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ABSTRACT
We propose original metrics for estimation of detection and identification of an object in an image: SAMI. SAMI
(SAliency based Metrics of Identification) gives a detection score, called D_score, and an identification score,
called I_score, for the detection evaluation and the identification evaluation, respectively, for a Region Of Inter-
est (ROI), basically the footprint area of the object. The contribution of this paper is important since SAMI is
basically a simple easy-to-implement heuristic method based on existing image processing techniques and some
intuition-based postulates. SAMI has initially been conceived to estimate the performance of SCOTT, a “Synthesis
COncealment Two-level Texture” algorithm. However, a direct derived application of such metrics could be the
evaluation of saliency algorithms for object segmentation: the best segmentation would be the one with the highest
SAMI D_score for a given object. Another possible application could be the use of SAMI inside a saliency algo-
rithm, to compute a dense modified saliency map, in which each pixel has the SAMI D_score corresponding to its
neigborhood (used as ROI). Such a resulting map would be more robust to saliency noise from small spots.

Keywords
Concealment evaluation, concealment metrics, object identification, object segmentation, saliency map, Human
Visual System.

1 CONFIDENTIALITY
The background application of the work presented in
this paper (SAMI) and the papers related written by the
same authors (SCOTT) is military. For an obvious rea-
son of confidentiality, the military application will not
be explained and some technical details are intention-
ally hidden.

2 INTRODUCTION
To evaluate the detection and the identification of an
object, it is necessary to compute metrics in a given
Region Of Interest (ROI), basically the footprint area
of this object. Of course in an application without any
prior knowledge, the ROI is unknown.

For the evaluation of the detection, one could imme-
diately think of a saliency map, which represents the
ability of each pixel of an image to catch one’s visual at-
tention. However to our knowledge, to modelize visual

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

attention, so far all saliency algorithms do not compute
such specific objective metrics [Bor13a, Itt98a, Itt99a,
Itt05a, Tor06a, Xu14a]. Then to estimate the global
saliency impact of an object, the raw values have to be
processed to answer the question: can one detect the
object? Futhermore, a saliency map does not give any
information about the structural appearance of the ob-
ject in the scene: can one identify the object?

SAMI, for “SAliency based Metrics of Identification”,
is a first answer to both problems by computing a detec-
tion score, called D_score, for the evaluation of the de-
tection, and an identification score, called I_score, for
the evaluation of the identification. Only the “identifi-
cation” is mentioned in the name SAMI, since the de-
tection is implicit: an object has to be detected to be
identified. The input data are the test image, a mask
containing the ROI (basically the footprint area of the
object, or a bounding box), and the ground truth edges
of the image. The goal of SAMI is then to compute
objective metrics of the ability of an observer to detect
and identify a given object.

Initially, SAMI is the best friend of SCOTT: “Synthesis
of COncealment Two-level Texture” [Gos14a]. SCOTT
is a concealment algorithm, initially designed to re-
duce visual pollution caused by manmade equipment
[Maz13a]: it creates a texture, of any size, faithful to
the visual environment of a target, and this from only



two samples from this environment: one for the macro-
texture concealment texture, one for the micro-texture
concealment texture. Such a texture can then be printed
on a plastic film and sticked over the equipement to
make it fuse with its environment. Then SAMI allows
to improve SCOTT algorithm by adjusting its parame-
ters to obtain better SAMI scores.

A direct derived application of SAMI could be the
evaluation of saliency algorithms designed for an ob-
ject segmentation, using only SAMI detection score
D_score. The D_score could then be used as “sim-
ple” metrics of relative performance: the best segmen-
tation would merely be the one with the highest SAMI
D_score for a given object.

Another application of SAMI could be the computation
of a robust dense visual attention map. In an applica-
tion of detection based on a saliency map, the highest
value is always selected as the center of visual attention.
However, such a consideration is sensitive to noise in
the saliency map and does not take into account the area
of objects: a sole pixel, with the highest value, would
be selected while an object, with a little smaller average
saliency but in a greater neighboring area, would actu-
ally be the most salient object of the scene. We could
process the whole saliency map with SAMI, by using
a shifting spatial window as ROI, and instead of taking
the maximum raw saliency value, take the highest value
of the resulting dense map.

