsup
K→∞

{∣∣∣P(1)(N R(i )(1))−q1q2

∣∣∣+ ∣∣∣P(1)(R2(i )(1))−q1(1−q2)
∣∣∣

+
∣∣∣P(1)(R1(i )(1))− (1−q1)q2

∣∣∣+ ∣∣∣P(1)(R1|2(i )(1,g s))− (1−q1)(1−q2)
∣∣∣}≤ cε.

For this geometry, the intuitive interpretation gives the proper results. The independence of
the two neutral loci follows from the fact that a recombination which affects one neutral locus
does not change the genetic background of the other neutral locus.

Second phase: We work with the process N to study the second phase. The latter one has a dura-
tion of order 1, and the recombination probabilities are negligible with respect to one (Condition
(1.1)). Consequently, no event impacting the genealogies of the neutral loci occurs during the
second phase. More precisely, let us sample uniformly two distinct a-individuals i and j at the
end of the second phase (time T K

ε + tε) and introduce the events:

N R(i )(2) : there is no recombination affecting (i ,1) or (i ,2),

NC (i , j )(2) : there is no coalescence between the neutral genealogies of i and j .

Then we have the following result, which will be proven in Section 7.
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Proposition 4 (Neutral genealogies during the second phase for the two geometries). Let i and
j be two distinct a-individuals sampled uniformly at the end of the second phase (time T K

ε + tε).
Then under Assumption 1,

lim
K→∞

P(N R(i )(2) ∩NC (i , j )(2)|T K
ε ≤ SK

ε ) = 1.

Third phase: Finally, we focus on the process ˜̃N . When K is large, there is only one event occurring
with positive probability during the third phase which may modify the ancestry of the neutral
alleles of an individual i sampled at the end of the sweep in the adjacent geometry:

R2(i )(3,g a) : a recombination between loci N 1 and N 2 occurs and separates

(i ,1) and (i ,2) within the a-population,
(4.4)

Indeed, if we also define the events

N R(i )(3) : there is no recombination affecting (i ,1) or (i ,2) and they both

originate from the same a-individual at the end of the second phase

NC (i , j )(3) : defined as NC (i , j )(2) for two distinct individuals sampled

uniformly at the end of the sweep,

and the conditional probability for the process ˜̃N ::

(4.5) P(3)(.) :=P(.|N K
ε , ˜̃T (K ,A)

0 < ˜̃T (K ,A)
ε ),

where ˜̃T (K ,A)
0 and ˜̃T (K ,A)

ε are the analogs of T (K ,A)
0 and T (K ,A)

ε (defined in (3.12)) for the process ˜̃N ,
then we will prove in Section 7:

Proposition 5 (Neutral genealogies during the third phase, geometry SL−N 1−N 2). Let i and j be
two distinct a-individuals sampled uniformly at the end of the sweep. Under Assumption 1, there
exist two finite constants c and ε0 such that for every ε≤ ε0,

limsup
K→∞

{∣∣∣P(3)(R2(i )(3,g a))− (1− q̄2)
∣∣∣+ ∣∣∣P(3)(N R(i )(3))− q̄2

∣∣∣+ ∣∣∣P(3)(NC (i , j )(3))−1
∣∣∣}≤ c

p
ε.

In particular, there is no recombination with the A-population during the third phase. As
for the Proposition 3 this result is quite intuitive, as the duration of the third phase is close to
logK /|S Aa |.

Independence: Finally we again consider the population process N and state a proposition which
enables us to give the statement of Theorem 1 independently for all sampled individuals, that is,
jointly for the whole sample. To this aim, let us introduce a partition Θ(K ,1)

d ∈ P ∗
d which is the

analogue ofΘK
d where the d individuals are sampled at the end of the first phase and not at the end

of the sweep. Recall Definitions 1.2 and 1.3, and denote by |R2(3,g a)|d (resp. |N R(3)|d ) the number
of a-individuals in a d-sample taken at the end of the sweep whose neutral alleles originate from
two distinct a-individuals (resp. from the same a-individual) at the beginning of the third phase.
Then we have the following result:

Proposition 6. Let Assumption 1 hold. Then there exist two finite constants c and ε0 such that for
every ε≤ ε0, the ancestral relationships of a d-sample taken at the end of the first phase (time T K

ε )
satisfy in the adjacent geometry SL−N 1−N 2, for every (mk ,1 ≤ k ≤ 4) ∈Z4+:

limsup
K→∞

∣∣∣P(|Θ(K ,1)
d |k = mk ,1 ≤ k ≤ 4|T K

ε ≤ SK
ε )

−1{m1+m2+m3+m4=d}
d !

m1!m2!m3!m4!
(q1q2)m1 (q1(1−q2))m2 qm3

3 (1−q1 −q3)m4

∣∣∣≤ cε.
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In the same way, the neutral genealogy of a d-sample taken at the end of the sweep satisfies for every
(mk ,1 ≤ k ≤ 2) ∈Z2+:

limsup
K→∞

∣∣∣P((|R2(3,g a)|d , |N R(3)|d ) = (m1,m2)|N K
ε )−1{m1+m2=d}

d !

m1!m2!
(1− q̄2)m1 q̄m2

2

∣∣∣≤ cε.

The Proposition 6 is a key result: we only need to focus on individual neutral genealogies to get
general results on the genealogy of a d-sample with respect to the neutral loci. It will be proven in
Section 8.

4.2. Proof of Theorem 1. Let i be an individual sampled uniformly at the end of the sweep. The
idea of the proof is the following: in a first step, we list certain compositions of coalescent and re-
combination events leading to specific ancestral relationships which could be described by blocks
of a partition of ∆d . Then we approximate the probabilities of the described events and finally
prove that these probabilities sum to one up to a constant times

p
ε for some fixed small ε. This

shows that in the limit for large K the neutral genealogy of the individual i belongs to those de-
scribed on page 12 with a probability close to one. In a second step we use Proposition 6 to treat
the neutral genealogies of the d sampled individuals independently.

i) We consider two possible trajectories such that the alleles at both neutral loci originate
from the mutant: either the two neutral loci separate inside the a-population during the
third phase and coalesce during the first phase, or they stay in the a-population and do
not separate during the whole sweep (see individual 1 in Figure 1):

(
R2(i )(3,g a) ∩N R(i 1)(2) ∩N R(i 2)(2) ∩NC (i 1, i 2)(2) ∩ [N R(i 1)(1) tR2(i 1)(1)]∩N R(i 2)(1)

)
⊔(

N R(i )(3) ∩N R(i )(2) ∩N R(i )(1)
)
,

where t is the disjoint union and we denote by i 1 and i 2 the labels of the parents of the
first and second neutral loci of i , respectively, at the end of the second phase (the way we
label the a-individuals has no importance as they are exchangeable).

ii) We consider two possible trajectories such that (i ,1) originates from the mutant and (i ,2)
originates from some A-individual(

R2(i )(3,g a) ∩N R(i 1)(2) ∩N R(i 2)(2) ∩NC (i 1, i 2)(2) ∩ [N R(i 1)(1) ∪R2(i 1)(1)]

∩ [R12(i 2)(1) tR1|2(i 2)(1) tR2(i 2)(1)]
)⊔(

N R(i )(3) ∩N R(i )(2) ∩R2(i )(1)
)
.

Note that the first bracket considers a separation of the two neutral loci during the third
phase. As a consequence, the fate of the first neutral locus of individual i 2 during the
first phase has no consequence on the neutral genealogy of i . This is why we consider
the event {R12(i 2)(1)tR1|2(i 2)(1)tR2(i 2)(1)} and not only {R2(i 2)(1)}. The second bracket
corresponds to individual 2 in Figure 1.

iii) We consider one possible trajectory such that (i ,1) originates from some A-individual and
(i ,2) originates from the mutant (see individual 5 in Figure 1)

R2(i )(3,g a) ∩N R(i 1)(2) ∩N R(i 2)(2) ∩NC (i 1, i 2)(2) ∩ [R12(i 1)(1) tR1|2(i 1)(1,g a)]∩N R(i 2)(1)

iv) We consider one possible trajectory such that (i ,1) and (i ,2) originate from the same A-
individual (see individual 3 in Figure 1)

N R(i )(3) ∩N R(i )(2) ∩R12(i )(1)
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v) Finally, we consider two possible trajectories such that (i ,1) and (i ,2) originate from dis-
tinct A-individuals (see individual 4 in Figure 1 for the second bracket):(

R2(i )(3,g a) ∩N R(i 1)(2) ∩N R(i 2)(2) ∩NC (i 1, i 2)(2) ∩ [R12(i 1)(1) tR1|2(i 1)(1)]

∩ [R12(i 2)(1) tR1|2(i 2)(1) ∪R2(i 2)(1)]
)⊔(

N R(i )(3) ∩N R(i )(2) ∩R1|2(i )(1,g a)
)
.

Thanks to (3.3), and (3.14) to (3.16) we know that for all non negligible measurable events C (1),
C (2) and C (3) occurring during the first, second and third phase respectively,

(4.6) P(C (1),C (2),C (3),FixK ) =P(C (1),C (2),C (3),N K
ε , {T (K ,A)

0 < T (K ,A)
ε ∧S(K ,A)

ε })+OK (ε)

where OK (ε) is a function of K and ε satisfying

(4.7) limsup
K→∞

|OK (ε)| ≤ cε,

for ε≤ ε0 where ε0 and c are finite. Using the same inequalities we can decompose the right hand
side of (4.6) as follows

P(C (1), {T K
ε <∞})+P(C (2), {

NA(T K
ε +tε)

K ∈ [ω1,ω2], |Na (T K
ε +tε)
K − n̄a | ≤ ε}|C (1), {T K

ε ≤ SK
ε })

+P(C (3), {T (K ,A)
0 < T (K ,A)

ε ∧S(K ,A)
ε }|C (1),C (2),N K

ε )+OK (ε).

Then from (3.15) we get

P(C (1), {T K
ε <∞}) =P(1)(C̃ (1))P(T K

ε <∞)+OK (ε),

from (3.9)

P(C (2), {
NA(T K

ε +tε)
K ∈ [ω1,ω2], |Na (T K

ε +tε)
K − n̄a | ≤ ε}|C (1), {T K

ε ≤ SK
ε }) =P(C (2)|C (1), {T K

ε ≤ SK
ε })+OK (ε),

and from (3.14) and (3.16)

P(C (3), {T (K ,A)
0 < T (K ,A)

ε ∧S(K ,A)
ε }|C (1),C (2),N K

ε ) =P(3)( ˜̃C (3)|C (1),C (2))+OK (ε),

where C̃ (1) (resp. ˜̃C (3)) corresponds to the event C (1) (resp. C (3)) expressed in terms of the process
Ñ (resp. ˜̃N ). Putting everything together we finally obtain

(4.8) P(C (1),C (2),C (3)|FixK ) =P(3)( ˜̃C (3)|C (1),C (2))P(C (2)|C (1), {T K
ε ≤ SK

ε })P(1)(C̃ (1))+OK (ε).

Then by applying Propositions 2, 4, 5 and 6 we get for these five successive events the value of the
probabilities (pk ,1 ≤ k ≤ 5) defined in (1.13), which sum to one. Let us detail the calculations for
the case i ): by applying (4.8), Proposition 4 and the Markov property, the probability to see one of
the two trajectories described in i ) is

(4.9) P (i ,1) =P(3)(R2(i )(3,g a))P(1)([N R(i )(1) tR2(i )(1)]∩N R( j )(1))

+P(3)(N R(i )(3))P(1)(N R(i )(1))+OK (ε),

where i and j are two distinct individuals (exchangeability). But thanks to Proposition 6 we know
that the neutral genealogies of individuals i and j are nearly independent. Hence adding Propo-
sition 2 leads to

P(1)([N R(i )(1) tR2(i )(1)]∩N R( j )(1)) = (q1q2 +q1(1−q2))q1q2 +OK (ε).

