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Compressed Sensing Performance of Random
Bernoulli Matrices with High Compression Ratio

Weizhi Lu, Weiyu Li, Kidiyo Kpalma and Joseph Ronsin

Abstract—This paper studies the sensing performance of ran-
dom Bernoulli matrices with column size n much larger than
row size m. It is observed that as the compression ratio n/m
increases, this kind of matrices tends to present a performance
floor regarding the guaranteed signal sparsity. The performance
floor is effectively estimated with the formula 1

2
(
√
πm/2 + 1).

To the best of our knowledge, it is the first time in compressed
sensing, a theoretical estimation is successfully proposed to reflect
the real performance.

Index Terms—compressed sensing, compression ratio, high
dimension, random matrix, Bernoulli distribution

I. INTRODUCTION

Compressed sensing states that a sparse signal can be
well acquired through an underdetermined system of linear
equations [1]. This technique successfully transfers the cost of
acquisition to the later recovery process, which can be briefly
described as follows. Let x ∈ Rn be a k-sparse signal with at
most k nonzero elements, and A ∈ Rm×n be a sensing matrix
with m < n. Then x can be recovered from a finite number
of linear observations y = Ax. The recovery process can be
formulated as an `0-based minimization problem

min ||x̂||0 subject to y = Ax̂ (1)

which holds a unique solution, if x is sparse enough such that
the sensing matrix A satisfies some well-known conditions,
e.g. null space property (NSP) [2] and restricted isometry
property (RIP) [3]. Note that, for the convenience of analysis,
the columns of A are typically normalized in the following
study.

For compressed sensing, it is natural to seek a sensing
matrix with high compression ratio n/m. Empirically, the
sensing performance will inevitably degrade as the compres-
sion ratio increases. A question of practical interests then arise:
how fast will the performance degrade with the increasing of
compression ratio? This paper is developed to address this
question for the random Bernoulli matrix, which is popular in
compressed sensing and performs as well as Gaussian ones.
Surprisingly, as will be shown in the final simulation, the
random Bernoulli matrix approximately presents a ’perfor-
mance floor’ with the fast increasing of compression ratio.
To be specific, the decreasing speed of guaranteed sparsity k
is very slow, and can even be ignored in the setting where
m is fixed while n tends to infinity. This property enables
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the significant compression of high-dimensional signal with
sparsity lower than the performance floor. Then it becomes
interesting to theoretically evaluate the performance floor,
namely the guaranteed sparsity k. Unfortunately, the exact
performance estimation is still an open problem in compressed
sensing. Currently, the guaranteed sparsity k is often simply
estimated with

k <
1

2
(µm(A)−1 + 1), (2)

where the parameter µm(A) represents the maximum absolute
correlation between distinct columns of A [4]. However, as
will be shown later, the formula (2) is only a sufficient condi-
tion for perfect recovery, such that the estimated k is usually
much smaller than the real value we can achieve in practice. In
this paper, we will prove that the formula (2) can be modified
to be a sufficient and necessary condition in the limit, if the
maximum correlation µm(A) is replaced with the average
absolute correlation between distinct columns of A, denoted
by µa(A). This improved estimation allows us to propose a
simple formula 1

2 (
√
πm/2+1) to effectively approximate the

performance floor of random Bernoulli matrices with fixed row
size m. To the best of our knowledge, it is the first time that a
theoretical estimation is reported being able to reflect the real
sensing performance. Thus the contribution of this paper is of
both practical and theoretical interests.

The rest of the paper is organized as follows. In the next
section, by analyzing the proof process of formula (2), we
demonstrate how the sufficient and necessary condition is
approached by the average correlation. In section III, we first
calculate the average correlation of random Bernoulli matrix,
then estimate its performance floor. The numerical evidence is
illustrated and discussed in section IV. Finally, this paper is
concluded in section V.

II. ESTIMATION METHODS BASED ON AVERAGE
CORRELATION VS. MAXIMUM CORRELATION

This section demonstrates how the formula (2) is modified
to be a sufficient and necessary condition in the limit by
analyzing its proof process shown in the following Lemma 2.
To simplify the proof of Lemma 2, we first review an important
conclusion in Lemma 1.

Lemma 1. [5] A k-sparse signal x can be uniquely recovered
from y = Ax with the `0-minimization problem as shown in
formula (1), if and only if the sparsity k < Spark(A)/2,
where Spark(A) denotes the smallest number of linearly
dependant columns of A.
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Lemma 2. [6] If

k <
1

2
(µm(A)−1 + 1),

a k-sparse signal x is the unique recovery of y = Ax with
the `0-minimization problem as shown in formula (1).