In section 3, SCOTT is briefly described to understand
the problem solved by SAMI. For more details about
SCOTT, see [Gos14a]. In section 4, SAMI is described
in with both the D_score and the I_score. In section 5
are some results of SAMI used for the improvement of
SCOTT. In section 6, some other applications of SAMI
are discussed. Finally an overview of the future work is
given in section 7.

3 SCOTT: SYNTHESIS OF CONCEAL-
MENT TWO-LEVEL TEXTURE

SCOTT [Gos14a], for “Synthesis of COncealment
Two-level Texture”, is an algorithm designed to
compute a texture and map it onto an object so that
it can visually integrate its environment [Gos14a].
SCOTT synthesizes a concealment texture, which is
both generic and visually faithful to that environment,
from texture samples of a visual environment: one
for the macro-texture concealment texture, one for the
micro-texture concealment texture (Figure 1).

SCOTT can be used for a lot of applications, like the re-
duction of visual pollution caused by manmade equip-
ments (antenna, electrical cabinets, distributor boxes,
repeater shelters, etc.), by giving the “polluants” an aes-
thetically more pleasing look [Maz13a]. First results of
simulation show that SCOTT is efficient. However, so

far we did not use any relevance feedback. In a pro-
cess of concealment, the problem is the evaluation the
detection and identification of the concealed object.

SAMI is an answer to this problem.
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Figure 1: SCOTT is based on a “two-level” texture
concept, mixing a micro-texture (dashed lines) with a
macro-texture (solid lines), from two input models.

4 SAMI: SALIENCY BASED METRICS
OF IDENTIFICATION

SAMI is basically a simple easy-to-implement heuristic
method based on existing image processing techniques
and some intuition-based postulates. SAMI computes
objective metrics of the ability of an observer to de-
tect and identify an object in a scene. By “objective”
we mean here that such metrics are computed automat-
ically, by reproducing the average observer SVH re-
sponse. From a test image, a mask containing a Refion
Of Interest ROI (basically the footprint area of the ob-
ject, or a bounding box), and the ground truth edges of
the object, it computes two scores: a detection score,
called D_score, for the evaluation of detection, and an
identification score, I_score, for the evaluation of the
identification (Figure 4).

Before computing the scores, two temporary data
are computed for the whole SAMI process. First the
saliency map of the test image. It would be better that



the saliency map is computed by [Itt98a], since it is
the first, and so far the most used, biologically inspired
saliency algorithm. Indeed, the goal of SAMI is to
estimate the ability of an observer to detect and identify
an object, then it is important that the whole process
is based on the Human Visual System. Secondly, the
d_ROI : the ROI is dilated by a morphological opera-
tion, so that the area of the dilated ROI, the d_ROI, is
twice that of the ROI. That is because an object can also
modify the visual impact of its neighborhood, notably
in terms of saliency. So the detection and identification
of an object is not limited to its own area, but to the
area around it (Figure 2) contained in the d_ROI.

(a) Original
image

(b) ROI (c) d_ROI (d) Image
masked with
d_ROI

Figure 2: For the entire SAMI process, the ROI (ba-
sically the footprint area of the object, or a bounding
box) is processed to compute the d_ROI. For a given
object (hydrant in (a)), the ROI is the footprint of the
object (b). Once computed by morphological dilation,
the d_ROI (c) is then not limited to the area of the ob-
ject, but to the area around it (d).

Detection score
The detection score D_score evaluates the ability of de-
tection of an object in a visual environment.