Applying Propositions 2 and 5 in (4.9) yields

P (i ,1) = (1− q̄2)q2
1 q2 + q̄2q1q2 +OK (

p
ε) = p1 +OK (

p
ε),

where we recall the definition of p1 in (1.13).

Finally, we get the asymptotic independence of the neutral genealogies of the d sampled in-
dividuals during the first and third phases by applying the multinomial version of the de Finetti



GENEALOGIES OF TWO NEUTRAL LOCI AFTER A SELECTIVE SWEEP 17

Representation Theorem (see [11] Chapter 4 for a simple proof) to the result of Proposition 6.
The asymptotic independence during the second phase follows from Proposition 4 as, with high
probability, nothing happens.

4.3. Proof of Theorem 2. It is similar to the proof of Theorem 1: Proposition 3 states that in
the separated geometry, N 1− SL − N 2, the two neutral loci recombine independently with the
A-population during the first phase. Propositions 4 and 5 state that coalescences and recombi-
nations between A- and a- populations during the second and the third phases are negligible.
Hence the ancestral relations are not modified by these two phases and the overall ancestral re-
lations are those stated in Proposition 3. In the separated geometry, the independence between
genealogies is even easier to derive as the genetic background of a neutral allele does not depend
on the recombinations undergone by the individual’s other neutral allele.

5. NUMBER OF BIRTHS AND DEATHS DURING THE SELECTIVE SWEEP

In this section we derive some results on birth and death numbers of the population processes
Ñ and ˜̃N , needed in Sections 6 and 7 to prove Propositions 2, 4 and 5.

5.1. Coupling with supercritical birth and death processes during the first phase. We are inter-
ested in the dynamics of the process Ña during the first phase, that is, before the time T̃ K

ε . The
idea is to couple this process with two supercritical birth and death processes, and deduce its dy-
namics from well known results on birth and death processes. Recall the definition of the rescaled
invasion fitness s in (1.10), and for ε< Sa A/(2Ca,AC A,a/C A,A+Ca,a) define the two approximations,

(5.1) s − 2Ca,AC A,a +Ca,aC A,A

faC A,A
ε=: s−(ε) ≤ s ≤ s+(ε) := s +2

Ca,AC A,a

faC A,A
ε.

Then for t < T̃ K
ε ∧SK

ε the death rate of a-individuals in the process Ñ equals that of the process N ,
defined in (1.4) and satisfies

(5.2) 1− s+(ε) ≤ da(Ñ (t ))

fa Ña(t )
= 1− s + Ca,A

faK
(ÑA(t )− n̄AK )+ Ca,a

faK
Ña(t ) ≤ 1− s−(ε).

For SK
ε ≤ t < T̃ K

ε , according to the definition of Ñ in (3.18), the death rate of a-individuals also
satisfies

(5.3) 1− s+(ε) ≤ d K
a (ÑAe Abc(t ), Ñ (a)(t ))

fa Ña(t )
≤ 1− s−(ε).

Hence, following Theorem 2 in [5] we can construct the processes Z−
ε , (ÑA , Ña) and Z+

ε on the
same probability space such that almost surely:

(5.4) Z−
ε (t ) ≤ Ña(t ) ≤ Z+

ε (t ), for all t < T̃ K
ε ,

where for ∗ ∈ {−,+}, Z∗
ε is a birth and death process with initial state 1, and individual birth and

death rates fa and fa(1− s∗(ε)).

Let σK
u denote the time of the first hitting of buc by the process Ña :

(5.5) σK
u := inf{t ≥ 0, Ña(t ) = buc}, u ∈R+.

If for 0 < s < 1, Z̃ (s) is a random walk with jumps ±1 where up-jumps occur with probability
1/(2− s) and down-jumps with probability (1− s)/(2− s), we denote by P (s)

i the law of Z̃ (s) when
the initial state is i ∈N and introduce for every ρ ∈R+ the stopping time

(5.6) τρ := inf{n ∈Z+, Z̃ (s)
n = bρc}.

5.2. Number of jumps of Ña during the first phase.
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5.2.1. Expectation of the number of upcrossings. Let us recall Equation (4.1) and consider k <
bεK c. Then the number of upcrossings from k to k +1 during the first phase is:

(5.7) U K
k (1) := #{m,τK

m < T̃ K
ε , (Ña(τK

m), Ña(τK
m+1)) = (k,k +1)},

where (1) stands for the first phase. Recall (3.1) and (5.1), and introduce a real number λε

(5.8) λε := (1− s−(ε))3(1− s+(ε))−2,

which belongs to (0,1) for ε small enough. We have the following result:

Lemma 5.1. There exist three positive finite constants c, K0 and ε0 such that for K ≥ K0 and ε≤ ε0:

If j ≤ k < bεK c and nA ∈ I K
ε ±1,

(5.9)
∣∣∣E(1)

(nA , j )[U
K
k (1)]− 1− (1− s)bεK c−k − (1− s)k+1

s

∣∣∣≤ cε.

If k < j < bεK c and nA ∈ I K
ε ±1,

(5.10) E
(1)
(nA , j )[U

K
k (1)] ≤ (1− s−(ε)) j−k

s+(ε)s2−(ε)
.

If k ′ ≤ k < bεK c and nA ∈ I K
ε ±1,

(5.11)
∣∣∣Cov(1)

(nA , j )(U
K
k (1),U K

k ′ (1))
∣∣∣≤ c

(
λ(k−k ′)/2
ε +ε

)
.

Proof. The idea, which comes from [28] and which will be used several times throughout Section
5, is to compare the number of upcrossings with geometric random variables. Suppose first that
j ≤ k. Then on the event {T̃ K

ε <∞} the process Ña necessarily jumps from k to k+1. Being in k+1,
it either reaches bεK c before k, or it goes back and then again from k to k +1 and so on. We first
approximate the probability that there is only one jump from k to k +1. As we do not know the
value of ÑA when Ña hits k for the first time, we bound the probability using the extreme values
it can take. Recall Definitions (5.5) and (5.6). The upper bound is derived as follows:

P
(1)
(nA , j )(U

K
k (1) = 1) ≤ sup

nA∈I K
ε ±1

P
(1)
(nA ,k+1)(T̃ K

ε <σK
k )(5.12)

= sup
nA∈I K

ε ±1

P(nA ,k+1)(T̃ K
ε <σK

k )

P(nA ,k+1)(T̃ K
ε <∞)

≤ q (s+(ε),s−(ε))
k ,

where we use (4.3) and for (s1, s2) ∈ (0,1)2

(5.13) q (s1,s2)
k :=

P
(s1)
k+1(τεK < τk )

P
(s2)
k+1(τεK < τ0)

.

Similarly, we show that P(1)
(nA , j )(U

K
k (1) = 1) ≥ q (s−(ε),s+(ε))

k . In the same way, we can approximate

the probability that there are least three jumps from k to k +1 knowing that there are at least two
jumps, and so on. We deduce that we can construct two geometric random variables G1 and G2,
possibly on an enlarged space, with respective parameters q (s+(ε),s−(ε))

k ∧1 and q (s−(ε),s+(ε))
k such that

(5.14) G1 ≤U K
k (1) ≤G2, a.s.

In particular, taking the expectation we get from (B.1)

(5.15)
(1− (1− s+(ε))bεK c−k )(1− (1− s−(ε))k+1)

s+(ε)(1− (1− s−(ε))bεK c)
≤ E(1)

(nA , j )[U
K
k (1)] ≤

(1− (1− s−(ε))bεK c−k )(1− (1− s+(ε))k+1)

s−(ε)(1− (1− s+(ε))bεK c)
.
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According to (1.10) and (5.1), 0 < s < 1 and |s+(ε) − s−(ε)| ≤ (4Ca,AC A,a +Ca,aC A,A)ε/( faC A,A).
Hence the last inequality and straightforward calculations lead to (5.9).

Let us now assume that k < j . Then we have

P
(1)
(nA , j )(U

K
k (1) ≥ 1) ≤ sup

nA∈I K
ε ±1

P
(1)
(nA , j )(σ

K
k < T̃ K

ε )

= sup
nA∈I K

ε ±1

P(nA , j )(T̃ K
ε <∞|σK

k < T̃ K
ε )P(nA , j )(σK

k < T̃ K
ε )

P(nA , j )(T̃ K
ε <∞)

≤
P

(s+(ε))
k (τεK < τ0)P (s−(ε))

j (τk < τεK )

P
(s−(ε))
j (τεK < τ0)

≤ (1− s−(ε)) j−k

s+(ε)s−(ε)
,

where we again used (4.3) and (B.1). Moreover, the same proof as for (5.14) leads to:

E
(1)
(nA , j )[U

K
k (1)|U K

k (1) ≥ 1] ≤
(
q (s−(ε),s+(ε))

k

)−1 ≤ s−1
− (ε),

where we used Equation (B.3). This ends the proof of (5.10). The last inequality, (5.11), has been
stated in [30] (Equation (7.26)). �

5.2.2. Expectation of hitting numbers. Let us recall (5.7) and (6.12), and introduce for 0 < j ≤ k <
bεK c the total number of downcrossings from k to k −1,

(5.16) DK
k (1) := #{m,τK

m ≤ T̃ K
ε , (Ña(τK

m), Ña(τK
m+1)) = (k,k −1)},

and the number of hittings of the state k by the process Ña before the time T̃ K
ε :

(5.17) V K
k (1) :=U K

k−1(1)+DK
k+1(1) = #{m,τK

m ≤ T̃ K
ε , Ña(τK

m) = k, Ña(τK
m+1) 6= k}.

Recall the definition of λε ∈ (0,1) in (5.8). We can state the following Lemma, which will be
useful to get bounds on the number of upcrossings of the A-population during the first phase
(see Lemma 5.4):

Lemma 5.2. There exist three finite constants c, K0 and ε0 such that for K ≥ K0, ε≤ ε0 and k ′ < k <
bεK c:∣∣∣E(1)[V K

k (1)]− (2− s)(1− (1− s)bεK c−k − (1− s)k )

s

∣∣∣≤ cε, and |Cov(1)(V K
k ′ (1),V K

k (1))| ≤ c(ε+λ(k−k ′)/2
ε ).

Proof. Under P(1) the a-population size goes from 1 to bεK c, thus the number of downcrossings
from k +1 to k is equal to the number of upcrossings from k to k +1 minus 1. Adding (5.17) yields

V K
k (1) =U K

k−1(1)+U K
k (1)−1, P(1) −a.s.

We get the first part of the Lemma by taking the expectation and applying (5.9). The proof of the
second part follows that of (5.11), and once again we can find the details in the proof of Equation
(7.26) in [30]. �

5.2.3. Number of upcrossings during an excursion above or below a given level. We now focus on
the number of upcrossings from k to k +1 during an excursion above or below l . Let us denote by
σK

l (1) the jump number of the first hitting of l before the end of the first phase: for l < bεK c,

(5.18) σK
l (1) := inf{m,τK

m ≤ T̃ K
ε , Ña(τK

m) = l },

and for 1 ≤ k, l < bεK c and nA ∈ I K
ε ±1,

(5.19) U K
nA ,l ,k (1) := #

{
m <σK

l (1), (Ña(τK
m), Ña(τK

m+1)) = (k,k +1)
}

.

Then, if we denote by µε the real number

(5.20) µε := (1− s−(ε))2(1− s+(ε))−1,
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which belongs to (0,1) for ε small enough, we can derive the following bounds:

Lemma 5.3. There exist three positive, finite constants c, K0 and ε0 such that for K ≥ K0, ε ≤ ε0,
1 ≤ k < l < bεK c and nA ∈ I K

ε ±1,

E
(1)
(nA ,k+1)[U

K
nA ,k,l (1)|σK

k (1) <∞]∨E(1)
(nA ,l−1)[U

K
nA ,l ,k (1)] ≤ cµl−k

ε .

