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Simple metrics to evaluate the concealment of an object: SAMI
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We propose original metrics for estimation of detection and identification of an object in an image: SAMI. SAMI (SAliency based Metrics of Identification) gives a detection score, called D_score, and an identification score, called I_score, for the detection evaluation and the identification evaluation, respectively, for a Region Of Interest (ROI), basically the footprint area of the object. The contribution of this paper is important since SAMI is basically a simple easy-to-implement heuristic method based on existing image processing techniques and some intuition-based postulates. SAMI has initially been conceived to estimate the performance of SCOTT, a "Synthesis COncealment Two-level Texture" algorithm. However, a direct derived application of such metrics could be the evaluation of saliency algorithms for object segmentation: the best segmentation would be the one with the highest SAMI D_score for a given object. Another possible application could be the use of SAMI inside a saliency algorithm, to compute a dense modified saliency map, in which each pixel has the SAMI D_score corresponding to its neigborhood (used as ROI). Such a resulting map would be more robust to saliency noise from small spots.

CONFIDENTIALITY

The background application of the work presented in this paper (SAMI) and the papers related written by the same authors (SCOTT) is military. For an obvious reason of confidentiality, the military application will not be explained and some technical details are intentionally hidden.

INTRODUCTION

To evaluate the detection and the identification of an object, it is necessary to compute metrics in a given Region Of Interest (ROI), basically the footprint area of this object. Of course in an application without any prior knowledge, the ROI is unknown.

For the evaluation of the detection, one could immediately think of a saliency map, which represents the ability of each pixel of an image to catch one's visual attention. However to our knowledge, to modelize visual Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. attention, so far all saliency algorithms do not compute such specific objective metrics [START_REF] Borji | State-of-the-Art in Visual Attention Modeling[END_REF][START_REF] Itti | A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[END_REF][START_REF] Itti | A saliency-based search mechanism for overt and covert shifts of visual attention[END_REF][START_REF] Navalpakkam | Modeling the influence of task on attention[END_REF][START_REF] Torralba | Contextual guidance of eye movements and attention in real-world scenes: The role of global features on object search[END_REF][START_REF] Xu | Hierarchical Bayesian Modelling of Visual Attention[END_REF]. Then to estimate the global saliency impact of an object, the raw values have to be processed to answer the question: can one detect the object? Futhermore, a saliency map does not give any information about the structural appearance of the object in the scene: can one identify the object? SAMI, for "SAliency based Metrics of Identification", is a first answer to both problems by computing a detection score, called D_score, for the evaluation of the detection, and an identification score, called I_score, for the evaluation of the identification. Only the "identification" is mentioned in the name SAMI, since the detection is implicit: an object has to be detected to be identified. The input data are the test image, a mask containing the ROI (basically the footprint area of the object, or a bounding box), and the ground truth edges of the image. The goal of SAMI is then to compute objective metrics of the ability of an observer to detect and identify a given object.

Initially, SAMI is the best friend of SCOTT: "Synthesis of COncealment Two-level Texture" [START_REF] Gosseaume | The World vs. SCOTT : Synthesis of Concealment Two-level Texture[END_REF]. SCOTT is a concealment algorithm, initially designed to reduce visual pollution caused by manmade equipment [START_REF] Dandumont | Question No. 26298 de M. Francois de Mazieres a Mme la ministre de la culture et de la communication[END_REF]: it creates a texture, of any size, faithful to the visual environment of a target, and this from only two samples from this environment: one for the macrotexture concealment texture, one for the micro-texture concealment texture. Such a texture can then be printed on a plastic film and sticked over the equipement to make it fuse with its environment. Then SAMI allows to improve SCOTT algorithm by adjusting its parameters to obtain better SAMI scores.

A direct derived application of SAMI could be the evaluation of saliency algorithms designed for an object segmentation, using only SAMI detection score D_score. The D_score could then be used as "simple" metrics of relative performance: the best segmentation would merely be the one with the highest SAMI D_score for a given object.