Postulate: the global saliency of an object is a func-
tion of the continuous areas of its highest values.
First, the saliency map is masked with the d_ROI. Then
a mask is computed by thresholding the saliency map
within the d_ROI. The threshold is the mean saliency of
the area given by to the logical xor between the ROI and
the d_ROI, that is the part of the d_ROI around the ROI.
The mask may be processed with an opening morpho-
logical operation to remove very small spots (which are
unsignificant, according to our postulate). The saliency
map is then masked with this last mask. The final
D_score is then computed as the mean saliency of the
remaining pixels.

The D_score is then an objective measure of the ability
of detection of an object (Figure 4). This is an abso-
lute score as it does not depend on any saliency value
reference; then it has only a meaning when compared
with the original image D_score, or other test image
D_scores. Its range is between 0 and 100. Practically,
through different scenarios, we have observed that the
entire theoretical range is not used, then some statistical
processing could be used to improve the meaning of the
results (see Section 7).

Identification score
The identification score I_score evaluates the ability of
identification of an object in a visual environment.
Postulate: the structure of an object stands out if its
edges stands out by their presence or their absence
(Figure 3).

(a) Original
image

(b) Blurred
image

(c) Edges of
the object

(d) Inverse of
the edges of
the object

Figure 3: For a given image (a), if we observe only
the color information (b), we cannot identify the main
object in the scene (hydrant). What allows us to identify
an object is its structure. According to our postulate,
that structure stands outs if the edges stands out by their
presence (c) or by their absence (d).

The computation of the D_score then requires the
ground truth edges of the object.
First, we extract the edges of the test image, and we
mask it with the d_ROI : this is the “test image edges”.
The extraction of the edges is realized by the Canny
filter, not on the grayscale image, but on a weighted
average of the normalized L* (lightness), C* (chroma)
and h (hue) channels of the image. Indeed the L*C*h
colorspace, derived from the L*a*b* colorspace, com-
bines the advantges of both the L*a*b* and HSV (Hue,
Saturation, Value) colorspaces [Bal12a]: a euclidian
distance corresponds to a visual distance when merely
switching from the L*C*h colorspace to the L*a*b*
colorspace, and the components of the colors are clearly
and intuitively separate in the L*C*h colorspace, like
in the HSV colorspace. This way we can attach more
importance to one particular component, like the hue
channel, which we think may be more responsible for
the visual sensation of edges. The pixels of the edges
are weighted by their corresponding saliency values in
the saliency map. This way, each edge pixel does not
only stand out through a non-zero gradient in L*C*h
colorspace, but also through the saliency of its neigh-
borhood.
The idea behind the I_score is to compare the ground
truth edges with the test image edges. Before com-
paring, both the ground truth edges and the test image
edges may be processed with a morphological dilation.
Indeed, the d_ROI in the test image may have the same
structure as that of the ground truth edges, but its struc-
ture may have been affected by a small translation or
scaling effect. Processing both the ground truth edges
and the test image edges with a morphological dilation
prevents from claiming that the structures are different
while they are not (false negative).



The final I_score is then computed, according to our
postulate, as a combination of the cross-correlation of
the image edges with the ground truth edges and with
the inverted ground truth edges. All these operations
are processed inside the d_ROI.

The I_score is then an objective measure of the abil-
ity of identification of an object (Figure 4). This is a
relative score as it is a comparison to a ground truth ref-
erence; then it has a meaning by itself, as the rate of
preservation of the original image structure (of course
the I_score of the original image has no meaning since
it is 100%). Its range is between 0 and 100. Practically,
through different scenarios, we have observed that the
entire theoretical range is not used, then some statistical
processing could be used to improve the meaning of the
results (see Section 7).

At the end, we have two objective metrics of the ability
to detect and identify and object in a scene(Figure 4).

5 RESULTS
SAMI has initially been designed to evaluate the per-
formance of SCOTT.

The evaluation, by SAMI, of the results of SCOTT,
proves that SCOTT does reduce the visual impact of
objects [Gos14a]. It allows to improve SCOTT algo-
rithm by adjusting its parameters to obtain better SAMI
D_score and I_score.

In the evaluation of SCOTT, the name of the game is to
compare an original image, containing a visually pol-
luting object, and several test images, where the object
is concealed by SCOTT.