Proof. Equations (B.5) and (B.6) in [30] state that for k < l < bεK c and nA ∈ I K
ε ±1,

P
(1)
(nA ,k+1)(U

K
nA ,k,l (1) ≥ 1|σK

k (1) <∞) ≤ c(1− s−(ε))l−k ,

and

P
(1)
(nA ,k+1)(U

K
nA ,k,l (1) = 1|U K

nA ,k,l (1) ≥ 1,σK
k (1) <∞) ≥ c

(1− s+(ε)

1− s−(ε)

)l−k

for a finite c. By comparing U K
nA ,k,l (1) with a geometric random variable we get the first inequality.

To bound the expectation of upcrossings from k to k+1 during an excursion below l we first bound
the probability to have at least one jump from k to k +1 during such an excursion. By definition,
Ña necessarily hits l−1 during the excursion below l . Recall Definitions (4.3), (5.5) and (5.6). Then
for every nA in I K

ε ±1,

P
(1)
(nA ,l−1)(σ

K
k <σK

l |σK
l <∞) = P(nA ,l−1)(T̃ K

ε <∞|σK
k <σK

l )P(nA ,l−1)(σ
K
k <σK

l )

P(nA ,l−1)(T̃ K
ε <∞)

≤
P

(s+(ε))
k (τεK < τ0)P (s−(ε))

l−1 (τk < τl )

P
(s−(ε))
l−1 (τεK < τ0)

≤ (1− s−(ε))l−k−1

s−(ε)
,

where we used (B.1). The next step consists in bounding the number of upcrossings from k to
k +1 during the excursion knowing that this number is larger than one: for nA ∈ I K

ε ±1,

P
(1)
(nA ,k+1)(σl <σk ) = P(nA ,k+1)(T̃ K

ε <∞|σl <σk )P(nA ,k+1)(σl <σk )

P(nA ,k+1)(T̃ K
ε <∞)

≥
P

(s−(ε))
l (τεK < τ0)P (s−(ε))

k+1 (τl < τk )

P
(s+(ε))
k+1 (τεK < τ0)

≥ s2
−(ε),

where we again used (B.1). Hence on the event {U K
nA ,l ,k (1) ≥ 1}, U K

nA ,l ,k (1) is smaller than a geo-

metric random variable with parameter s2−(ε) and we get:

E
(1)
(nA ,l−1)[U

K
nA ,l ,k (1)] ≤ s−2

− (ε)P(1)
(nA ,l−1)(U

K
nA ,l ,k (1) ≥ 1) ≤ (1− s−(ε))l−k−1

s3−(ε)
,

which ends the proof of Lemma 5.3. �

5.3. Number of jumps ÑA during the first phase. We introduce for k < bεK c the number of up-
crossings of the A-population when the a-population is of size k:

(5.21) U K
k (1) := #{m,τK

m ≤ T̃ K
ε , ÑA(τK

m+1)− ÑA(τK
m) = 1, Ña(τK

m) = k}.

We are now able to get bounds for the expectations and covariances of these quantities:

Lemma 5.4. There exist three finite constants c, K0 and ε0 such that for K ≥ K0, ε≤ ε0 and k < bεK c,∣∣∣E(1)
[ k∑

i=1
U K

i (1)
]
− f An̄AK logk

s fa

∣∣∣≤ cK (1+ε logk) and Var(1)
( k∑

i=1
U K

i (1)
)
≤ cK 2(1+ε log2 k).
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Proof. The proof is based on the comparison of the A- and a-population jump rates. Let us first
focus on the a-population. For k ≤ bεK c and nA ∈ I K

ε ±1,

P
(1)
(nA ,k)(Ña(d t ) 6= k) = ∑

∗∈{+,−}

P(nA ,k)(T̃ K
ε <∞|Ña(d t ) = k ∗1)

P(nA ,k)(T̃ K
ε <∞)

P(nA ,k)(Ña(d t ) = k ∗1)

≤ ∑
∗∈{+,−}

P
(s+(ε))
k∗1 (T̃ K

ε <∞)

P
(s−(ε))
k (T̃ K

ε <∞)
P(nA ,k)(Ña(d t ) = k ∗1)

≤ (1+ cε)

1− (1− s)k

(
(1− (1− s)k+1) fak + (1− s)(1− (1− s)k−1)(Da +Ca An̄A)k

)
d t

= (1+ cε) fa(2− s)kd t ,(5.22)

for a finite constant c and ε small enough, where d t is a small time step and by abuse of notation
we did not indicate the o(d t )’s. We used the definition of P(1) in (4.3) for the equality, Coupling
(5.4) for the first inequality, (B.1) for the second one, and the equality Sa A = fa −Da −Ca,An̄A for
the last one. Reasoning similarly we get:

(5.23) (1− cε) fa(2− s)kd t ≤P(1)
(nA ,k)(Ña(d t ) 6= k).

Let us now focus on the number of upcrossings of the A-population. The definition of Ñ in (3.18)
and Bayes’ Theorem yield

(5.24) (1− cε) f An̄AK d t ≤P(1)
(nA ,k)(ÑA(d t ) = nA +1) ≤ (1+ cε) f An̄AK d t ,

for a finite c and ε small enough. Indeed, from Coupling (5.4) and Equation (B.1) we get the
following bound, independent of nA in I K

ε ±1:

1− (1− s−(ε))k

1− (1− s−(ε))bεK c ≤P(nA ,k)(T̃ K
ε <∞) ≤ 1− (1− s+(ε))k

1− (1− s+(ε))bεK c .

Hence there exist two finite constants c and ε0 such that for every ε ≤ ε0, if we introduce the
parameters

(5.25)
1

q (1)
k (ε)

:= 1+ (1− cε)
f An̄AK

(2− s) fak
≤ 1+ (1+ cε)

f An̄AK

(2− s) fak
=:

1

q (2)
k (ε)

,

we can deduce from (5.22) to (5.24) that for k < bεK c
(5.26)

∑
V K

k (1)

(
G i

q (1)
k (ε)

−1
)
≤U K

k (1) ≤ ∑
V K

k (1)

(
G i

q (2)
k (ε)

−1
)
,

where for j ∈ {1,2}, (G i
q ( j )

k (ε)
, i ∈ N) is a sequence of geometric random variables with parameter

q ( j )
k (ε) independent of V K

l (1) (defined in (5.17)) for all l < bεK c. Hence a direct application of
Lemmas 5.2 and B.2 leads to

(5.27)
∣∣∣E(1)

[
U K

k (1)
]
− f An̄AK

s fak
(1− (1− s)k − (1− s)bεK c−k )

∣∣∣≤ cε
K

k
,

for a finite c and ε small enough. This implies the first inequality of Lemma 5.4.

Let us now bound the second moment of U K
k (1) and the expectation of U K

k (1)U K
l (1) for k 6= l .

The first upper bound follows again from a direct application of Lemmas 5.2 and B.2. We get

(5.28) E(1)
[

(U K
k (1))2

]
≤ E(1)

[( ∑
V K

k (1)

G i
q (2)

k (ε)

)2]≤ 2(E(1)[V K
k (1)])2

(q (2)
k (ε))2

≤ 2(1+ cε)
( f An̄AK

s fak

)2
,
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for a finite c and ε small enough. A new application of the same Lemmas yields, for k < l < bεK c

(5.29) E(1)
[
U K

k (1)U K
l (1)

]
≤ E(1)[V K

k (1)V K
l (1)]

q (2)
k (ε)q (2)

l (ε)
≤ c(1+ε+λ(l−k)/2

ε )
( f An̄AK )2

( fa s)2kl
,

where we used that E(1)[X Y ] = E(1)[X ]E(1)[Y ]+Cov(1)(X ,Y ) for any real random variables (X ,Y ).
From (5.26) to (5.29) and (B.2) we deduce that there exists a finite c such that for ε small enough
and k < bεK c,

(5.30) E(1)
[( k∑

i=1
U K

i (1)
)2]≤ (1+ cε)

( f An̄AK logk

fa s

)2 + cK 2.

Reasoning similarly to get the lower bound, we obtain

(5.31)
∣∣∣E(1)

[( k∑
i=1

U K
i (1)

)2]− ( f An̄AK logk

fa s

)2∣∣∣≤ cK 2(1+ε log2 k).

Adding the first inequality if Lemma 5.4 we conclude the proof. �

5.4. Coupling with subcritical birth and death processes during the third phase. We couple the

process ˜̃Na with two subcritical birth and death processes to control its dynamics. We recall the
definition of N K

ε in (3.13) and introduce

(5.32) s̄ := |S Aa |/ f A .

Let us define for ε small enough,

(5.33) s̄ − M ′′C A,a

f A
ε=: s̄−(ε) < s̄ < s̄+(ε) := s̄ + C A,A +M ′′C A,a

f A
ε,

where M ′′ has been defined just before Definition (3.11). Then, according to the definition of ˜̃N

in (3.19), we can follow Theorem 2 in [5] and construct the processes Y +
ε , ˜̃N and Y −

ε on the same
probability space such that on the event N K

ε

(5.34) Y +
ε (t ) ≤ ˜̃NA(t ) ≤ Y −

ε (t ), for all T K
ε + tε ≤ t < T K

ε + tε+ ˜̃T (K ,A)
0 , a.s.,

where for ∗ ∈ {−,+}, Y ∗
ε is a birth and death process with initial state NA(T K

ε + tε) and individual

birth and death rates f A and f A(1+ s̄∗(ε)), and we recall that ˜̃T (K ,A)
0 is the analog of T (K ,A)

0 (defined

in (3.12)) for the process ˜̃N .

If for 0 < s < 1, Z̃ (s) denotes a random walk with jump ±1 where up-jumps occur with proba-
bility 1/(2+ s) and down-jumps with probability (1+ s)/(2+ s), we denote by Q(s)

i the law of Z̃ (s)

when the initial state is i ∈N and introduce for every ρ ∈R+ the stopping time

(5.35) νρ := inf{n ∈Z+, Z̃ (s)
n = bρc}.

5.5. Number of jumps of ˜̃NA during the third phase. Similarly as in (5.17) we introduce for 1 ≤
k < bεK c the random variable V K

k (3) which corresponds to the number of hittings of state k by

the process ˜̃NA during the third phase. Recall Definitions (3.10), (3.11) and (5.33). We have the
following approximations:

Lemma 5.5. Let u be in [ω1,ω2]. There exist three finite constants c, K0 and ε0 such that for K ≥ K0,
ε≤ ε0 and na in J K

ε ±1, if buK c < k < bεK c,

E
(3)
(buK c,na )[V

K
k (3)] ≤ (1+ cε)

2+ s̄

s̄
(1+ s̄−(ε))buK c−k ,

and if k ≤ buK c, ∣∣∣E(3)
(buK c,na )[V

K
k (3)]− 2+ s̄

s̄
(1− (1+ s̄)−k − (1+ s̄)k−bεK c)

∣∣∣≤ cε.
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Proof. The proof is very similar to that of (5.9), hence we do not detail all the calculations and
refer to the proof of Lemma 5.1. First we consider buK c < k < bεK c and approximate under P(3)

the probability for ˜̃NA to hit k before the extinction of the A-population. Indeed, if k ≤ buK c, we

know that ˜̃NA hits k P(3)-a.s. Let buK c < k < bεK c. Then for every na ∈ J K
ε ± 1, Equation (B.1)

implies

(5.36) P
(3)
(buK c,na )(

˜̃NA hits k) ≤
Q

(s̄+(ε))
k (ν0 < νεK )Q(s̄−(ε))

buK c (νk < ν0)

Q
(s̄−(ε))
buK c (ν0 < νεK )

≤ 1+ cε

(1+ s̄−(ε))k−buK c ,

for a finite c, ε small enough and K large enough. The second step consists in counting how

many times the process ˜̃NA hits k during the third phase knowing that it happens at least once.
Once again we will compare this number with geometric random variables, by approximating
the probability to have only one jump. The following inequality follows the spirit of (5.12). The

only difference is that in the third phase ˜̃NA is coupled with subcritical birth and death processes,
whereas in the first phase Ña was coupled with supercritical birth and death processes. For every
na ∈ J K

ε ±1 and k < bεK c,

P
(3)
(k,na )(

˜̃NA(t ) ≤ k,∀t ≥ 0) ≥
Q

(s̄−(ε))
k−1 (ν0 < νk )Q(s̄−(ε))

k (νk−1 < νk+1)

Q
(s̄+(ε))
k (ν0 < νεK )

≥ (1− cε)s̄

(2+ s̄)(1− (1+ s̄)−k − (1+ s̄)k−bεK c)
.

