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Abstract

The objective of this paper is to develop an analytical model to capture two symmetry breaking effects
controlling the frequency and nature (spinning, standing or mixed) of azimuthal modes appearing in annu-
lar chambers: (1) Using two different burner types distributed along the chamber (2) Considering the mean
azimuthal flow due to the swirlers or to effusion cooling. The ATACAMAC (Analytical Tool to Analyze
and Control Azimuthal Modes in Annular Chambers) methodology is applied using the linearized acoustic
equations with a steady and uniform azimuthal mean flow. It provides an analytical implicit dispersion
relation which can be solved numerically. A fully analytical resolution is possible when the annular cham-
ber is weakly coupled to the burners. Results show that symmetry breaking, either by mixing burners types
or with a mean azimuthal flow, splits the azimuthal modes into two waves with different frequencies and
structures. Breaking symmetry promotes standing modes but adding even a low azimuthal mean flow fos-
ters spinning modes so that the azimuthal mean flow must be taken into account to study azimuthal modes.

Keywords: Azimuthal; Theoretical; Instabilities; Mean flow; Symmetry

1. Introduction

Thermoacoustic unstable modes are a major
problem in combustion systems and they take a
specific form in annular chambers. In modern

gas turbines, azimuthal modes can develop in a
frequency range which coincides with longitudinal
modes [1–4]. The nature of these azimuthal modes
has been the topic of multiple past studies since
the pioneering works of companies like Siemens
[1] or Alstom [5] who showed that both spinning
or standing azimuthal modes could be observed
in an annular gas turbine. Five years ago, the
development of powerful LES techniques applied
to full annular combustors [6,7] showed that
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azimuthal modes could change nature randomly,
evolving from spinning to standing structure at
random instants. Experiments have also been
developed [8,9], confirming LES results but also
raising additional questions, for example linked
to the effect of outlet conditions on the develop-
ment of modes. Various theories have been pro-
posed [5,10–13], focusing on two questions: (1)
what controls the nature and the occurrence of
azimuthal modes? and (2) is it possible to suppress
them? Most solutions focus on breaking symme-
try, for example by mixing burners with different
unsteady responses in a given chamber.

A major limitation of both experimental and
LES studies in this field is cost. To understand
azimuthal modes, simpler tools which allow to
explore their basic nature in idealized configura-
tions, are needed. Such tools can be built using
network approaches and fully analytical methods
[14–16]. Recently, analytical studies have pro-
gressed in two directions: (1) Linear theories
based on network models [15–17] where the
acoustic-flame behavior is assumed linear and
modeled by a Flame Transfer Function (FTF)
while major features of the configuration are
retained such as complex burners, both annular
plenum and chamber, mean flow etc. These
studies are usually performed to determine the
stability of the configuration but can also predict
linear effects on mode structure. (2) Non-linear
theories based on linearized Galerkin methods
[5,13] where the configuration is usually reduced
to a simple annulus with zero or an infinite num-
ber of burners and no plenum but the acoustic-
flame behavior is non-linear and modeled using
a Flame Describing Function (FDF). Non-linear
approaches are especially designed to study limit
cycles and mode structures but they require sim-
plifications. Both linear and non-linear analytical
tools, as well as Helmholtz solvers, can only inves-
tigate the nature of the two components A and B
of the azimuthal modes but fail to estimate their
respective amplitudes. Especially, the ratio A/B
is ignored and the final structure cannot be fully
determined analytically: it requires experiments
or high fidelity simulations.

This paper develops a linear approach to inves-
tigate two linear mechanisms controlling azi-
muthal modes by breaking symmetry: (1)
Geometrical symmetry (GS) breaking by mixing
burners with different responses and (2) Flow sym-
metry breaking by introducing a mean swirling
motion (SM) in the annular chamber. The SM
mechanism is shown to play a strong role: it makes
the period of the two modes (co-rotating with the
mean swirl and counter rotating) different because
propagating at cþ w or cÿ w (where w is the swirl
velocity and c the sound speed in the chamber).
This ‘splits’ azimuthal modes (which are usually
degenerate at zero Mach number) into two distinct
modes. This effect is dominant compared to GS

breaking and results suggest that the nature of
azimuthal modes in annular chambers cannot be
analyzed in the zero Mach number limit but must
incorporate the effects of a mean azimuthal veloc-
ity. All applications are performed for a chamber
containing 4 burners but conclusions are expected
to be valid for real chambers (N ’10–30).