Another application of SAMI could be the computation of a robust dense visual attention map. In an application of detection based on a saliency map, the highest value is always selected as the center of visual attention. However, such a consideration is sensitive to noise in the saliency map and does not take into account the area of objects: a sole pixel, with the highest value, would be selected while an object, with a little smaller average saliency but in a greater neighboring area, would actually be the most salient object of the scene. We could process the whole saliency map with SAMI, by using a shifting spatial window as ROI, and instead of taking the maximum raw saliency value, take the highest value of the resulting dense map.

In section 3, SCOTT is briefly described to understand the problem solved by SAMI. For more details about SCOTT, see [START_REF] Gosseaume | The World vs. SCOTT : Synthesis of Concealment Two-level Texture[END_REF]. In section 4, SAMI is described in with both the D_score and the I_score. In section 5 are some results of SAMI used for the improvement of SCOTT. In section 6, some other applications of SAMI are discussed. Finally an overview of the future work is given in section 7.

SCOTT: SYNTHESIS OF CONCEAL-MENT TWO-LEVEL TEXTURE

SCOTT [START_REF] Gosseaume | The World vs. SCOTT : Synthesis of Concealment Two-level Texture[END_REF], for "Synthesis of COncealment Two-level Texture", is an algorithm designed to compute a texture and map it onto an object so that it can visually integrate its environment [START_REF] Gosseaume | The World vs. SCOTT : Synthesis of Concealment Two-level Texture[END_REF]. SCOTT synthesizes a concealment texture, which is both generic and visually faithful to that environment, from texture samples of a visual environment: one for the macro-texture concealment texture, one for the micro-texture concealment texture (Figure 1).

SCOTT can be used for a lot of applications, like the reduction of visual pollution caused by manmade equipments (antenna, electrical cabinets, distributor boxes, repeater shelters, etc.), by giving the "polluants" an aesthetically more pleasing look [START_REF] Dandumont | Question No. 26298 de M. Francois de Mazieres a Mme la ministre de la culture et de la communication[END_REF]. First results of simulation show that SCOTT is efficient. However, so far we did not use any relevance feedback. In a process of concealment, the problem is the evaluation the detection and identification of the concealed object.

SAMI is an answer to this problem. 

SAMI: SALIENCY BASED METRICS OF IDENTIFICATION

SAMI is basically a simple easy-to-implement heuristic method based on existing image processing techniques and some intuition-based postulates. SAMI computes objective metrics of the ability of an observer to detect and identify an object in a scene. By "objective" we mean here that such metrics are computed automatically, by reproducing the average observer SVH response. From a test image, a mask containing a Refion Of Interest ROI (basically the footprint area of the object, or a bounding box), and the ground truth edges of the object, it computes two scores: a detection score, called D_score, for the evaluation of detection, and an identification score, I_score, for the evaluation of the identification (Figure 4).

Before computing the scores, two temporary data are computed for the whole SAMI process. First the saliency map of the test image. It would be better that the saliency map is computed by [START_REF] Itti | A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[END_REF], since it is the first, and so far the most used, biologically inspired saliency algorithm. Indeed, the goal of SAMI is to estimate the ability of an observer to detect and identify an object, then it is important that the whole process is based on the Human Visual System. Secondly, the d_ROI : the ROI is dilated by a morphological operation, so that the area of the dilated ROI, the d_ROI, is twice that of the ROI. That is because an object can also modify the visual impact of its neighborhood, notably in terms of saliency. So the detection and identification of an object is not limited to its own area, but to the area around it (Figure 2) contained in the d_ROI. 

Detection score

The detection score D_score evaluates the ability of detection of an object in a visual environment. Postulate: the global saliency of an object is a function of the continuous areas of its highest values.