We derive the upper bound similarly and end the proof by comparing the hitting numbers with
geometric random variables. For buK c < k < bεK c we have to multiply the expectation of the
geometric random variables by the probability to hit k at least once, approximated in (5.36). �

5.6. Number of births of a-individuals during the third phase. Recall (3.17) and let U K
k (3) be the

number of births in the a-population during the third phase when ˜̃NA equals k ≤ bεK c

(5.37) U K
k (3) := #{m,T K

ε + tε < τK
m ≤ T K

ext,
˜̃NA(τK

m) = k, and {{ ˜̃Na(τK
m+1)− ˜̃Na(τK

m) = 1}

or { ˜̃Na(τK
m+1) = ˜̃Na(τK

m), ˜̃N (a)(τK
m+1) 6= ˜̃N (a)(τK

m)}}.

We now state an approximation for the expectation of U K
k (3). We do not prove this result as it

is obtained in the same way as Lemma 5.4: the birth rate of the a-population is close to fan̄aK ,

the jump rate of the A-population is of order (2+ s̄) f Ak when ˜̃NA = k and the expectations of
the hitting numbers for the A-population are given in Lemma 5.5. The only difference is that

the A-population size can hit values bigger than the initial value of the third phase, ˜̃NA(T K
ε + tε).

However the probabilities to hit such values decrease geometrically (see Lemma 5.5) and they
have a negligible influence on the final result. Thus we get

Lemma 5.6. There exist three finite constants c, ε0 and K0 such that for ε≤ ε0 and K ≥ K0,∣∣∣E(3)
[ k∑

i=1
U K

i (3)
]
− fan̄aK logk

s̄ f A

∣∣∣≤ cK (1+ε logk), and Var(3)
( k∑

i=1
U K

i (3)
)
≤ cK 2(1+ε log2 K ).

6. FIRST PHASE

This section is dedicated to the proofs of Propositions 2 and 3. We first consider in detail the
alignment SL −N 1−N 2, prove that there are only four different possible ancestral relationships
of the two neutral loci and subsequently calculate the probabilities for the non-negligible possi-
bilities. In Section 6.4 we briefly consider the separated geometry, N 1−SL−N 2.
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6.1. Coalescence and recombination probabilities, negligible events. Recall Definition 4.1 and
define, for j ∈ {1,2}

r∗
j := r1 +1{ j=2}(r2 −2r1r2), and r∗

(1,2) := r1r2,

which denote the probability to have (only) one (resp. two) recombination(s) somewhere before
the locus N j (resp. before the locus N 2) at a birth event.

Definition 6.1. For (α,α′) ∈A 2, j ∈ {1,2} and n = (nA ,na) ∈NA we define:

p(c, j )
αα′ (n) := probability that two randomly chosen neutral alleles, located at locus N j and associ-

ated respectively with alleles α and α′ at time τK
m , coalesce at this time conditionally on

(NA , Na)(τK
m−1) = n and on the birth of an individual carrying allele α at time τK

m .

p( j )
αα′(n) := probability to have one (and only one) recombination from theα- into theα′-population

before locus N j conditionally on (NA , Na)(τK
m−1) = n and on the birth of an individual car-

rying allele α at time τK
m .

p(1,2)
αα′ (n) := probability to have a double recombination under the same conditions

Then we have the following result:

Lemma 6.1. Let α ∈ A , n = (nA ,na) ∈ NA such that na ≤ bεK c, nA ∈ I K
ε ± 1 and j ∈ {1,2}. Then

there exists a finite c such that,

p(c, j )
aa (n) = 2

na(na +1)

(
1−

r∗
j f AnA

f AnA + fana

)
, p(c, j )

a A (n) =
r∗

j f A

(na +1)( f AnA + fana)
, and p(c, j )

Aα (n) ≤ c

K 2 .

Proof. The proof of the two equalities can be found in [30] (Lemma 7.1) as the expression is the
same for nA ∈ I K

ε or d(nA , I K
ε ) = 1. The only difference is that we consider two neutral loci and have

to exclude the double recombination case. Indeed, if there are simultaneous recombinations the
alleles located at SL and N2 in the newborn originate from the same parent. The expressions of

p(c, j )
Aα (n) in the case where nA ∈ I K

ε are also stated in [30] (Lemma 7.1), and from the definition

of Ñ in (3.18) we get that when d(nA , I K
ε ) = 1, p(c, j )

A A (n) = 2/n2
A and p(c, j )

Aa (n) = 0. This ends the
proof. �

Next we focus on the recombination probabilities:

Lemma 6.2. Let α ∈ A , n = (nA ,na) ∈ NA such that na ≤ bεK c, nA ∈ I K
ε ± 1 and j ∈ {1,2, (1,2)}.

Then there exist two finite constants c and ε0 such that for every ε≤ ε0,

p( j )
aa(n) =

r∗
j fa(na −1)

(na +1)( f AnA + fana)
, p( j )

a A(n) =
r∗

j f AnA

(na +1)( f AnA + fana)
,

(6.1) p( j )
Aa(n) ≤ cε

K logK
and (1− cε)

r2

nA
≤ p(2)

A A(nA ,k) ≤ r2

nA

Proof. The second equality is stated in [30] Equation (7.2).
Conditional on the birth of an a-individual and the state of the process at the (m −1)-th jump,

the probability of picking the newborn when choosing an individual at random amongst the a-
individuals is equal to 1/(na +1). A recombination before the locus N j (or before locus N 1 and
locus N 2 if j = (1,2)) happens with probability r∗

j , independent of all other events. Finally, the
probability that the second parent is an a-individual but is different from the first parent is equal
to fa(na −1)/( f AnA + fana). This proves the first equality.

When nA ∈ I K
ε we get similarly that

p( j )
A A(n) =

r∗
j f A(nA −1)

(nA +1)( f AnA + fana)
and p( j )

Aa(n) =
r∗

j fana

(nA +1)( f AnA + fana)
,

and from the definition of Ñ in (3.18) we obtain that when d(nA , I K
ε ) = 1, p(2)

A A(n) = r2(nA −1)/n2
A

and p( j )
Aa(n) = 0. Condition (1.1) completes the proof. �
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Remark 1. Let us recall the definition of I K
ε in (3.1). Then there exist three finite constants c, ε0 and

K0 such that for ε≤ ε0, K ≥ K0, j ∈ {1,2, (1,2)}, nA ∈ I K
ε ±1 and k < bεK c,

(6.2) (1− cε)
r∗

j

k +1
≤ p( j )

a A(nA ,k) ≤
r∗

j

k +1
and p(2)

aa(nA ,k) ≤ fa

f A

r2

nA
≤ c

K logK
.

Recalling the definitions of the mth jump time and the number of jumps in (4.1) and (4.2), we
define for k ∈ {1,2, (1,2)}, m ∈N and an individual i uniformly picked at the end of the first phase,

(6.3) (αi k)m := {m ≤ J K (1) and the k-th locus/loci of the i -th individual is/are associated

to an allele α at the m-th jump time}.

The notation (αi 1)m , (α′i 2)m here implies that the two neutral loci of individual i are associated
to two distinct individuals at the mth jump time, for any α,α′ ∈A .

To approximate the genealogy of the neutral alleles sampled at the end of the first phase we
will focus on the recombinations and coalescences which may happen during this time inter-
val. We first prove that we can neglect some event combinations. Sample 2d distinct individuals
uniformly at the end of the first phase (maximal number of ancestors for the 2d neutral alleles
sampled at the end of the sweep) and define:

a Aa: a neutral allele recombines from the a-population to the A-population, and then (back-
wards in time) back into the a-population

C R: two neutral alleles coalesce in the a-population, and then (backwards in time) recombine
into the A-population

C A: two neutral alleles coalesce and at least one of them carries the allele A at the time of
coalescence

2R: a neutral allele takes part in a double recombination (i.e. a recombination before N 1 and
a recombination before N 2 at the same birth event)

R2a: a recombination separates the two neutral loci of an individual within the a-population

We can bound the probability of these events as follows:

Lemma 6.3. There exist three positive finite constants c, K0 and ε0 such that for ε≤ ε0 and K ≥ K0

P(1)(a Aa)+P(1)(C R)+P(1)(2R)+P(1)(R2a) ≤ c

logK
, and P(1)(C A) ≤ c logK

K
.

Proof. The probabilities of events a Aa, C R and C A are bounded in [30] Lemma 7.3 and Equation
(7.19) for the process N . But according to Lemmas 6.1 and 6.2 the coalescence and recombination
probabilities for the process Ñ are very close or even smaller when d(nA , I K

ε ) = 1 than when N
and Ñ are equal. Hence we just have to bound the probability of 2R and R2a. If a neutral allele
experiences a double recombination, it happens either when it is associated with an allele a, or
with an allele A. From Lemma 6.2 and the fact that r1 and r2 are of order 1/logK we get for
k < bεK c:

sup
nA∈I K

ε ±1

(
p(1,2)

aa (nA ,k)+p(1,2)
a A (nA ,k)

)
≤ c

(k +1)log2 K
,

and
sup

nA∈I K
ε ±1

(
p(1,2)

Aa (nA ,k)+p(1,2)
A A (nA ,k)

)
≤ c

K log2 K
.

Recall the definitions of U K
k (1) and U K

k (1) in (5.7) and (5.21) respectively. As a birth of an α-
individual is needed to have a recombination from theα- to theα′-population, we can bound the
probability to have a double recombination by:

P(1)(2R) ≤ c

log2 K
E(1)

[ bεK c−1∑
k=1

(U K
k (1)

k +1
+ U K

k (1)

K

)]
.
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By applying inequality (5.9) and Lemma 5.4 we succeed in bounding P(1)(2R) by a constant over
logK . It remains to consider the event R2a of a recombination within the a-population. Define
the first time (with respect to the backwards-in-time process) that this event happens:

R(1)
aa (i ) := sup{m, m ≤ J K (1) and both neutral loci of the i -th individual are

associated to distinct a-individuals at the (m −1)th jump,
(6.4)

where R(1)
aa (i ) =−∞ if the event does not happen during the first phase of the sweep. Then,

P(1)(R(1)
aa (i ) ≥ 0) =

bεK c−1∑
l=1

P(1)(R(1)
aa (i ) ≥ 0, Ña(τK

R (1)
aa (i )

) = l )

=
bεK c−1∑

l=1

∑
m<∞

P(1)(m ≤ J K (1), Ña(τK
m−1) = l , Ña(τK

m) = l +1,

(ai 1)m , (ai 2)m ,∀m′ > m : (ai 12)m′)

≤
bεK c−1∑

l=1

∑
m<∞

sup
nA∈I K

ε ±1

(
p(2)

aa(nA , l )P(1)
(nA ,l+1)(∀m ≥ 0 : (ai 12)m)

)
P(1)(m ≤ J K (1), Ña(τK

m−1) = l , Ña(τK
m) = l +1)

≤
bεK c−1∑

l=1

c

K logK
E(1)[U K

l (1)] ≤ c

logK
,

by (5.9) and (6.2). �

To simplify the notations we will denote the union of all negligible events by

N E := a Aa ∪C R ∪C A∪2R ∪R2a.(6.5)

6.2. The two loci of one individual separate within the A-population. Having excluded events
of small probability, there are exactly two ways for the neutral alleles of an individual sampled at
the end of the first phase to originate from two distinct A-individuals. The two possibilities were
already described on page 12 and represented in Figure 4. The ideas which are pursued in this
section are similar to the ones from [4], but there are extra difficulties due to the randomness of
the population size.