2. The analytical model

2.1. Model description

Consider a configuration where N burners feed
a 1D annular chamber (Fig. 1). The length and
section of the ith burner are noted Li and Si while
the perimeter and the cross-section of the annular
chamber are 2Lc ¼ 2pRc and Sc respectively.
Points in the burners are located using the axial
coordinate z where z ¼ 0 designates the upstream
end and z ¼ Li the burner/chamber junction. The
ith compact flame location is given by the normal-
ized abscissa a ¼ zf ;i=Li. The position in the annu-
lar cavity is identified by the angle h defining the
azimuthal coordinate x ¼ Rch. An impedance Z
is imposed at the upstream end of each burner
(z ¼ 0).

This model is limited to purely azimuthal
modes where acoustic fluctuations in the chamber
depend only on the azimuthal coordinate (h or
x ¼ Rch): it does not apply to academical setups
open to the atmosphere [8,9,18] but corresponds
well to real chambers terminated by a choked
nozzle (w0 ¼ 0). Mean density and sound speed
are noted q0 and c0 in the annular chamber and
in the hot part of the burners (aLi < z < Li) and
q0
u and c0u in the cold part of the burners

(0 < z < aLi).
Different types of burners are used to study GS

breaking (Section 3.4) and a mean azimuthal flow
is imposed in the chamber to study SM breaking
(Section 3.3). This mean flow field is supposed
to be one dimensional, steady and uniform:

Fig. 1. Configuration to study unstable modes in
annular chambers with a steady and uniform azimuthal
flow (constant Mach number Mh).



~u0ðx; tÞ ¼ u0ðx; tÞ~eh ¼ Mhc
0~eh ð1Þ

where ~eh is the azimuthal vector and Mh ¼ u0=c
0 is

the azimuthal Mach number. Such swirling
motions are often observed in annular chambers
because all swirlers have the same rotation direc-
tion. In many recent chamber designs, where effu-
sion systems are used to introduce additional
azimuthal rotation and modify residence times,
the azimuthal Mach number can be fairly large
(Mh up to 0:1). Note however that swirl directions
induced by swirlers are in opposite directions
along the outer and inner annular walls, with a
faster azimuthal velocity towards the inner wall
and a slower one towards the outer wall due to
different path lengths. Here only a mean bulk
swirl is considered but [9,19] have shown experi-
mentally that acoustic-combustion interaction
may be different in the inner and outer regions
of the swirlers.

2.2. ATACAMAC methodology and analytical
dispersion relation

The ATACAMAC (Analytical Tool to Ana-
lyze and Control Azimuthal Modes in Annular
Chambers) [15,17] methodology is used to reduce
the size of the system by splitting the annular com-
bustor into N sectors (Fig. 2). Each sector is split
into two parts: an azimuthal propagation in the
annular chamber and an interaction area at the
burner/chamber junction.

2.2.1. Interaction area at the burner/chamber
junction

The area where the acoustic interaction
between the ith burner and the annular chamber
occurs (Fig. 2) is compact [20]. The effect of the

ith burner on the acoustic field can be modeled
by a translated impedance Z trðZ; a; Li; ni; siÞ ¼

p0
b;i
ðz¼LiÞ

q0c0w0
b;i
ðz¼LiÞ [21].