The ground truth edges of the object, for the estimation
of the identification, is merely obtained by extracting
the edges of the original image (where the object is not
concealed), the same way the edges are extracted from
the test image (where the object is concealed) to com-
pute the I_score, that is using the Canny filter.

From the results (Figure 5 and Figure 6), we can first
conclude that SCOTT is efficient, since the scores are
better (smaller in this case) with SCOTT textures. Sec-
ondly, we understand that the need here is to improve
SCOTT algorithm by adjusting its parameters, since
some concealment textures are clearly better than oth-
ers.

Of course SAMI can also be used to evaluate general
purpose texture synthesis algorithm, like inpainting.

6 OTHER APPLICATIONS
We think that SAMI could be used in two other appli-
cations: the comparison of saliency algorithms and the
computation of visual attention map.

Figure 4: SAMI computes objective metrics of the abil-
ity of an observer to detect and identify a given object in
a scene. From an input test image (distorted Mona Lisa,
with yellow borders), the original image and a Region
Of Interest ROI (both with green borders), SAMI com-
putes two scores for this ROI: a detection score D_score
and an identification score I_score. The D_score (red
path) is computed from the saliency map of the test im-
age ROI. The I_score is computed as a comparison be-
tween the ground truth edges (computed from the orig-
inal image, both with green borders) and the test im-
age edges, weighted by the test image saliency. The
D_score is 11.02%, and the I_score is 14.86%. These
scores confirm that the ROI is salient compared to the
rest of the painting (Leonardo da Vinci would certainly
agree), and the test image ROI structure does not match
that of the original version, since it has been distorted.

Comparison of saliency algorithms
SAMI could be used to compare saliency algorithms for
an application of object segmentation. Indeed the best
algorithm would then be the one with the “best” (the
highest in this case) SAMI D_score for this object.

In this application, SAMI should be adapted as follows:
there would be no more d_ROI, only the ROI is used



(a) Original
image without
SCOTT texture

(b) Region Of In-
terest ROI

(c) d_ROI

(d) Original im-
age saliency map

(e) Original
image d_ROI
saliency map

(f) Original image
edges

(g) Original im-
age d_ROI edges
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Figure 5: SAMI has initially been designed to evaluate
the performance of SCOTT, a concealment algorithm.
In this example, we have a concrete example of visual
pollution caused by a repeater shelter without (a) and
with (h) a SCOTT concealment texture. The object is
contained in a bounding box used as Region Of Inter-
est ROI (b), from which is computed the dilated ROI
d_ROI (c). SAMI compute the detection score D_score
from the saliency map of the test image (i) in the ROI
(j); this D_score can be compare to that of the origi-
nal image (d) in the ROI (e). The identification score
I_score is computed from the edges of both the original
image and the test image ((f) and (k), respectively) in
the ROI ((g) and (l), respectively). In this simulation,
the concealment texture has been mapped on the object
in a way that it best fits its 3D shape. The SAMI results
prove that SCOTT is effecient by making the polluting
object less salient and by breaking its visual structure:
the D_score of the original image is 12.63%, while that
of the test image is 6.34%; the I_score of the test image
is 18.12%.

(no dilation of the ROI), and then the D_score threshold
should merely be computed as the mean saliency of the
not-ROI area.