6.2.1. Event [2,1]r ec
A,i . The aim of this section is to prove the following approximation:

Proposition 7. Let i be an a-individual sampled uniformly at the end of the first phase. There exist
two finite constants c and ε0 such that for ε≤ ε0,

limsup
K→∞

∣∣∣P(1)([2,1]r ec
A,i )−

[ r2

r1 + r2
−e−

r1
s logbεK c+ r1

r1 + r2
e−

r1+r2
s logbεK c

]∣∣∣≤ c
p
ε.

We first give a preliminary Lemma before proving Proposition 7. Recall (4.1) and define for
k ∈ {1,2, (1,2)} and m ∈N,

(6.6) R(i ,k) := sup{m,m ≤ J K (1) and the k-th locus/loci of the i -th individual

is/are associated to an allele A at the (m −1)th jump time},

the last jump (forwards in time) when the k-th locus/loci of the i -th individual belongs to the A-
population (with sup;=−∞). To prove Proposition 7 the idea is to decompose the event [2,1]r ec

A,i
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according to the different possible a-population sizes when the first (backwards in time) recom-
bination between N 1 and N 2 occurs.

P(1)([2,1]r ec
A,i ) = P(1)(R(i ,2) > R(i ,1) ≥ 0)

=
bεK c∑
l=1

P(1)(R(i ,1) ≥ 0,R(i ,2) > R(i ,1), Ña(τK
R(i ,2)) = l )

=
bεK c−1∑

l=1
P(1)(R(i ,2) > R(i ,1), Ña(τK

R(i ,2)) = l )

P(1)(R(i ,1) ≥ 0|R(i ,2) > R(i ,1), Ña(τK
R(i ,2)) = l ).(6.7)

In the following Lemma, which then gives rise to the proof of Proposition 7, we consider separately
the two probabilities of the above product:

Lemma 6.4. There exist three finite constants c, K0 and ε0 such that for K ≥ K0, ε≤ ε0 and l < bεK c,

(6.8)
∣∣∣P(1)(R(i ,2) > R(i ,1), Ña(τK

R(i ,2)) = l )−r2
1− (1− s)bεK c−l − (1− s)l+1

s(l +1)
e−

r1+r2
s log bεK c

l

∣∣∣≤ c
p
ε

l logK

and

(6.9)
∣∣∣P(1)(R(i ,1) ≥ 0|R(i ,2) > R(i ,1), N K

a (τK
R(i ,2)) = l )−

l−1∑
k=1

r1

s(k +1)
e−

r1
s log l−1

k

∣∣∣≤ c
p
ε.

Proof of Proposition 7. From Lemma 6.4 and Equation (6.7) we get the existence of a finite c such
that for K large enough and ε small enough,

(6.10) P(1)([2,1]r ec
A,i ) ≤

bεK c−1∑
l=1

[ r2

s(l +1)
e−

r1+r2
s log bεK c

l + c
p
ε

l logK

][ l−1∑
k=1

r1

s(k +1)
e−

r1
s log l−1

k + c
p
ε
]

.

Rewriting the second term in brackets and applying Lemma B.3 with cN /log N = r1/s yields:

e−
r1
s log(l−1) r1

s

l−1∑
k=1

1

k +1
e

r1
s logk + c

p
ε ≤ e−

r1
s log(l−1)

(
e

r1
s log l −1+ c

r1

s

)
+ c

p
ε

≤ 1−e−
r1
s log l + c

p
ε,

for K large enough, ε small enough and a finite c, whose value can change from line to line and
which can be chosen independently of l . We use in the last inequality Condition (1.1) which
claims that limsupK→∞ r1 logK <∞. Including the last inequality in (6.10) gives

P(1)([2,1]r ec
A,i ) ≤

bεK c−1∑
l=1

r2

s(l +1)
e−

r1+r2
s logbεK c

(
e

r1+r2
s log l −e

r2
s log l

)
+ c

p
ε,

for a finite c, K large enough and ε small enough, where we again use (1.1) which ensures that
exponential terms are bounded away from zero and infinity in the following sense:

1

c
≤ liminf

K→∞
e−

r1+r2
s logbεK c ≤ limsup

K→∞
e

r1+r2
s logbεK c ≤ c

for a positive and finite c. Applying again Lemma B.3, we get:

P(1)([2,1]r ec
A,i ) ≤

( r2

r1 + r2
−e−

r1
s logbεK c+ r1

r1 + r2
e−

r1+r2
s logbεK c

)
+ c

p
ε.

The lower bound is obtained in the same way. Notice that it is a little bit more involved as we need
to use (B.2) in addition. �

The end of this section is devoted to the proof of Lemma 6.4.
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Proof of Equation (6.8). We can decompose the event {R(i ,2) > R(i ,1), Ña(τK
R(i ,2)) = l } according

to the jump number of the (backwards in time) first recombination. Recall the definition of
N R(i )(1) on page 12. We will use this event with a different initial condition for (ÑA , Ña), which
will not necessarily be (bn̄AK c,1). It will however still correspond to the absence of any recombi-
nation before the end of the first phase. We recall conventions (1.9) and (3.4). With the definition
of (αi k)m in (6.3) we get

(6.11) P(1)(R(i ,2) > R(i ,1), Na(τK
R(i ,2)) = l )

= ∑
m>1

P(1)(m ≤ J K (1), Ña(τK
m−1) = l−1, Ña(τK

m) = l , (ai 1)m−1, (Ai 2)m−1,∀m ≤ m′ ≤ J K (1) : (ai 12)m′)

≤ ∑
m>1

sup
nA∈I K

ε ±1

{
p(2)

a A(nA , l −1)P(1)
(nA ,l )(N R(i )(1))

}
P(1)(m ≤ J K (1), Ña(τK

m−1) = l −1, Ña(τK
m) = l )

= sup
nA∈I K

ε ±1

{
p(2)

a A(nA , l −1)P(1)
(nA ,l )(N R(i )(1))

}
E(1)[U K

l−1(1)],

and the same expression with the infimum on nA ∈ I K
ε ±1 for a lower bound. More details on the

approximation of the second probability, P(1)
(nA ,l )(N R(i )(1)), can be found in Lemma A.1. The first

probability in the sum, p(1)
a A(nA , l −1), can be bounded thanks to (6.2). This yields,

P(1)(R(i ,2) > R(i ,1), Ña(τK
R(i ,2)) = l ) ≤ (1+ cε)

r2

l +1
(e−

r1+r2
s log bεK c

l + c
p
ε)E(1)[U K

l−1(1)]

≤ (1+ c
p
ε)

r2

l +1
e−

r1+r2
s log bεK c

l E(1)[U K
l−1(1)],

for a finite c, ε small enough and K large enough, where we used that (r1 + r2) logK is bounded.
We similarly get a lower bound and end up the proof of Equation (6.8) by applying (5.9). �

Proof of Equation (6.9). We will decompose the event considered here according to the value of
Ña when the first (backwards in time) recombination occurs. Let us denote by ζK

k (1) the jump
number of the last hitting of k ≤ bεK c by Ña during the first phase,

(6.12) ζK
k (1) := sup{m,τK

m ≤ T̃ K
ε , Ña(τK

m) = k},

and recall (5.18). Then we can define the events

(6.13) N R(l ,ξ, i ) := {the first locus of individual i sampled at jump time τK
ξK

l (1)

does not recombine from the a- to the A-population between 0 and τK
ξK

l (1)
}

where ξ ∈ {ζ,σ}. Similarly as in (6.11), Bayes’ rule leads to:

P(1)(R(i ,1) ≥ 0 | R(i ,2) > R(i ,1), Ña(τK
R(i ,2)) = l )(6.14)

=
bεK c∑
k=1

P(1)(R(i ,1) ≥ 0, Ña(τK
R(i ,1))= k | R(i ,2) > R(i ,1),Ña(τK

R(i ,2)) = l ),

≤
bεK c∑
k=1

(
sup

nA∈I K
ε ±1

p(1)
a A(nA ,k −1)P(1)

(nA ,k)(N R(l ,σ, i ))
)
S (k, l ),

where for sake of simplicity we have introduced the notation

S (k, l ) := ∑
m<∞

P(1)(m < R(i ,2), Ña(τK
m−1) = k −1, Ña(τK

m) = k | Ña(τK
R(i ,2)) = l ).

The lower bound is obtained by taking the infimum for nA in I K
ε ± 1 and replacing σ by ζ. To

lighten the proof, the expectations of these two quantities are stated in Lemma A.1.
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First we prove that with a probability close to one the a-population size is bigger when the
(backwards in time) first recombination occurs than when the second, of locus (i ,1), occurs. Note
that by (5.9) and Lemma 5.3, there exists a finite c such that for every l < k < bεK c:

S (k, l ) ≤ E(1)[U K
l (1)] sup

nA∈I K
ε ±1

E
(1)
(nA ,l+1)[U

K
nA ,l ,k−1(1)|σK

l (1) <∞] ≤ cµk−l
ε ,

where we recall that µε < 1 for ε small enough, and we used (5.9) and Lemma 5.3. Hence, recalling
(6.14) and (6.2), we obtain for k > l

P(1)(R(i ,1) ≥ 0, Ñ K
a (τK

R(i ,1)) ≥ l |R(i ,2) > R(i ,1), Ña(τK
R(i ,2)) = l ) ≤ cr1

bεK c∑
k=l+1

µk−l
ε

k
≤ c

logK
,

for a finite c and ε small enough. We therefore can ignore all k > l in the sum in (6.14) and continue
with the case k ≤ l . Here, we can bound the sum as follows:

E(1)[U K
k−1(1)]− sup

nA∈I K
ε ±1

E
(1)
(nA ,l−1)[U

K
nA ,l ,k−1(1)]E(1)[U K

l (1)] ≤S (k, l ) ≤ E(1)[U K
k−1(1)].

Bounding the difference between the two bounds within Equation (6.14) then yields

l∑
k=1

r1

k
sup

nA∈I K
ε ±1

E
(1)
(nA ,l−1)[U

K
nA ,l ,k−1(1)]E(1)[U K

l (1)] ≤ cr1

l∑
k=1

µl−k
ε

k
≤ c

logK
,

for a finite c by (6.2), (5.9) and Lemma 5.3 and thus we can work with E(1)[U K
k−1(1)] as an approxi-

mation for the sum S (k, l ). Reasoning in the same way to get a lower bound and using (6.2) and
(A.2) we get the existence of a finite c such that for K large enough and ε small enough,∣∣∣P(1)(R(i ,1) ≥ 0|R(i ,2) > R(i ,1), Ñ K

a (τK
R(i ,2)) = l )−

l−1∑
k=1

r1

k
e−

r1
s log l−1

k E(1)[U K
k (1)]

∣∣∣≤ c
p
ε.

Applying (5.9) and (B.2) yields Equation (6.9). Notice that we have replaced 1/k by 1/(k +1). We
used Condition (1.1) to do this. �

6.2.2. Event [12,2]r ec
A,i . Recall the definition of [12,2]r ec

A,i on page 12. This section is devoted to the
proof of the following result:

Proposition 8. Let i be an individual sampled uniformly at the end of the first phase. There exist
two finite constants c and ε0 such that for ε≤ ε0,

limsup
K→∞

∣∣∣P(1)([12,2]r ec
A,i )− r1

[1−e−
r1+r2

s logbεK c

r1 + r2
+ e−

r1+r2
s logbεK c−e−

f A r2
fa s logbεK c

r1 + r2(1− f A/ fa)

]∣∣∣≤ c
p
ε.

Proof. As the proof is very similar to the proof of Proposition 7 we will be very brief here and only
give the ingredients. Let us introduce for l < bεK c the event:

(6.15) R A(l , i ) := {[12,2]r ec
A,i ,R(i ,2) = R(i ,1) ≥ 0, Ña(τK

R(i ,1)) = l }.

Then we can rewrite the probability of [12,2]r ec
A,i as follows:

(6.16) P(1)([12,2]r ec
A,i ) =

bεK c∑
l=1

P(1)(R A(l , i ))P(1)(R(i ,2) = R(i ,1) ≥ 0, Ñ K
a (τK

R(i ,1)) = l ).