First, the saliency map is masked with the d_ROI. Then a mask is computed by thresholding the saliency map within the d_ROI. The threshold is the mean saliency of the area given by to the logical xor between the ROI and the d_ROI, that is the part of the d_ROI around the ROI. The mask may be processed with an opening morphological operation to remove very small spots (which are unsignificant, according to our postulate). The saliency map is then masked with this last mask. The final D_score is then computed as the mean saliency of the remaining pixels.

The D_score is then an objective measure of the ability of detection of an object (Figure 4). This is an absolute score as it does not depend on any saliency value reference; then it has only a meaning when compared with the original image D_score, or other test image D_scores. Its range is between 0 and 100. Practically, through different scenarios, we have observed that the entire theoretical range is not used, then some statistical processing could be used to improve the meaning of the results (see Section 7).

Identification score

The identification score I_score evaluates the ability of identification of an object in a visual environment. Postulate: the structure of an object stands out if its edges stands out by their presence or their absence (Figure 3). The idea behind the I_score is to compare the ground truth edges with the test image edges. Before comparing, both the ground truth edges and the test image edges may be processed with a morphological dilation. Indeed, the d_ROI in the test image may have the same structure as that of the ground truth edges, but its structure may have been affected by a small translation or scaling effect. Processing both the ground truth edges and the test image edges with a morphological dilation prevents from claiming that the structures are different while they are not (false negative).

The final I_score is then computed, according to our postulate, as a combination of the cross-correlation of the image edges with the ground truth edges and with the inverted ground truth edges. All these operations are processed inside the d_ROI.

The I_score is then an objective measure of the ability of identification of an object (Figure 4). This is a relative score as it is a comparison to a ground truth reference; then it has a meaning by itself, as the rate of preservation of the original image structure (of course the I_score of the original image has no meaning since it is 100%). Its range is between 0 and 100. Practically, through different scenarios, we have observed that the entire theoretical range is not used, then some statistical processing could be used to improve the meaning of the results (see Section 7).

At the end, we have two objective metrics of the ability to detect and identify and object in a scene(Figure 4).

RESULTS

SAMI has initially been designed to evaluate the performance of SCOTT.

The evaluation, by SAMI, of the results of SCOTT, proves that SCOTT does reduce the visual impact of objects [START_REF] Gosseaume | The World vs. SCOTT : Synthesis of Concealment Two-level Texture[END_REF]. It allows to improve SCOTT algorithm by adjusting its parameters to obtain better SAMI D_score and I_score.

In the evaluation of SCOTT, the name of the game is to compare an original image, containing a visually polluting object, and several test images, where the object is concealed by SCOTT.

The ground truth edges of the object, for the estimation of the identification, is merely obtained by extracting the edges of the original image (where the object is not concealed), the same way the edges are extracted from the test image (where the object is concealed) to compute the I_score, that is using the Canny filter.

From the results (Figure 5 and Figure 6), we can first conclude that SCOTT is efficient, since the scores are better (smaller in this case) with SCOTT textures. Secondly, we understand that the need here is to improve SCOTT algorithm by adjusting its parameters, since some concealment textures are clearly better than others.

Of course SAMI can also be used to evaluate general purpose texture synthesis algorithm, like inpainting.

OTHER APPLICATIONS

We think that SAMI could be used in two other applications: the comparison of saliency algorithms and the computation of visual attention map.

Figure 4: SAMI computes objective metrics of the ability of an observer to detect and identify a given object in a scene. From an input test image (distorted Mona Lisa, with yellow borders), the original image and a Region Of Interest ROI (both with green borders), SAMI computes two scores for this ROI: a detection score D_score and an identification score I_score. The D_score (red path) is computed from the saliency map of the test image ROI. The I_score is computed as a comparison between the ground truth edges (computed from the original image, both with green borders) and the test image edges, weighted by the test image saliency. The D_score is 11.02%, and the I_score is 14.86%. These scores confirm that the ROI is salient compared to the rest of the painting (Leonardo da Vinci would certainly agree), and the test image ROI structure does not match that of the original version, since it has been distorted.