The linearized equations of conservation of
mass and momentum for isentropic (p0 ¼ c0

2
q0)

configurations with non-zero azimuthal Mach
number (Fig. 3) discussed in [22–25] are applied
at the T-junction (mean flow is added only in
the chamber but no mean flow is introduced in
the burners along the longitudinal direction ~z,
i.e. M z ¼ 0) which contains only burnt gases
(Figs. 2 and 3):

m0
i þ m0

b;i ¼ m0
iþ1 and D0

i ¼ D0
iþ1 ¼ D0

b ð2Þ

where m0 ¼ ð�qu0 þ q0
�uÞS is the linearized mass flow

rate through the surface S and D0 ¼ p0 þ 2�q�uu0þ
q0
�u2 is the linearized acoustic momentum where

�f and f 0 designates the mean and fluctuating
quantity of f respectively.

With an azimuthal mean flow in the chamber,
these equations become at the T-junction:

½p0iþ1 ÿ p0
iþ1

2
�MhSc ¼ q0c0½u0

iþ1
2
Sc

þ w0
b;iðz ¼ LiÞSi ÿ u0iþ1Sc� ð3Þ

p0
iþ1

2
ð1þM2

hÞ þ 2q0c0Mhu
0
iþ1

2
¼ p0b;iðz ¼ LiÞ

¼ p0iþ1ð1þM2
hÞ þ 2q0c0Mhu

0
iþ1 ð4Þ

or in matrix form:

p0

ÿjq0c0u0

� �

iþ1

¼ T i

p0

ÿjq0c0u0

� �

iþ1
2

ð5Þ

where the interaction matrix T i is:

Fig. 2. Configuration with N ¼ 4 burners (left) and zoom on ith sector (middle) and ith T-junction (right).



T i ¼ Id þ Gi

ÿ4j Mh

1þM2
h

8 Mh

1þM2
h

� �2

2 4j Mh

1þM2
h

2
64

3
75 ð6Þ

where Gi ¼ ð1þM2
h
Þ2

1ÿM2
h

Ci is the coupling parameter at

non-null Mach number and j ¼
ffiffiffiffiffiffiffi
ÿ1

p
. It is related

to the coupling parameter without mean flow Ci

[15,17,26,27] linked to the equivalent impedance
Z tr of the ith burner (Fig. 3):

Ci ¼ Sc=ð2jSiZ trÞ ð7Þ

2.2.2. Propagation in the ith annular sector
Pressure and velocity fluctuations can be writ-

ten at any location x in the annular chamber as
[15,28]:

p0x ðAejkþx þ BeÿjkÿxÞeÿjxt

q0c0u0x ðAejkþx ÿ BeÿjkÿxÞeÿjxt

(
ð8Þ

where k� ¼ x=c0

1�Mh
.

Eq. (8) yields:

p0

ÿjq0c0u0

� �

xþDx

¼ RðDxÞ p0

ÿjq0c0u0

� �

x

ð9Þ

where the propagation matrix RðDxÞ is:

RðDxÞ ¼ ejk
þ
Dx

2

1 j

ÿj 1

� �
þ eÿjkÿDx

2

1 ÿj

j 1

� �

ð10Þ
Knowing that for each sector the azimuthal
propagation distance is the same (Dx ¼ 2Lc=N ),
all propagation matrices are equal and written
Rð2Lc=NÞ.

2.2.3. Analytical dispersion relation
Since interaction (Eq. (5)) and propagation

(Eq. (10)) matrices are known, the transfer matrix
M i of the ith sector can be obtained:

p0

ÿjq0c0u0

� �

iþ1

¼ ½T i�:½Rð2Lc=NÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
M i

p0

ÿjq0c0u0

� �

i

ð11Þ
Finally, the periodicity of the system and the
equation of one sector (Eq. (11)) lead to:

p0

ÿjq0c0u0

� �

N

¼
Y1

i¼N

M i

 !
p0

ÿjq0c0u0

� �

N

ð12Þ

The system (12) has non trivial solutions only if its
determinant is null leading to an implicit analyti-
cal dispersion relation for the frequency f:

det
Y1

i¼N

M i ÿ Id

 !
¼ 0 ð13Þ

where Id is the 2-by-2 identity matrix.