Apart from the point of recombination, the second probability in the above sum coincides with
the probability studied in (6.8) and we obtain for ε small enough and K large enough,

(6.17) sup
l≤bεK c

l ·
∣∣∣P(1)(R(i ,2) = R(i ,1) ≥ 0, N K

a (τK
R(i ,1)) = l )−

r1(1− (1− s)bεK c−l − (1− s)l+1)

s(l +1)
e−

r1+r2
s log bεK c

l

∣∣∣≤ c

p
ε

logK
,
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for a finite c, when substituting r2 by r1 in the fraction which mirrors the recombination proba-
bility. The probability of R A(l , i ) is derived in Lemma A.1. Inserting (6.17) and (A.3) into (6.16)
yields

P(1)([12,2]r ec
A,i ) ≤

bεK c∑
l=1

(1−e−
f A
fa

r2
s log l )

r1

l +1
e−

r1+r2
s log bεK c

l + c
p
ε

≤ r1e−
r1+r2

s logbεK c
[e

r1+r2
s logbεK c−1

r1 + r2
− e

r1+r2− f A r2/ fa
s logbεK c−1

r1 + r2 − f Ar2/ fa

]
+ c

p
ε

where we again applied Lemma B.3 to express the sum in a different way, and used the finiteness
of limsupK→∞(r1 + r2) logK assumed in Condition (1.1). Reasoning similarly for the lower bound
and rearranging the terms end the proof of Proposition 8. �

6.3. Proof of Proposition 2.

Event R2(i )(1): By definition and from Lemma 6.3,

P(1)(R2(i )(1)) =P(1)(R(i ,2) ≥ 0)−P(1)(R(i ,1) ≥ 0)+O
( logK

K

)
,

where R(i ,1) and R(i ,2) have been defined in (6.6). But these probabilities have already been
derived in [30] Lemma 7.4, and we get:

P(1)(R2(i )(1)) = (1−q1q2)− (1−q1)+OK (ε) = q1(1−q2)+OK (ε),

where OK (ε) satisfies (4.7).

Event R1|2(i )(1,g a): By definition (see page 12)

P(1)(R1|2(i )(1,g a)) =P(1)([2,1]r ec
A,i )+P(1)([12,2]r ec

A,i ).

The result then follows from Propositions 7 and 8.

Event R12(i )(1): From Definition (6.15) and Equation (A.3) we obtain for K large enough,

P(1)(R12(i )(1)) =
bεK c∑
l=1

(1−P(1)(R A(l , i )))P(1)(R(i ,1) = R(i ,2) ≥ 0, Ña(τK
R(i ,2)) = l )

= r1

bεK c∑
l=1

e−
f A
fa

r2
s log l 1− (1− s)bεK c−l − (1− s)l+1

s(l +1)
e−

r1+r2
s log bεK c

l +OK (
p
ε)

= r1

r1 + r2 − f Ar2/ fa

(
e−

r2
s

f A
fa

logbεK c−e−
r1+r2

s logbεK c
)
+OK (

p
ε),

where we again used the statement of Lemma B.3 to substitute the sum, as well as Equation (B.2).

Event N R(i )(1): From Lemma 6.3,

P(1)(N R(i )(1)) = 1−P(1)(R2(i )(1))−P(1)(R12(i )(1))−P(1)(R2(i )(1))+O
( logK

K

)
.

This ends up the proof of Proposition 2.

6.4. Proof of Proposition 3. All results concerning the background birth and death process (ÑA , Ña)
are independent of the geometry. The statements derived in Section 5 and the conclusions on
negligible events can be used without modification. Note that we can stick with the recombina-
tion probabilities from Lemma 6.2 but have to keep in mind that the recombination probability

p( j )
αα′(n) now refers to the probability to see a recombination between SL and N j . Following the

reasoning in Section 6.2, there are exactly two non-negligible events which lead to two singletons
in the A-population: if k 6= k ′ ∈ {1,2},
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• First (i ,k) recombines into the A-population, then (i ,k ′) recombines into the A-population
(and connects to a different individual than (i ,k)). This event will be called [k,k ′]r ec

A,i .

A close look at the proofs of Lemma 6.4 shows that the calculations stay the same also in the case
of the separated geometry. We therefore have an analogous statement. As both situations are
symmetrical, the probability of [1,2]r ec

A,i is obtained by exchanging r1 and r2 in the expression of

P(1)([2,1]r ec
A,i ), and the asymptotical probability of R1|2(i )(1,g s) follows by adding the probabilities

for the events [1,2]r ec
A,i and [2,1]r ec

A,i . Due to symmetry reasons we can treat the probabilities of

R1(i )(1) and R2(i )(1) in one step. As the proof for R1(i )(1) from Proposition 2 only uses the results
from Lemma 6.4 which still hold true in the second geometric alignment both claims follow at
once. Finally, the statement about N R(i )(1) results from the previous observations about negligi-
ble events.

7. SECOND AND THIRD PHASES

This section is devoted to the proofs of Propositions 4 and 5.

7.1. Proof of Proposition 4. We need to show that two distinct lineages picked uniformly at the
end of the second phase coalesce or recombine during that phase only with negligible probability.
Let us recall the definition of the jumps τK

m in (4.1) and denote by U K (2) the number of upcross-
ings of the a-population during the second phase:

(7.1) U K (2) := #{m,T K
ε < τK

m ≤ T K
ε + tε, Na(τK

m+1)−Na(τK
m) = 1}.

Let us introduce the event C K
ε :

C K
ε := {T K

ε ≤ SK
ε }∩ {N K

a (t ) ≥ ε2K /4,∀ T K
ε ≤ t ≤ T K

ε + tε}.

In particular on the event C K
ε , for T K

ε ≤ τK
m ≤ T K

ε + tε and j ∈ {1,2}

p( j )
a A(N (τK

m)) ≤ 8r j

ε2K
and p(c, j )

aa (N (τK
m)) ≤ 32

ε4K 2 .

Then if we recall the definition of N R(i )(2) on page 13 we have for m ∈N,

(7.2) P(1)(N R(i )(2)|U K (2) = m,C K
ε ) ≥

(
1− 8(r1 + r2)

ε2K

)m
.

But for K large enough, log(1−8(r1 + r2)/(ε2K )) ≥−10(r1 + r2)/(ε2K ) and hence

P(1)(N R(i )(2)|C K
ε ) ≥

(
1−P(1)(U K (2) > K loglogK |C K

ε )
)
eK loglogK log(1− 8(r1+r2)

ε2K
)

≥
(
1−P(1)(U K (2) > K loglogK |C K

ε )
)
e−

10(r1+r2)loglogK

ε2 .

According to Condition (1.1) the exponential term is equivalent to 1 when K is large. Moreover,
by (3.5), N K

a is smaller than 2n̄aK on the time interval [T K
ε ,T K

ε + tε] with probability close to 1.
When this property holds, we can bound the birth number U K (2) by the sum of 2n̄aK iid Poisson
random variables with parameter fa tε. The strong law of large numbers then yields

lim
K→∞

P(1)(U K (2) > K loglogK |C K
ε ) = 0.

Applying again (3.5) to get limK→∞P(C K
ε |T K

ε <∞) = 1 finally gives

lim
K→∞

P(N R(i )(2)|T K
ε <∞) = 1.

The coalescence part in Proposition 4 can be proven in the same way.
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7.2. Proof of Proposition 5. The proof of the asymptotic probability of R2(i )(3,g a) is the same as
for (A.3), except that the roles of A and a are exchanged. Hence we do not give more details. Note
however that it extensively uses Lemma 5.6. Let us now focus on the event N R(i )(3), and introduce

N R A(i )(3) := {no neutral allele of individual i recombines from the a to the A population}.

Recall the definitions of P(3) and U K (3) in (4.3) and (5.37) respectively. We decompose the proba-

bilities according to the number of upcrossings of ˜̃Na during the third phase and get in the same
way as in (7.2), for m ∈N

P(3)(N R A(i )(3)|U K (3) = m, { ˜̃T (K ,A)
0 < ˜̃T (K ,A)

ε ∧S(K ,a)
ε }) ≥

(
1− f A(r1 + r2)ε

fa(n̄a −M ′′ε)2K

)m
,

where we recall that ˜̃T (K ,A)
0 and ˜̃T (K ,A)

ε are the analogs of T (K ,A)
0 and T (K ,A)

ε (defined in (3.12)) for

the process ˜̃N . But for K large enough and ε small enough,

log
(
1− f A(r1 + r2)ε

fa(n̄a −M ′′ε)2K

)
≥−2 f A

(r1 + r2)ε

fan̄2
aK

.

Hence we get for a finite constant c and ε small enough:

P(3)(N R A(i )(3)) ≥
(
1−P(3)

(
U K (3) > K logKp

ε

))
exp

(
− 2 f A(r1 + r2)

p
ε logK

fan̄2
a

)
≥

(
1−

p
εE(3)[U K (3)]

K logK

)(
1− 2 f A(r1 + r2)

p
ε logK

fan̄2
a

)
≥ (1− c

p
ε)2,

where we used Lemma 5.6 and that (r1 + r2) logK is bounded (Condition (1.1)).

The proof of the last part of Proposition 5 is very similar to that of Proposition 4. The key argu-
ments are that the expectation of the birth number of a-individuals during the third phase under
P(3) is of order K logK (Lemma 5.6), whereas the probability for two neutral alleles associated with
an allele a to coalesce is of order 1/K 2 at each birth of an a-individual (Lemma 6.1).

8. INDEPENDENCE OF NEUTRAL LINEAGES

This section is dedicated to the proof of Proposition 6. We sample d distinct individuals uni-
formly at the end of the first phase. We recall the definitions of the genealogical events for the
adjacent geometry SL−N 1−N 2 during the first phase on page 12 and introduce:

R(1|2) := ∑
1≤i≤d

1R1|2(i )(1,g a) , R(1) := R(1|2)+ ∑
1≤i≤d

1R12(i )(1) and R(2) := R(1)+ ∑
1≤i≤d

1R2(i )(1)

From Proposition 2 we know that R(1), R(2) and R(1|2) are sufficient to describe the neutral ge-
nealogies at the end of the first phase up to a probability negligible with respect to one for large
K . Let j ,k, l be three integers such that l ≤ j and j +k ≤ d . We aim at approximating

p( j ,k, l ) : =P(R(1) = j ,R(2) = j +k,R(1|2) = l |T K
ε ≤ SK

ε )(8.1)

=P(R(1) = j |T K
ε ≤ SK

ε )P(R(2) = j +k|T K
ε ≤ SK

ε ,R(1) = j )

P(R(1|2) = l |T K
ε ≤ SK

ε ,R(1) = j ,R(2) = j +k).

The approximations of the two first probabilities are direct adaptations of Lemma 5.2 and the
proof of Proposition 2.6 in [28], pp 1623-1624. More precisely, Lemma 7.3 in [30] which states
that with high probability two neutral lineages do not coalesce and then recombine (backwards
in time) allows us to get an equivalent of Lemma 5.2 (with J = 0) in [28]:∣∣∣P(R(1) = j |T K

ε ≤ SK
ε )−

(
d

j

)
E[F j

1 (1−F1)n− j |T K
ε ≤ SK

ε ]
∣∣∣≤ c

( 1

logK
+ε

)
,
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for ε small enough, where c is a finite constant,

F1 :=P(R(i ,1) ≥ 0|((NA , Na)(τK
n ),n ≤ J K (1)),T K

ε ≤ SK
ε ),

and R(i ,1) is defined in (6.6). Then Equations (7.21), (7.23), (7.24) and (7.26) of [30] yield

limsup
K→∞

∣∣∣E[F j
1 (1−F1)d− j |T K

ε ≤ SK
ε ]− (1−q1) j q (n− j )

1

∣∣∣≤ cε,

where q1 has been defined in (1.12), which allows to conclude

(8.2) limsup
K→∞

∣∣∣P(R(1) = j |T K
ε ≤ SK

ε )−
(

d

j

)
(1−q1) j q (d− j )

1

∣∣∣≤ cε,

for ε small enough where c is a finite constant.