(a) Original
image without
SCOTT texture

(b) Region Of In-
terest ROI

(c) d_ROI

(d) Original im-
age d_ROI

(e) Original
image d_ROI
saliency map

(f) Original image
d_ROI edges

(g) Test image 1
d_ROI

(h) Test image 1
d_ROI saliency
map

(i) Test image 1
d_ROI edges

(j) Test image 2
d_ROI

(k) Test image 2
d_ROI saliency
map

(l) Test image 2
d_ROI edges

Figure 6: SAMI allowed us to improve SCOTT, by
evaluating its resulting images, that is the images with
SCOTT textures, and making the SAMI scores better
(smaller). In this example, we have a visual environ-
ment (a), with an object we want to conceal (d): the
mailbox. By using a bounding box as the ROI (b),
from which is computed the dilated ROI d_ROI (c),
SAMI compares the ROI saliency maps and edges, in
the original image ((d), (e) and (f)), in the same im-
age with a concealment texture from the original ver-
sion of SCOTT “test image 1” ((g), (h) and (i)), and in
the same image with a concealment texture from an im-
proved version of SCOTT “test image 2” ((j), (k) and
(l)). These results prove that we can improve SCOTT
by evaluating its results with SAMI, and take the best
(smallest) scores. In this scenario, the I_score is not
relevant since the concealment textures do not fit the
shape of the object: they are just superimposed on the
2D plane of the image. Here are the scores: the D_score
of the original image is 12.72%, while that of the test
image 1 is 7.05% and that of the test image 2 is 4.50%.



For example, if we compare Itti [Itt98a] saliency algo-
rithm with a more recent one like MSSS [Ach10a], we
find out that the second one would be better for an ap-
plication of saliency based object segmentation, since
its SAMI D_score is higher than Itti’s (Figure 7): 22.87
against 17.82. Indeed, visually, the target object is more
highlighted in MSSS saliency map than in Itti saliency
map.

Computation of visual attention map
Another possible application could be to include SAMI
in a saliency algorithm, by processing the whole
saliency map with SAMI to compute a visual attention
map, as a dense SAMI D_score map.

Indeed, in a visual attention modeling process [Bor13a,
Itt98a, Itt99a, Itt05a, Tor06a, Xu14a], we simply use the
raw values of the saliency map: the maximum would
define the first point of focus, then the second maxi-
mum would define the second point of focus, and so
on. However, such a process would not take into ac-
count the size of the saliency spots, and it is our intu-
ition that a the global saliency of a region is a function
of the continuous areas of its highest values. That is
why SAMI could be useful to improve such a process.

To do so, SAMI would merely process the saliency
map with a shifting neighborhood window as ROI (no
more d_ROI ). Then a D_score would be computed for
each pixel of the saliency map. Mathematically, in this
case, SAMI is a non-linear function which moves the
saliency values away from each other: the small values
become smaller and the high values become higher; it
is like increasing the local contrast. The results (Fig-
ure 8), realized with the saliency algorithm Itti [Itt98a],
prove that the resulting map highlights better a salient
object in a scene, by removing secondary objects in the
background.

7 FUTURE WORK
First, the meaning of the results could me improved by
statistically processing the SAMI scores. Indeed we
have observed that the theoretical ranges of the score
are not fully used, notably because the theoretical max-
imum of the functions cannot be reached. By studiy-
ing the practical useful ranges of these scores, we could
compare the results better by clipping and stretching the
results.

Secondly, even if the results of evaluation by SAMI
show to the reader that such an evaluation is relevant,
and even if SAMI does allow us to improve SCOTT al-
gorithm by adjusting its parameters, SAMI has not been
validated so far. In other words, we also need a sub-
jective evaluation for the objective evaluation! Since
by “objective” we mean “HVS-inspired automatically
computed”, immediate future work will be to validate

(a) Original image ob-
ject

(b) Original image
saliency map: Itti

(c) Original image
saliency map : MSSS

Figure 7: SAMI could be used to compare saliency al-
gorithms for an application of object segmentation. The
best saliency algorithm is the one which highlights the
most the object, that is the one with the best (highest)
D_score for this object (that is the ROI and there is no
more d_ROI ). In this example with a very salient ob-
ject in a image (a), SAMI can compare the saliency
map of two algorithms: Itti (b) and MSSS (c). Accord-
ing to SAMI D_score, MSSS is the best for an appli-
cation of object segmentation, as it highlights more the
salient object with the highest D_score: 22.87% against
17.81%.

SAMI by comparing the obtained results with data pro-
vided by test subjects.