Proof. We first need to prove a critical property, that is
Spark(A) ≥ 1 + µm(A)−1. Let subset ψ ⊆ {1, 2, ..., n}
with cardinality denoted as |ψ|, Aψ be a submatrix of A
with columns indexed by ψ, and AT

ψ be the transpose of Aψ .
Consider the Gram matrix G = AT

ψAψ ∈ R|ψ|×|ψ|. Clearly
its diagonal elements gii = 1, and off-diagonal elements
gij ≤ µm(A) ≤ 1, i 6= j. Recall that the columns of Aψ

are linearly independent if and only if Gram matrix G has
positive determinant, equivalently each eigenvalue is positive.
With Gershgorin circle theorem [7], the i-th eigenvalue of
G is bounded in the interval [gii − ri, gii + ri], where
ri =

∑|ψ|
j=1;j 6=i |gij |. To render all eigenvalues positive, we

only require 1 − (|ψ| − 1)µm(A) > 0. In other words, for
any |ψ| < µm(A)−1 + 1, the columns of Aψ are linear
independent. From the definition of Spark, it can be easily
deduced that Spark(A) ≥ µm(A)−1 + 1. By merging the
result with Lemma 1, we immediately derive the condition
k < 1

2 (µm(A)−1 + 1) for the unique solution based on `0-
minimization.

Now we focus our attention on the analysis of the proof
of Lemma 2. First, we need to show how the maximum
correlation µm(A) is involved. From the proof, it can be
observed that the following inequality

1−
|ψ|∑

j=1;j 6=i

|gij | > 0 (3)

must hold to ensure the Gram matrix AT
ψAψ being positive

definite, where gij with i 6= j denotes the correlation between
the i-th and j-th columns of submatrix Aψ . Considering
|gij | ≤ µm(A), the condition in formula (3) is then simply
relaxed to

1− (|ψ| − 1)µm(A) > 0. (4)

This relaxation process leads to the sufficient but unnecessary
property of Lemma 2, which makes the estimation of Lemma
2 far away from the real performance.

To reflect the real performance, it is necessary to reduce the
relaxation error between

∑|ψ|
j=1;j 6=i |gij | and (|ψ| − 1)µm(A),

such that the sufficient and necessary condition can be ap-
proached for Lemma 2. To this end, we propose to replace
the maximum correlation µm(A) with the average correlation
µa(A). In this case, as proved in Lemma 3, the relaxation
error will be close to zero with high probability as the
submatrix size |ψ| increases, if the average correlation of
submatrix Aψ with high probability can be approximated
by the average correlation of A. According to the law of
large numbers, the condition above should be well satisfied
by the random Bernoulli matrix, if the matrix column size is
sufficiently large. Thus in the following part, we are motivated

to verify the feasibility of the proposed estimation through
evaluating the performance of random Bernoulli matrix with
high compression ratio.

Lemma 3. Suppose ai ∈ [0, t] is arbitrarily distributed with
mean of e < t and variance of σ2. Then for k elements i.i.d
drawn from the distribution, we have Pr(

∑k
i=1 ai = ke)→ 1

and Pr(
∑k
i=1 ai = kt)→ 0, if k →∞.

Proof. Suppose a binary distribution as below

a′i =

{
0 with probability 1− p
t with probability p

where p = e/t. Then it follows that Pr(ai = t) ≤ Pr(a′i = t),
and

Pr(

k∑

i=1

ai = kt) ≤ Pr(
k∑

i=1

a′i = kt) = pk = (
e

t
)k

According to the law of large numbers, it is known that

lim
k→∞

Pr(|
k∑

i=1

ai − ke| < kε) ≥ 1− σ2

kε2

where ε is an arbitrarily small positive constant. Then the
conclusion of the lemma can be easily derived.

III. AVERAGE COLUMN CORRELATION OF RANDOM
BERNOULLI MATRIX

To evaluate the performance floor, this section calculates the
average column correlation of random Bernoulli matrices in
Lemma 4. According to the law of large numbers, the average
column correlation of random Bernoulli matrix with n � m
should be equivalent to the expected value of the absolute
correlation between two arbitrary Bernoulli vectors. Therefore
in Lemma 4 we only calculate the expected value mentioned
above.

Lemma 4. Suppose v and w are two distinct normalized col-
umn vectors of random Bernoulli matrix A ∈ Rm×n with i.i.d
elements being ± 1√

m
equiprobably, and f(v,w) = |vTw|

denotes the correlation between them, then the expected value
of f is derived with the following two forms:

1)

E(f) =
2

m

1

2m

⌈m
2

⌉( m

dm2 e

)
(5)

2)

lim
m→∞

E(
√
mf) =

√
2

π
(6)

where d∗e denotes the minimum integer not smaller than ∗.

Proof. First, following from

f = |vTw| = |
m∑

i=1

(viwi)|,

f is equivalently written as

f =
1

m
|
m∑

i=1

zi|,
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where zi being ±1 equiprobably. Then with combination
probability, the expected value of f can be formulated as

E(f) =
1

m

1

2m

m∑

i=0

(

(
m

i

)
|m− 2i|)

where
(
m
i

)
:= m!