The derivation of the second probability, P(R(2) = j +k|T K
ε ≤ SK

ε ,R(1) = j ), follows the same
outline. The lineages where N 1 does not escape the sweep can be seen as lineages where SL and
N 1 are the same locus and the recombination probability between SL − N 1 and N 2 is r2. This
is due to the independence of the recombinations between SL and N 1 and between N 1 and N 2.
Hence we can rewrite the probability as follows:

P(R(2) = j +k|T K
ε ≤ SK

ε ,R(1) = j ) =P(R(2)−R(1) = k|T K
ε ≤ SK

ε ,d −R(1) = d − j ).

We can then directly apply the result (8.2) for the law of R(1) and get:

(8.3) limsup
K→∞

∣∣∣P(R(2) = j +k|T K
ε ≤ SK

ε ,R(1) = j )−
(

d − j

k

)
(1−q2)k q (d− j−k)

2

∣∣∣≤ cε,

for ε small enough where c is a finite constant and q2 has been defined in (1.12).

The derivation of the last probability in (8.1) is more involved but follows the same spirit. First
note that we only have to focus on genealogies where N 1 escapes the sweep. Hence the derivation
of the probability comes down to the derivation of P(R(1|2) = l |T K

ε ≤ SK
ε ,R(1) = j ). The idea is

to propose an alternative construction of the process with the same law and where we add the
recombinations between N 1 and N 2 at the end:

• First we construct a trait population process (NA , Na) with birth and death rates defined
in (1.4)

• Second we "add" the recombinations between SL and N 1: at each birth event we draw a
Bernoulli variable with parameter r1 to decide whether there is a recombination or not. If
there is a recombination, the parent giving its neutral allele at N 1 is chosen with a proba-
bility proportional to its fertility ( f A or fa).
After this step of the construction we know the genealogies of the d neutral alleles at N 1
sampled at the end of the sweep. We label (i1, ..., i j ) the j sampled neutral alleles at N 1
which experience a recombination between SL and N 1 in their genealogy.

• Finally we "add" the recombinations between N 1 and N 2 sequentially in the lineages
where there is already a recombination between SL and N 1: we first follow backward in
time the lineage of i1 and at each birth event we draw a Bernoulli variable with parameter
r2 to decide whether there is a recombination or not, and choose the parent of neutral
allele at N 2 as in the second step. Then we do the same with the lineage of i2, and so on
until the lineage of i j . Finally we "add" the recombinations between N 1 and N 2 in those
lineages which were not marked with any recombination between SL and N 1.

Such a construction generates a process distributed as the original process and facilitates the
study of the dependencies between lineages (i1, ..., i j ). According to Lemma 6.3, with high prob-
ability there is no recombination between SL and N 1 after (backwards in time) a coalescence at
locus N 1 among the d sampled individuals. In the same way, there is no coalescence at locus N 1
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after a recombination between SL and N 1 in the A-population (this is due to the large number of
A-individuals; similar proof as for the last probability of Proposition 5. Hence if we introduce

NC ( j ) := {there is no coalescence between lineages (i1, ..., i j ) at locus N 1},

we get:

P(R(1|2) = l |T K
ε ≤ SK

ε ,R(1) = j ) =P(R(1|2) = l |T K
ε ≤ SK

ε ,R(1) = j , NC ( j ))+O
( logK

K

)
.

With the construction of the alternative process we can also define sequentially for 1 ≤ k ≤ j :

NC ( j ,k) := {there is no coalescence between lineages (i1, ..., ik ) after completion of the

process of adding the recombinations between N 1 and N 2 in the lineage ik }.

Then, if we introduce for 1 ≤ k ≤ j and δ ∈ {0,1}

{rik = δ} :={there is δ recombination between N 1 and N 2 in the lineage ik },

then for (δ1, ...,δ j ) ∈ {0,1} j

P(rik = δk ,1 ≤ k ≤ j |T K
ε ≤ SK

ε ,R(1) = j ) =∏
1≤k≤ j

P(rik = δk |T K
ε ≤ SK

ε ,R(1) = j , NC ( j ), NC ( j ,1), ..., NC ( j ,k −1))+O
( logK

K

)
.

Indeed, the probability that the event NC ( j ,k) is not realized after witnessing the recombinations
between N 1 and N 2 in lineage ik has order logK /K according to Lemma 6.3. But for 1 ≤ k ≤ j ,

(8.4) P(rik = δk |T K
ε ≤ SK

ε ,R(1) = j , NC ( j ), ..., NC ( j ,k −1))

= P(rik = δk ,R(1) = j , NC ( j ), ..., NC ( j ,k −1)|T K
ε ≤ SK

ε )

P(R(1) = j , NC ( j ), ..., NC ( j ,k −1)|T K
ε ≤ SK

ε )

= P(rik = δk ,R(1) = j |T K
ε ≤ SK

ε )−P(rik = δk ,R(1) = j , (NC ( j )∩ ...∩NC ( j ,k −1))c |T K
ε ≤ SK

ε )

P(R(1) = j |T K
ε ≤ SK

ε )−P(R(1) = j , (NC ( j )∩ ...∩NC ( j ,k −1))c |T K
ε ≤ SK

ε )
,

and according to Lemma 6.3 and Coupling (3.15), there exists a finite c such that for K large
enough and ε small enough,

P((NC ( j )∩ ...∩NC ( j ,k −1))c |T K
ε ≤ SK

ε ) ≤ c
( logK

K
+ε

)
.

As P(rik = δk ,R(1) = j |T K
ε ≤ SK

ε ) does not go to 0 when K goes to infinity, we get

P(rik = δk |T K
ε ≤ SK

ε ,R(1) = j , NC ( j ), ..., NC ( j ,k−1)) =P(rik = δk |T K
ε ≤ SK

ε ,R(1) = j )+O
( logK

K
+ε

)
= δk

P(R1|2(ik )(1,g a)|T K
ε ≤ SK

ε )

P(R(ik ,1) ≥ 0|T K
ε ≤ SK

ε )
+ (1−δk )

(
1− P(R1|2(ik )(1,g a)|T K

ε ≤ SK
ε )

P(R(ik ,1) ≥ 0|T K
ε ≤ SK

ε )

)
+O

( logK

K
+ε

)
= δk

1−q1 −q3

1−q1
+ (1−δk )

(
1− 1−q1 −q3

1−q1

)
+O

( logK

K
+ε

)
,

where we recall the definition of R(ik ,1) in (6.6), the definition of R1|2(ik )(1,g a) on page 12, and we
used Proposition 2. Adding Equations (8.2) and (8.3) we finally obtain:

p( j ,k, l ) =
(

n

j

)
(1−q1) j q (n− j )

1

(
n − j

k

)
(1−q2)k q (n− j−k)

2

(
j

l

)(
1− q3

1−q1

)l ( q3

1−q1

) j−l +OK (ε)

= n!

l !( j − l )!k !(n − j −k)!
(q1q2)n− j−k (q1(1−q2))k q j−l

3 (1−q1 −q3)l +OK (ε).(8.5)

This ends the proof of the independence between genealogies during the first phase.
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The derivation of the asymptotical independence of neutral lineages during the third phase is
an easy adaptation of Lemma 5.2 and the proof of Proposition 2.6 in [28], pp 1623-1624 as with
high probability two lineages do not coalesce during this phase.

APPENDIX A. LEMMA A.1

Recall the definition of N R(i )(1) on page 12, and Definitions (6.13) and (6.15). Then we have
the following approximations for large K .

Lemma A.1. There exist three finite constants c, K0 and ε0 such that for every K ≥ K0 and ε≤ ε0

(A.1) sup
nA∈I K

ε ±1,l≤bεK c

∣∣∣P(1)
(nA ,l )(N R(i )(1))−exp

(
− r1 + r2

s
log

bεK c
l

)∣∣∣≤ c
p
ε,

(A.2) sup
τ∈{ζ,σ}

sup
nA∈I K

ε ±1,k≤l≤bεK c

∣∣∣P(1)
(nA ,k)(N R(l ,τ, i )−exp

(
− r1

s
log

l −1

k

)∣∣∣≤ c
p
ε,

(A.3) sup
l≤bεK c

∣∣∣P(1)(R A(l , i ))−
(
1−exp

(
− f A

fa

r2

s
log l

))∣∣∣≤ c
p
ε.

Proof. Let us introduce the sigma-algebra generated by the trait population process

F :=σ
(
(ÑA , Ña)(τK

n ),τK
n ≤ T̃ K

ε

)
.

We use some ideas developed in [28] and extended in [4] towards the two-locus case. The proof,
although quite technical, can be summarized easily: for (g ,b,c,d , f ) ∈R5+, the Triangle Inequality
and the Mean Value Theorem imply

|g −e−b | ≤ |g −e−c |+ |c −d |+ |d − f |+ | f −b|.
Hence for every random variables (X1, X2) ∈R2+ and measurable event C :∣∣∣P(1)(C |F )−e−

r1+r2
s log bεK c

l

∣∣∣≤ ∣∣∣P(1)(C |F )−e−X1

∣∣∣+ ∣∣∣X1 −X2

∣∣∣
+

∣∣∣X2 −E(1)[X2]
∣∣∣+ ∣∣∣E(1)[X2]− r1 + r2

s
log

bεK c
l

∣∣∣.
By taking the expectation and applying Jensen and Cauchy-Schwarz Inequalities, we obtain:

(A.4)
∣∣∣P(1)(C )−e−

r1+r2
s log bεK c

l

∣∣∣≤ E(1)
∣∣∣P(1)(C |F )−e−X1

∣∣∣+E(1)
∣∣∣X1 −X2

∣∣∣
+

√
Var(X2)+

∣∣∣E(1)[X2]− r1 + r2

s
log

bεK c
l

∣∣∣.
Hence the idea is to find the appropriate random variables (X1, X2) ∈R2+ to get small quantities on
the right hand side.

Proof of Equation (A.1): The first step consists in working conditionally on F , describing this
probability as a product of conditional probabilities close to one, as well as in deriving a Poisson
approximation. To this aim, we define for m ∈N:

θ(12)(m) := 1{τK
m≤T̃ K

ε }1Ña (τK
m )−Ña (τK

m−1)=1}(p(1)
a A +p(2)

a A)(ÑA , Ña)(τK
m−1),

where we recall the definition of the p(i )
αα′ in Definition 4.1. Notice that Remark 1 implies that for

ρ ∈ {1,2}, nA ∈ I K
ε ±1 and l < bεK c,

(A.5)

(1−cε)(r1+r2)ρ
( l−1∑

k=1

E
(1)
(nA ,l )U

K
k (1)

(k +1)ρ

)
≤ E(1)

(nA ,l )

[ ∞∑
m=1

(θ(12)(m)1{Ña (τK
m )<l })

ρ
]
≤ (r1+r2)ρ

( l−1∑
k=1

E
(1)
(nA ,l )U

K
k (1)

(k +1)ρ

)
.
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Then, similarly as in [28], we have for nA ∈ I K
ε ±1 and l < bεK c

P
(1)
(nA ,l )(N R(i )(1)|F ) =

∞∏
m=1

(1−θ(12)(m)), P
(1)
(nA ,l ) −a.s.