2.3. Analytical resolution for a chamber with N ¼ 4
burners

The implicit dispersion relation (Eq. (13)) can
be solved analytically using an asymptotic
approach for low coupling factor Ci or Gi:

8i 2 ½1;N �; kGik � 1 ð14Þ
The matrix M ¼Q1

i¼4M i ¼ M2M1M2M1 corre-
sponds to the asymmetry pattern 1212 and to
the symmetric configuration if M1 ¼ M2 is
enforced (C1 ¼ C2). The Taylor expansion of this
matrix (called eM ) around the frequency of the

Fig. 3. Equivalent impedance of the ith burner: the translated impedance Z tr takes into account the upstream impedance
Z, the propagation in the cold (0 < z < aLi) and hot (aLi < z < Li) parts of the burner as well as the active flame (at
z ¼ aLiÞ.



annular rig alone (f ¼ f 0 þ df [15,17] where
f 0 ¼ c0=2Lc for the first azimuthal mode) at first
order assuming low coupling factors (Eq. (14))
and low Mach number Mh � 1 is:

gY1

i¼4

M i ¼ Id þ2p
ÿjMh ÿ2Lc

c0
df ÿ 2

p
G0;�Mh

1

2Lc
c0
df þ 2

p
G0;�Mh

2 ÿjMh

" #

ð15Þ
where G0;�Mh

1 and G0;�Mh

2 are the values of the
coupling parameters G1 and G2 evaluated at the
frequency f 0ð1�MhÞ.

Eq. (15) yields an explicit dispersion relation:

2p
Lc

c0
df

� �2

þ 4p
Lc

c0
G0;�Mh

1 þ G0;�Mh

2

ÿ �
df

þ 4G0;�Mh

1 G0;�Mh

2 ÿ p2M2
h ¼ 0 ð16Þ

Frequencies of the first azimuthal mode can be
obtained by solving the quadratic equation (Eq.
(16)). They are recast using nondimensionalized
numbers such as the mean azimuthal Mach num-

ber, the total coupling factor (R0 ¼ 2ðG0;�Mh

1 þ
G0;�Mh

2 Þ) and the splitting strength (S) defined for
the pattern 1212 as:

S ¼ 2ðG0;�Mh

1 ÿ G0;�Mh

2 Þ ð17Þ

so that solutions of Eq. (16) are:

df1;2 ¼ ÿc0 R0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 4p2M2

h

q� �
=4pLc ð18Þ

where ÿ corresponds to Wave 1 (co-rotating if
Mh–0) and þ to Wave 2 (counter-rotating if
Mh–0): the frequencies are split.

The eigenspace associated to each frequency
(f1 ¼ f 0 þ df1 and f2 ¼ f 0 þ df2) is one-dimen-
sional and the mode nature is fixed by Mh and
kSk. The system defined by Eq. (12) can be evalu-
ated at the frequencies f1 and f2 obtained in Eq.
(18) which provides the relation:

ÿ2pjMh ÿS � SM

ÿS � SM ÿ2pjMh

� �
p0

ÿjq0c0u0

� �

4

¼
0

0

� �

ð19Þ

where SM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ 4p2M2

h

q
corresponds to the

interaction of GS (S) and SM (Mh) breaking.
For Waves 1 and 2, Eq. (19) gives the ratio

qþ

qÿ ¼ p0
4
þq0c0u0

4

p0
4
ÿq0c0u0

4

:

qþ

qÿ
¼ ÿS

2pMh þ SM

and
qþ

qÿ
¼ 2pMh þ SM

S ð20Þ

Consequently the frequency and nature of azi-
muthal modes are controlled by the splitting
strength kSk, the Mach number Mh and their
interaction kSMk.

3. Results and discussion

3.1. Description of the configurations

The effect of geometrical and flow symmetry
breaking on frequency and nature of azimuthal
modes will be investigated using the analytical
results (Eqs. (18) and (20)) in an idealized annular
combustor with N ¼ 4 burners (Fig. 4). Only the
first azimuthal mode is considered. Physical and
geometrical parameters are defined in Table 1
and Fig. 4. The upstream impedance Z is set to
zero to mimic a large plenum connected to the
burners and the flames are placed at the burner/
chamber junction (a ¼ 1) which leads to [17]:

Ci ¼ ÿ 1

2

Si

Sc

q0c0

q0
uc

0
u

1þ nie
jxsið Þ cotan ðkuLiÞ ð21Þ

where ku ¼ x=cu.
Four different cases (Fig. 5) are studied:

� Sym-NoMach: First, a symmetric configura-
tion where burners and flames are identical is
studied (Section 3.2, [15]. The Mach number
Mh is zero.