Comparison of saliency algorithms

SAMI could be used to compare saliency algorithms for an application of object segmentation. Indeed the best algorithm would then be the one with the "best" (the highest in this case) SAMI D_score for this object.

In this application, SAMI should be adapted as follows: there would be no more d_ROI, only the ROI is used In this example, we have a concrete example of visual pollution caused by a repeater shelter without (a) and with (h) a SCOTT concealment texture. The object is contained in a bounding box used as Region Of Interest ROI (b), from which is computed the dilated ROI d_ROI (c). SAMI compute the detection score D_score from the saliency map of the test image (i) in the ROI (j); this D_score can be compare to that of the original image (d) in the ROI (e). The identification score I_score is computed from the edges of both the original image and the test image ((f) and (k), respectively) in the ROI ((g) and (l), respectively). In this simulation, the concealment texture has been mapped on the object in a way that it best fits its 3D shape. The SAMI results prove that SCOTT is effecient by making the polluting object less salient and by breaking its visual structure: the D_score of the original image is 12.63%, while that of the test image is 6.34%; the I_score of the test image is 18.12%.

(no dilation of the ROI), and then the D_score threshold should merely be computed as the mean saliency of the not-ROI area. Figure 6: SAMI allowed us to improve SCOTT, by evaluating its resulting images, that is the images with SCOTT textures, and making the SAMI scores better (smaller). In this example, we have a visual environment (a), with an object we want to conceal (d): the mailbox. By using a bounding box as the ROI (b), from which is computed the dilated ROI d_ROI (c), SAMI compares the ROI saliency maps and edges, in the original image ((d), (e) and (f)), in the same image with a concealment texture from the original version of SCOTT "test image 1" ((g), (h) and (i)), and in the same image with a concealment texture from an improved version of SCOTT "test image 2" ((j), (k) and (l)). These results prove that we can improve SCOTT by evaluating its results with SAMI, and take the best (smallest) scores. In this scenario, the I_score is not relevant since the concealment textures do not fit the shape of the object: they are just superimposed on the 2D plane of the image. Here are the scores: the D_score of the original image is 12.72%, while that of the test image 1 is 7.05% and that of the test image 2 is 4.50%.

For example, if we compare Itti [START_REF] Itti | A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[END_REF] saliency algorithm with a more recent one like MSSS [START_REF] Achanta | Saliency Detection using Maximum Symmetric Surround[END_REF], we find out that the second one would be better for an application of saliency based object segmentation, since its SAMI D_score is higher than Itti's (Figure 7): 22.87 against 17.82. Indeed, visually, the target object is more highlighted in MSSS saliency map than in Itti saliency map.

Computation of visual attention map

Another possible application could be to include SAMI in a saliency algorithm, by processing the whole saliency map with SAMI to compute a visual attention map, as a dense SAMI D_score map. Indeed, in a visual attention modeling process [Bor13a, Itt98a, Itt99a, Itt05a, Tor06a, Xu14a], we simply use the raw values of the saliency map: the maximum would define the first point of focus, then the second maximum would define the second point of focus, and so on. However, such a process would not take into account the size of the saliency spots, and it is our intuition that a the global saliency of a region is a function of the continuous areas of its highest values. That is why SAMI could be useful to improve such a process.

To do so, SAMI would merely process the saliency map with a shifting neighborhood window as ROI (no more d_ROI ). Then a D_score would be computed for each pixel of the saliency map. Mathematically, in this case, SAMI is a non-linear function which moves the saliency values away from each other: the small values become smaller and the high values become higher; it is like increasing the local contrast. The results (Figure 8), realized with the saliency algorithm Itti [START_REF] Itti | A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[END_REF], prove that the resulting map highlights better a salient object in a scene, by removing secondary objects in the background.