If we introduce the variable,

η(12) :=
∞∑

m=1
θ(12)(m),

which will play the role of X1 in (A.4), we get by following the path of Lemma 3.6 in [28]:

(A.6) E
(1)
(nA ,l )

∣∣∣ ∞∏
m=1

(1−θ(12)(m))−exp(−η(12))
∣∣∣≤ E(1)

(nA ,l )

[ ∞∑
m=1

(θ(12)(m))2
]
≤ c

log2 K
,

for K large enough, nA ∈ I K
ε ±1, l < bεK c and a finite c (which can be chosen independently of l ),

where we used Equations (5.9) (5.10) and (A.5), and Condition (1.1) for the last inequality. Next
we introduce an approximation of the random variable η(12), namely

η̃(12) :=
∞∑

m=1
θ(12)(m)1{Ña (τK

m )≥Ña (0)},(A.7)

which will play the role of X2 in (A.4). For nA ∈ I K
ε ±1 and l ≤ bεK c:

0 ≤ E(1)
(nA ,l )[η

(12) − η̃(12)] =E(1)
(nA ,l )

[ ∞∑
m=1

θ(12)(m)1{Ña (τK
m )<l }

]
(A.8)

≤ r1 + r2

s+(ε)s2−(ε)

l−1∑
k=1

(1− s−(ε))l−k

k +1
≤ c

(r1 + r2)

l
,(A.9)

for a finite c and ε small enough, where we used (A.5) and (5.10) for the first inequality, and (B.2)
for the second one. This latter ensures that c can be chosen independently of l . The expected
value of η̃(12) can be bounded by using (A.5), (5.9) and (B.2)

E
(1)
(nA ,l )[η̃

(12)] ≥ (1− cε)(r1 + r2)
bεK c−1∑

k=l

1

k +1

(1− (1− s)bεK c−k − (1− s)k+1

s
− cε

)
≥ (1− cε)

r1 + r2

s
log

bεK c
l

− c

logK
,(A.10)

for a finite c and ε small enough. For the upper bound we get similarly,

(A.11) E
(1)
(nA ,l )[η̃

(12)] ≤ (1+ cε)
r1 + r2

s
log

bεK c
l

.

The last step consists in bounding the variance of η̃(12). As the calculation of this variance is quite
involved, we introduce an approximation of η̃(12), namely

˜̃η(12) :=
∞∑

m=1
1{Ña (τK

m−1)≥Ña (0)}1{Ña (τK
m )−Ña (τK

m−1)=1}
r1 + r2

Ña(τK
m−1)+1

=
bεK c−1∑

k=Ña (0)

r1 + r2

k +1
U K

k (1).

Equation (6.2) yields (1− cε) ˜̃η(12) ≤ η̃(12) ≤ ˜̃η(12) for a finite c and ε small enough. Hence

(A.12)
∣∣∣Var(1)

(nA ,l )η̃
(12) −Var(1)

(nA ,l )
˜̃η(12)

∣∣∣≤ cεE(1)
(nA ,l )

[(
˜̃η(12)

)2]
≤ cε(r1 + r2)2

bεK c−1∑
k,k ′=l

E(1)[(U K
k (1))2]+E(1)[(U K

k ′ (1))2]

(k +1)(k ′+1)
≤ cε,

where we used (5.14) and (B.3) which ensure that U K
k (1) is smaller than a geometric random vari-

able with parameter q (s−(ε),s+(ε))
k ≥ s−(ε). Thus it is enough to bound Var(1)

(nA ,l )
˜̃η(12). Thanks to (5.11)
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and Condition (1.1) we get:

Var(1)
(nA ,l )

˜̃η(12) = (r1 + r2)2
bεK c−1∑
k,k ′=l

Cov(1)
(nA ,l )(U

K
k (1),U K

k ′ (1))

(k +1)(k ′+1)

≤ 2(r1 + r2)2
bεK c−1∑
k≤k ′=l

λ(k ′−k)/2
ε +ε

(k +1)(k ′+1)
≤ c

logbεK c
log2 K

(c +ε logbεK c).

Recalling (A.12) and again Condition (1.1), we finally obtain

(A.13) limsup
K→∞

Var(1)
(nA ,l )η̃

(12) ≤ cε,

for a finite c independent of l and ε small enough. Applying (A.4) with X1 = η(12) and X2 = η̃(12)

yields∣∣∣P(1)
(nA ,l )(N R(i )(1))−e−

r1+r2
s log bεK c

l

∣∣∣≤ E(1)
(nA ,l )

∣∣∣ ∞∏
m=1

(1−θ(12)(m))−exp(−η(12))
∣∣∣

+E(1)
(nA ,l )[η

(12) − η̃(12)]+
√

Var(1)
(nA ,l )η̃

(12) +
∣∣∣E(1)

(nA ,l )[η̃
(12)]− r1 + r2

s
log

bεK c
l

∣∣∣.
We end the proof of Equation (A.1) with Inequalities (A.6), (A.8), (A.13), (A.10) and (A.11).

Proof of (A.2): There is a supplementary difficulty due to the randomness of Ña(τK
R(i ,2)). In the

previous case we were interested in an event before the first hitting of bεK c, while in the current
case, the conditioning on the value of Ña(τK

R(i ,2)) does not tell us how many times Ña has hit this
value before. This is why we have introduced N R(l ,σ, i ) and N R(l ,ζ, i ) in (6.13). Define for m ≥ 1,

θ(1)(m) := 1{τK
m≤T̃ K

ε }1{Ña (τK
m )−Ña (τK

m−1)=1}p(1)
a A((ÑA , Ña)(τK

m)).

We again condition on the trait population process and get for nA ∈ I K
ε ±1 and k ≤ l < bεK c,

(A.14) P
(1)
(nA ,k)(N R(l ,σ, i )|F ) =

σK
l (1)∏

m=1
(1−θ(1)(m)), P(1)

(nA ,k) −a.s.,

and the same expression with σ replacing ζ. We define the corresponding parameters for the
Poisson approximation as follows:

η(1),−
l :=

σK
l (1)∑

m=1
θ(1)(m), and η(1),+

l :=
ζK

l (1)∑
m=1

θ(1)(m).

They will play the role of X1 in (A.4). We will show that both can be approximated by:

η̃(1)
l :=

ζK
l (1)∑

m=1
θ(1)(m)1{Ña (0)≤Ña (τK

m )≤l },(A.15)

which will play the role of X2 in (A.4). Recall Definitions (5.7), (5.16) and (5.19). On the one hand,
for nA ∈ I K

ε ±1 and k < bεK c,

E
(1)
(nA ,k)[η

(1),+
l − η̃(1)

l ] = E(1)
(nA ,k)

[ζK
l (1)∑

m=1
θ(1)(m)(1{N K

a (τK
m )<k} +1{N K

a (τK
m )>l })

]
≤ E(1)[DK

k (1)]
k−1∑
j=1

sup
nA∈I K

ε

p(1)
a A(nA , j ) sup

nA∈I K
ε ±1

E
(1)
(nA ,k−1)[U

K
nA ,k, j (1)]

+E(1)[U K
l (1)]

bεK c∑
j=l+1

sup
nA∈I K

ε

p(1)
a A(nA , j ) sup

nA∈I K
ε ±1

E
(1)
(nA ,l+1)[U

K
nA ,l , j (1)|σK

l (1) <∞],(A.16)
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where we used that in the first phase, under P(1), the number of excursions below k (resp. above
l ) is equal to DK

k (1) (resp. U K
l (1)−1). Applying Inequalities (5.9), (??), Lemma 5.3, and Equation

(6.2), we get the existence of a finite c such that for ε small enough:

E
(1)
(nA ,k)[η

(1),+
l − η̃(1)

l ] ≤ cr1

bεK c∑
j=1

µ
| j−l |
ε

j +1
≤ c

logK
,

as µε ∈ (0,1) for ε small enough and by Condition (1.1). On the other hand, by using the same
results as in (A.16), we get

E
(1)
(nA ,k)[|η

(1),−
l − η̃(1)

l |] ≤ E
(1)
(nA ,k)

[σK
l (1)∑

m=1
θ(1)(m)1{Ña (τK

m )<k} +
ζK

l (1)∑
m=σK

l (1)+1

θ(1)(m)1{k≤Ña (τK
m )≤l }

]

≤ cr1

(k−1∑
j=1

µ
k− j
ε

j +1
+

l−1∑
j=k

µ
l− j
ε

j +1

)
≤ c

logK
.

This shows that it is sufficient to use η̃(1)
l for the Poisson approximation. From (A.6) we deduce

that this approximation holds true up to terms of order 1/log2 K . Recalling once again (A.4), we
see that it only remains to calculate the expected value of η̃(1)

l and to bound its variance. The

expectation can be approximated in the same way as the expected value of η̃(12)
l from the previous

part in (A.10) and (A.11):

(1− cε)
r1

s
log

l −1

k
− c

logK
≤ E(1)

(nA ,k)[η̃
(1)
l ] ≤ (1+ cε)

r1

s
log

l −1

k
.(A.17)

A comparison of the definitions of η̃(1)
l in (A.15) and η̃(12) in (A.7) shows that the variance of η̃(1)

l
can be bounded by the same expression, that is, a constant times ε. This ends the proof of Equa-
tion (A.2).

Proof of Equation (A.3) It can be done in a similar way as for Equations (A.1) and (A.2). We have
the following lower and upper bounds:

(A.18)
ζK

l (1)∏
m=1

[
1 − p(2)

A A(ÑA , Ña)(τK
m)

]
≤ 1 − P(1)(R A(l , i )|F ) ≤

σK
l (1)∏

m=1

[
1 − p(2)

A A(ÑA , Ña)(τK
m)

]
.

Once again we aim at deriving a Poisson approximation. As a birth event in the A-population
is needed to see a recombination within the A-population, bounds on the expected number of
jumps will concern the process ÑA and we have to use Lemma 5.4. �

APPENDIX B. TECHNICAL RESULTS

This section is dedicated to technical results needed in the proofs. First we recall a well known
result on the hitting times of birth and death processes which can be found in [2]:

Proposition 9. Let Z = (Zt )t≥0 be a birth and death process with individual birth and death rates
b and d. For i ∈Z+, Ti = inf{t ≥ 0, Zt = i } and Pi is the law of Z when Z0 = i . Then for (i , j ,k) ∈Z3+
such that j ∈ (i ,k),

(B.1) P j (Tk < Ti ) = 1− (d/b) j−i

1− (d/b)k−i
.

We also recall Lemma 3.5 in [28] and the first part of Equation (A.16) in [30] which are used
several times:

Lemma B.1.
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• If a > 1 there is a C such that for every N ∈N,

(B.2)
N∑

j=1

a j

j
≤ C aN

N
.

• Recall Definition (5.13). Then for (s1, s2) ∈ (0,1)2 and k < bεK c,

(B.3) q (s1∧s2,s1∨s2)
k ≥ s1 ∧ s2

Finally, we state two technical results. The first one can be proven by using characteristic func-
tions, the proof of the second Lemma is given below:

Lemma B.2. Let V be a geometric random variable with parameter p1 and (G i , i ∈N) a sequence of
independent geometric random variables with parameter p2, independent of V . Then the random
variable:

Z := ∑
i≤V

G i

is geometrically distributed with parameter p1p2.

Lemma B.3. Let (cN , N ∈N) be a bounded sequence of R. Then there exists a finite constant c such
that

limsup
N→∞

sup
k≤N

∣∣∣k−1∑
l=1

e
cN

log N log l

l +1
− log N

cN
(e

cN
log N logk −1)

∣∣∣≤ c.

Proof. We prove the Lemma for a sequence (cN , N ∈ N) in R∗ and extend the result by using the
convention ( log N

cN
(e

cN
log N logk −1)

)
|cN=0

= logk.

The idea is to compare the sum with the integral∫ k

1
x

cN
log N −1d x = log N

cN
(e

cN
log N logk −1).

Let l be in {1, ..., N −1}. Then we have∫ l+1

l
x

cN
log N −1d x − l

cN
log N

l +1
= log N

cN

(
(l +1)

cN
log N − l

cN
log N − cN

log N

l
cN

log N

l +1

)
= log N

cN
l

cN
log N

((
1+ 1

l

) cN
log N −1− cN

(l +1)log N

)
.

An application of the Taylor-Lagrange formula yields that(
1+ 1

l

) cN
log N −1 = cN

l log N
+ cN

log N

( cN

log N
−1

) 1

2l 2

(
1+x

) cN
log N −2

where x belongs to [0,1/l ]. As the sequence (cN , N ∈N) is bounded, we deduce that there exists a
finite constant c such that ∣∣∣∫ l+1

l
x

cN
log N −1d x − l

cN
log N

l +1

∣∣∣≤ c

l 2 .

This ends up the proof of Lemma B.3. �
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