� Sym-Mach: A constant mean azimuthal flow
(Mh – 0) is added to the previous case.

� Asym-NoMach: At zero Mach number
(Mh ¼ 0), the configuration is disymmetrized
using two burner types with different Flame
Transfer Functions ðn1; s1Þ and ðn2; s2Þ with
the pattern 1212 (Section 3.4).

� Asym-Mach: Finally, an azimuthal mean flow
corresponding to a mean Mach number Mh is
added to the previous case (Section 3.5).

Analytical results are systematically compared
to numerical solutions of the eigen-problem (12):
the frequencies are computed using a non-linear
solver (Newton–Raphson) searching for zeros of

detð
Q1

i¼NM i ÿ IdÞ.
Knowing the frequency, the state at the N th

burner location (V N ¼ ðp0N ;ÿjq0c0u0N Þ
T
) is com-

puted as an eigenvector satisfying Eq. (12). The
acoustic pressure p0N and velocity u0N are propa-
gated at any azimuthal location x in the chamber
using Eqs. (5) and (10). The azimuthal variation
of the pressure modulus (kp0k) and phase
(/ ¼ argðp0Þ) with the azimuthal coordinate (x
or h) indicates the mode nature: spinning (linear
phase), standing (constant phase) or mixed. A
structure diagram (kp0k cosð/Þ; kp0k sinð/Þ;Mh or
kSk) is constructed to track the evolution of the
mode structure with the Mach number (Mh) or
the splitting strength (kSk).

Analytical results with no mean flow will be
also validated using a 3D acoustic solver called
AVSP devoted to the resolution of acoustic modes
at zero Mach number of combustion chambers
[29].



3.2. Symmetric case with no mean flow
(Sym NoMach)

All 4 burners are identical thus matrices
M i ¼ T iRi and coupling factors Ci are all equal
(the subscript i can be omitted here). The disper-
sion relation (Eq. (16) with kSk ¼ 0 and Mh ¼ 0)
has a double root: the mode is degenerate and
the expression of the first azimuthal mode fre-
quency (Eq. (18)) reduces to:

f ¼ c0=ð2LcÞ|fflfflfflfflffl{zfflfflfflfflffl}
f 0

ÿ c0C0=ðpLcÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
df

ð22Þ

Eq. (22) is compared to results provided by the
numerical resolution of Eq. (13) and the 3D
acoustic solver in Fig. 6 showing a very good
agreement on frequency and growth rate.

In a symmetric configuration, the eigenspace
associated to the first azimuthal mode is two-
dimensional (the matrix of the system

Q1
i¼4M i

(Eq. (19)) is the null matrix) so that spinning,
standing or mixed mode can occur and have the
same growth rate: the mode structure is undeter-
mined. Noiray et al. [5] have shown that non-lin-
earities on the FTF can promote one of these
types, a phenomenon which cannot be described
by the present linear model.

3.3. Flow symmetry breaking (Sym Mach)

Consider now a case with a mean flow (SM
effect: Mh – 0) where all burners are identical
(i.e. all coupling factors Gi are equal so that
kSk ¼ 0). The dispersion relation (Eq. (16) with
kSk ¼ 0 and Mh – 0) has two distinct solutions
so that waves 1 and 2 have different frequencies
and growth rates:

f1;2 ¼
c0

2Lc|{z}
f 0

ÿ c0G0;�Mh

pLc

� c0

2Lc

Mh

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
df1ðþÞ;df2ðÿÞ

ð23Þ

The mean azimuthal flow modifies the nature of
the system: the eigenspace is only one dimensional
because the matrix of the system ((Eq. (19) where
S ¼ 0 and Mh–0) does not reduce to the null
matrix and (Eq. (20)) gives the nature of the two
waves:

� Wave 1: qþ4 ¼ 0 and qÿ4 – 0 corresponding to a
counter-rotating spinning mode.