FUTURE WORK

First, the meaning of the results could me improved by statistically processing the SAMI scores. Indeed we have observed that the theoretical ranges of the score are not fully used, notably because the theoretical maximum of the functions cannot be reached. By studiying the practical useful ranges of these scores, we could compare the results better by clipping and stretching the results.

Secondly, even if the results of evaluation by SAMI show to the reader that such an evaluation is relevant, and even if SAMI does allow us to improve SCOTT algorithm by adjusting its parameters, SAMI has not been validated so far. In other words, we also need a subjective evaluation for the objective evaluation! Since by "objective" we mean "HVS-inspired automatically computed", immediate future work will be to validate 7: SAMI could be used to compare saliency algorithms for an application of object segmentation. The best saliency algorithm is the one which highlights the most the object, that is the one with the best (highest) D_score for this object (that is the ROI and there is no more d_ROI ). In this example with a very salient object in a image (a), SAMI can compare the saliency map of two algorithms: Itti (b) and MSSS (c). According to SAMI D_score, MSSS is the best for an application of object segmentation, as it highlights more the salient object with the highest D_score: 22.87% against 17.81%. SAMI by comparing the obtained results with data provided by test subjects.

But the main future work will be to combine both SCOTT and SAMI in a feedback loop (Figure 9). One of the most influential parameters of SCOTT is criterion for the selection of the input samples as models to synthesize a concealment texture faithful to the visual environment: macro-texture model and micro-texture model. So far, this selection is done manually (Figure 6), according to what the user wants the concealment texture to look like; then the criterion of selection is purely subjective. But it could be very beneficial to the algorithm that this selection is automatic. First, SAMI would extract, from an image of a given visual environment, the possible pairs of input SCOTT models (macro-texture model and micro-texture model), as the least salient samples in the environment for example. Then for each pair of models, SCOTT would synthesize a concealment texture. A simulation module would then simulate the mapping of each concealment texture onto the object to conceal, in the visual environment. From the renderings of the simulation, SAMI would then evaluate the results by computing both the D_score Figure 8: Another possible application could be to include SAMI in a saliency algorithm, by processing the saliency map to compute a visual attention map, as a dense SAMI D_score map. Indeed, SAMI acts as a non-linear function which moves the saliency values away from each other: the small values become smaller and the high values become higher; it is like increasing the local contrast. This way the most salient object is more highlighted while the secondary objects are removed. If we take the same example as Figure 7 (a), with the saliency algorithm Itti, we see that some secondary objects are salient, while the main object (hydrant) is not really highlighted (b). However, with SAMI, only the hydrant has a high value over a big area (d). This way the hydrant is much more highlighted. One could argue that SAMI has the same effect as a mere low-pass filter. But the result of a low-pass filter (b) shows that, even if the hydrant is more highlighted, the saliency value of the background is bigger on average. Besides, if we focus on the main object (that is the ROI and there is no more d_ROI ), the D_score is the best (highest) for the algorithm Itti with SAMI: 48.85% for Itti, 62.78% for Itti filtered by a low-pass filter, and 63.56% for Itti with SAMI. and the I_score. Finally, the concealment texture with the best SAMI scores would be selected as the SCOTT concealment texture to use. One problematic is to find the criterion to select the best SAMI scores. Indeed, for each score the smaller the better, but it is possible that no SCOTT concealment texture has both the best D_score and I_score. This criterion may then depend on the user setting and/or the visual environment itself. 

CONCLUSION

SAMI provides original metrics of detection and identification of an object in an image, based on the saliency map of this image. To do so, SAMI computes two complementary scores, a detection score, called D_score, and an identification score, called I_score, which estimate the detection and the identification of the object, respectively. SAMI has been initially designed to evaluate SCOTT, a concealment texture algorithm synthesis, to complete our concealment algorithm package. This way we improve SCOTT and we are considering incorporating SAMI inside SCOTT itself, to make automatic the selection of SCOTT input models. A first other possible application of SAMI is the evaluation of saliency algorithms for an application of object segmentation. Finally, SAMI could even be included in a saliency algorithm, by processing the whole saliency map with a shifting window, then computing a visual attention map as a dense SAMI D_score map.
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 2 Figure 2: For the entire SAMI process, the ROI (basically the footprint area of the object, or a bounding box) is processed to compute the d_ROI. For a given object (hydrant in (a)), the ROI is the footprint of the object (b). Once computed by morphological dilation, the d_ROI (c) is then not limited to the area of the object, but to the area around it (d).