But the main future work will be to combine both
SCOTT and SAMI in a feedback loop (Figure 9). One
of the most influential parameters of SCOTT is crite-
rion for the selection of the input samples as models to
synthesize a concealment texture faithful to the visual
environment: macro-texture model and micro-texture
model. So far, this selection is done manually (Fig-
ure 6), according to what the user wants the conceal-
ment texture to look like; then the criterion of selec-
tion is purely subjective. But it could be very beneficial
to the algorithm that this selection is automatic. First,
SAMI would extract, from an image of a given visual
environment, the possible pairs of input SCOTT models
(macro-texture model and micro-texture model), as the
least salient samples in the environment for example.
Then for each pair of models, SCOTT would synthe-
size a concealment texture. A simulation module would
then simulate the mapping of each concealment texture
onto the object to conceal, in the visual environment.
From the renderings of the simulation, SAMI would
then evaluate the results by computing both the D_score



(a) Original image
without salient object

(b) Original image
saliency map: Itti

(c) Original image
saliency map: Itti and
low-pass filter

(d) Original image
ROI saliency: Itti and
SAMI

Figure 8: Another possible application could be to in-
clude SAMI in a saliency algorithm, by processing the
saliency map to compute a visual attention map, as a
dense SAMI D_score map. Indeed, SAMI acts as a
non-linear function which moves the saliency values
away from each other: the small values become smaller
and the high values become higher; it is like increas-
ing the local contrast. This way the most salient ob-
ject is more highlighted while the secondary objects are
removed. If we take the same example as Figure 7
(a), with the saliency algorithm Itti, we see that some
secondary objects are salient, while the main object
(hydrant) is not really highlighted (b). However, with
SAMI, only the hydrant has a high value over a big area
(d). This way the hydrant is much more highlighted.
One could argue that SAMI has the same effect as a
mere low-pass filter. But the result of a low-pass filter
(b) shows that, even if the hydrant is more highlighted,
the saliency value of the background is bigger on aver-
age. Besides, if we focus on the main object (that is the
ROI and there is no more d_ROI ), the D_score is the
best (highest) for the algorithm Itti with SAMI: 48.85%
for Itti, 62.78% for Itti filtered by a low-pass filter, and
63.56% for Itti with SAMI.

and the I_score. Finally, the concealment texture with
the best SAMI scores would be selected as the SCOTT
concealment texture to use. One problematic is to find
the criterion to select the best SAMI scores. Indeed,
for each score the smaller the better, but it is possible
that no SCOTT concealment texture has both the best
D_score and I_score. This criterion may then depend
on the user setting and/or the visual environment itself.

Visual
environment

SCOTT
computes a
concealment

texture
for the current pair
of possible models

SAMI evaluates
the result of
concealment
simulation

Simulation Module
maps the

concealment
texture onto the
object to conceal

Criterion of
optimal

concealment
textureUser

Concealment
textureSAMI

computes the
possible

pairs of models

Figure 9: Future work will be to combine both SCOTT
and SAMI in a feedback loop. One of the most SCOTT
influential parameters is the selection of the input sam-
ple as models to synthesize a concealment texture faith-
ful to the visual environment: macro-texture model and
micro-texture model. It could be very beneficial to the
algorithm that this selection is automatic.

8 CONCLUSION
SAMI provides original metrics of detection and identi-
fication of an object in an image, based on the saliency
map of this image. To do so, SAMI computes two com-
plementary scores, a detection score, called D_score,
and an identification score, called I_score, which esti-
mate the detection and the identification of the object,
respectively. SAMI has been initially designed to evalu-
ate SCOTT, a concealment texture algorithm synthesis,
to complete our concealment algorithm package. This
way we improve SCOTT and we are considering incor-
porating SAMI inside SCOTT itself, to make automatic
the selection of SCOTT input models. A first other pos-
sible application of SAMI is the evaluation of saliency
algorithms for an application of object segmentation.
Finally, SAMI could even be included in a saliency al-
gorithm, by processing the whole saliency map with a
shifting window, then computing a visual attention map
as a dense SAMI D_score map.
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