� Wave 2: qþ4 – 0 and qÿ4 ¼ 0 corresponding to a
co-rotating spinning mode.

Fig. 4. Configuration with N ¼ 4 burners.

Table 1
Parameters used for numerical applications correspond-
ing to a large scale industrial gas turbine.

Chamber Lc 6:59 m
Sc 0:6 m2

Burner L0i 0:6 m
Si 0:01 m2

Fresh gases q0u 9:79 kg/m3

c0u 743 m/s

Burnt gases q0 3:81 kg/m3

c0 1191 m/s

Flame ni 1:57 ÿ
si Variable s

Fig. 5. Configurations leading to symmetry breaking.



Adding an azimuthal mean flow (Mh) splits
azimuthal modes into two spinning waves with
different frequencies and growth rates.

3.4. GS breaking with no mean flow (Asym
NoMach)

The Sym-NoMach case (Section 3.2) is now
investigated with two distinct Flame Transfer
Functions corresponding to the introduction of
two different burner types (i.e. two different cou-
pling parameters C1 and C2) to break symmetry
with the pattern 1212 (Fig. 5). The time-delay s1
varies from 0 ms to 11 ms while the other time-
delay s2 is fixed to 2.21 ms.

The dispersion relation (16) gives two different
frequencies f1 and f2:

f1 ¼
c0

2Lc

ÿ c0C0
1

pLc

and f 2 ¼
c0

2Lc

ÿ c0C0
2

pLc

ð24Þ

GS breaking splits the first azimuthal mode in two
classes. Mode 1 depends only of C1 and is driven
only by the type 1 burners. Mode 2 depends only

on C2 and type 2 burners, leading to a constant
stability map (Fig. 7) since only s1 is varying while
s2 is fixed.

The splitting strength (Eq. (17)) is non null and
controls the degeneracy of the mode
(kSk ¼ 2kC0

1 ÿ C
0
2k ¼ 2pLc

c0
kf2 ÿ f1k) which gener-

alizes the results of Noiray et al. [5] obtained in
a simple annular rig not connected to burners.

Due to this splitting, the eigenspace associated
to each frequency (f1 and f2) is one-dimensional
and Eq. (20) gives the nature of the two waves:

� Wave 1: qþ4 =q
ÿ
4 ¼ ÿ1 (p04 ¼ 0) corresponding to

a mode locked on the 4th burner (which is of
type 2 for the pattern 1212) and imposing a
pressure node. This mode is standing and not
perturbed by burners of type 2.

� Wave 2: qþ4 =q
ÿ
4 ¼ þ1 (u04 ¼ 0) corresponding to

a standing mode imposing a velocity node at
each burner of type 2 and a pressure node at
every burner of type 1: it is perturbed only by
burners of type 2 (constant stability map in
Fig. 7 since s2 is fixed).

Fig. 6. Frequency (left) and growth rate (right) vs normalized time-delay s=s0c (where s0c ¼ 1=f 0) of the first azimuthal
mode in a configuration with N ¼ 4 burners. : Atacamac (numerical resolution Eq. (13)), �: Atacamac (analytical –
Eq. (22)) and �: 3D acoustic solver

Fig. 7. Frequency (left) and growth rate (right) vs normalized time-delay s1=s
0
c (where s0c ¼ 1=f 0 ’ 11 ms) while s2 is

fixed to 2:21 ms of the first azimuthal mode in a configuration with N ¼ 4 burners. : Atacamac (numerical
resolution Eq. (13)) and �: Atacamac (analytical – Eq. (24)) and �: 3D acoustic solver (AVSP).