Figure 3 :

 3 Figure 3: For a given image (a), if we observe only the color information (b), we cannot identify the main object in the scene (hydrant). What allows us to identify an object is its structure. According to our postulate, that structure stands outs if the edges stands out by their presence (c) or by their absence (d). The computation of the D_score then requires the ground truth edges of the object. First, we extract the edges of the test image, and we mask it with the d_ROI : this is the "test image edges". The extraction of the edges is realized by the Canny filter, not on the grayscale image, but on a weighted average of the normalized L* (lightness), C* (chroma) and h (hue) channels of the image. Indeed the L*C*h colorspace, derived from the L*a*b* colorspace, combines the advantges of both the L*a*b* and HSV (Hue, Saturation, Value) colorspaces [Bal12a]: a euclidian distance corresponds to a visual distance when merely switching from the L*C*h colorspace to the L*a*b* colorspace, and the components of the colors are clearly and intuitively separate in the L*C*h colorspace, likein the HSV colorspace. This way we can attach more importance to one particular component, like the hue channel, which we think may be more responsible for the visual sensation of edges. The pixels of the edges are weighted by their corresponding saliency values in the saliency map. This way, each edge pixel does not only stand out through a non-zero gradient in L*C*h colorspace, but also through the saliency of its neighborhood. The idea behind the I_score is to compare the ground truth edges with the test image edges. Before comparing, both the ground truth edges and the test image edges may be processed with a morphological dilation. Indeed, the d_ROI in the test image may have the same structure as that of the ground truth edges, but its structure may have been affected by a small translation or scaling effect. Processing both the ground truth edges and the test image edges with a morphological dilation prevents from claiming that the structures are different while they are not (false negative).
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 5 Figure 5: SAMI has initially been designed to evaluate the performance of SCOTT, a concealment algorithm.In this example, we have a concrete example of visual pollution caused by a repeater shelter without (a) and with (h) a SCOTT concealment texture. The object is contained in a bounding box used as Region Of Interest ROI (b), from which is computed the dilated ROI d_ROI (c). SAMI compute the detection score D_score from the saliency map of the test image (i) in the ROI (j); this D_score can be compare to that of the original image (d) in the ROI (e). The identification score I_score is computed from the edges of both the original image and the test image ((f) and (k), respectively) in the ROI ((g) and (l), respectively). In this simulation, the concealment texture has been mapped on the object in a way that it best fits its 3D shape. The SAMI results prove that SCOTT is effecient by making the polluting object less salient and by breaking its visual structure: the D_score of the original image is 12.63%, while that of the test image is 6.34%; the I_score of the test image is 18.12%.
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  Figure7: SAMI could be used to compare saliency algorithms for an application of object segmentation. The best saliency algorithm is the one which highlights the most the object, that is the one with the best (highest) D_score for this object (that is the ROI and there is no more d_ROI ). In this example with a very salient object in a image (a), SAMI can compare the saliency map of two algorithms: Itti (b) and MSSS (c). According to SAMI D_score, MSSS is the best for an application of object segmentation, as it highlights more the salient object with the highest D_score: 22.87% against 17.81%.
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 9 Figure9: Future work will be to combine both SCOTT and SAMI in a feedback loop. One of the most SCOTT influential parameters is the selection of the input sample as models to synthesize a concealment texture faithful to the visual environment: macro-texture model and micro-texture model. It could be very beneficial to the algorithm that this selection is automatic.