A structure diagram [5] ((kp0k cosð/Þ; kp0k
sinð/Þ; kSk), Section 3.1) can be constructed
(Fig. 8) to highlight the wave nature: if the trajec-
tory at a fixed splitting strength kSk is a circle the
wave is spinning (/ ¼ h). If the trajectory is a line
the wave is standing (/ ¼ 0 or p). Fig. 8 shows the
transition of the nature of “Wave 1” from spin-
ning to standing when the splitting strength kSk
increases (the time-delay s2 is fixed to 2.21 ms
and s1 can vary). This result is a generalization
of the graph “(g1; g2;C2p)” in [5] for the pth azi-
muthal mode in the non-linear regime.

3.5. GS and SM breaking (Asym Mach)

Using different burner types s1 ¼ 2:21 ms and
s2 ¼ 4:98 ms leading to a strong splitting term
kSk ’ 0:145) and adding a mean azimuthal flow
(Mh can vary) combines GS and SM effects.

The azimuthal mode frequency and structure
are given by Eqs. (18) and (20): the mode is
mixed and split by both the geometrical (GS,
kSk – 0, Section 3.4) and and flow (SM,
Mh – 0, Section 3.3) symmetry breaking (Fig. 9
when Mh ¼ 0:1).

A configuration where s1 ¼ 2:21 ms and
s2 ¼ 4:98 ms with a pattern 1212 (corresponding

to S ’ 0:145) is studied by increasing the mean
flow from Mh ¼ 0 to 10ÿ3. The structure diagram
(Fig. 10, Section 3.1) shows a transition from a
standing mode (when the Mach number Mh is
low) to a spinning mode (when Mh is higher): a
small swirl motion (SM) can affect the mode struc-
ture even with a strong geometrical symmetry
(GS) breaking.

Fig. 8. Structure diagram (kp0k cosð/Þ; kp0k sinð/Þ) of
the Wave 1 vs splitting strength kSk. For each splitting
strength, the trajectory corresponds to azimuthal posi-
tions h going from 0 to 2p.

Fig. 9. Frequency (left) and growth rate (right) vs normalized time-delay s1=s
0
c (where s

0
c ¼ 1=f 0) while s2 ¼ 2:21 ms of

the first azimuthal mode in a configuration with N ¼ 4 burners and a mean flow Mh ¼ 0:1. : Atacamac (numerical
resolution Eq. (13)) and �: Atacamac (analytical – Eq. (18)).

Fig. 11. Effects of geometrical (GS) and flow (SM)
symmetry breaking on the mode nature.

Fig. 10. Structure diagram (kp0k cosð/Þ; kp0k sinð/Þ) vs
Mach number Mh of the wave associated to the
frequency f1 of a configuration with an initial splitting
strength S ’ 0:145.



4. Conclusion

This paper presents an analytical approach to
study two mechanisms controlling azimuthal
modes frequency and nature (spinning, standing
or mixed) in annular combustors containing 4
burners: (1) the circumferential variation of bur-
ner characteristics and (2) the existence of a mean
azimuthal flow. The ATACAMAC methodology
[17] is extended to solve the linearized acoustic
equations with a steady and uniform azimuthal
mean flow in the annular chamber. It provides
an analytical implicit dispersion relation for the
frequency f which can be solved numerically. An
analytical resolution is possible in specific situa-
tions where the annular chamber is weakly cou-
pled to the burners. Results show that symmetry
breaking, either by modifying burner characteris-
tics or with a swirl motion, splits the azimuthal
mode into two waves which can have different
but close frequencies and structures. Results are
summarized in Fig. 11 showing the nature of the
two components of the azimuthal mode as a func-
tion of mean Mach number Mh and splitting
strength S. However, as for non-linear theories
[5,13] or acoustic simulations, only the nature of
these two components A and B can be determined
but their ratio A=B fixing the final mode structure
remains unknown and would requires high fidelity
simulations or the complete resolution of the
mode dynamics (where the critical issue would
be the determination of the initial condition).
Nevertheless, this theory could be validated by
the extraction of the splitting frequency as well
as the nature of the two components from LES
or experiments. No experimental validation has
been performed yet but annular systems available
at Cambridge [9] or EM2C [8] would be excellent
setups to verify the validity of this model which
was derived here for 4 burners but is expected to
be also valid for real chambers with more burners.
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