(m−i)!i! . With

(
m

i

)
|m− 2i| =





m
(
m−1
0

)
if i = 0

m
(
m−1
m−i−1

)
−m

(
m−1
i−1
)

if 1 ≤ i ≤ m
2

m
(
m−1
i−1
)
−m

(
m−1
m−i−1

)
if m

2 < i < m

m
(
m−1
m−1

)
if i = m

one can further derive that

m∑

i=0

(

(
m

i

)
|m− 2i|) =





2m
(
m−1
m
2 −1

)
if m is even

2m
(m−1

m−1
2

)
if m is odd

Finally, with
(
m−1
i−1
)
= i

m

(
m
i

)
, it follows that

m∑

i=0

(

(
m

i

)
|m− 2i|) = 2dm

2
e
(
m

dm2 e

)

The first conclusion of the theorem is thus obtained as

E(f) =
2

m

1

2m
dm
2
e
(
m

dm2 e

)

We now turn to proving the second conclusion. According
to Stirling’s approximation:

m! =
√
2πm

(m
e

)m
exp(λm), 1/(12m+1) < λm < 1/(12m)

E(f) can be described as

E(f) =
1

2m
m!

m
2 !

m
2 !

=

√
2

πm
exp(λm − 2λm

2
)

if m is even; otherwise,

E(f) =
m+ 1

m

1

2m
m!

m+1
2 !m−12 !

=

√
2

πm

(
m2

m2 − 1

)m
2

exp(λm − λm+1
2
− λm−1

2
)

Then we have lim
m→∞

E(
√
mf) =

√
2
π , whenever m is even or

odd. The proof is completed.

Note that the formula (6) in fact converges very fast, and
can be satisfied with a relatively small m (on the order of
tens). This implies that the expected value E(f) in formula (5)
allows to be approximately written as E(f) =

√
2/(πm). For

confirmation, the coincidence between E(f) and
√

2/(πm)
is illustrated in Figure 3. Then the average correlation µa(A)
of random Bernoulli matrices with n � m can also be ap-
proximated as

√
2/(πm). In this case, the guaranteed sparsity

on the performance floor of random Bernoulli matrices can be
estimated with

kavr =
1

2
(
√
πm/2 + 1) (7)
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Figure 1: The values of E(f) in formula (5) and
√

2/(πm) over
varying m.

which is derived by replacing µm(A) with µa(A) =√
2/(πm) in formula (2). As it is expected in the former

section, kavr should be close to the real performance floor.
Note that the maximum correlation of random Bernoulli
matrices without same columns is equal to 1. For comparison,
in the following simulation we also consider the performance
floor estimated with µm(A) = 1, which is simply derived as

kmax =
1

2
(1 + 1) = 1. (8)

by incorporating µm(A) = 1 into formula (2). As will be
shown later, kavr performs much better than kmax.

IV. NUMERICAL SIMULATIONS

In this section, we will show that the random Bernoulli
matrix indeed approximately presents a performance floor,
which can be effectively estimated with kavr. To illustrate
the performance floor, the guaranteed sparsity k of random
Bernoulli matrices with fixed m and increasing n is derived
in Table I. Before analyzing the data, we first briefly introduce
the simulation setting. The sparse signal x with sparsity k is
randomly generated in each simulation, and recovered with
subspace pursuit algorithm [8]. The recovery rate is measured
with 1-||x̂ − x||2/||x||2. Note that here we only consider the
largest k that can be recovered with rate larger than 0.99,
because the perfect recovery is hard to be validated with
simulation, unless we can enumerate all possible distributions
of k nonzero elements. Each result in Table I is derived after
10000 simulation runs.

Note that in Table I the compression ratio n/m exponen-
tially increases, while the decreasing speed of k is very slow
and can even be ignored compared with the fast increasing
n/m. This implies that there indeed approximately exists a
performance floor regarding the fixed row size m, as graphi-
cally illustrated in Figure 2. Note that the gradual performance
degradation is inevitable with the exponentially increasing
of n. In practice, it seems hard to present a definite range
for the performance floor. Here we empirically suppose the
performance floor occurs, as the sparsity k decreases in a
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Table I: The largest k guaranteed by (m,n)-sized random Bernoulli matrices under the condition of recovery rate larger than 0.99. For each
m, all k with decreasing step smaller than 2 are underlined in bold.

n/m 21 22 23 24 25 26 27 28 29 210 211 212 213

m

62 5 3 3 2 2 2 1 1 1 1 1 1 1
82 12 9 7 5 5 4 3 3 3 2 2 2 2
102 22 16 12 10 8 7 6 5 5 4 4 4 3
122 34 24 19 16 13 11 10 9 8 7 6 6 5
142 50 35 27 22 19 16 14 12 11 10 9 9 8
162 68 50 38 30 26 22 19 17 15 14 13 12 11

2 4096 8192
0

10

20

30

40

50

n/m

k

 

 

m = 102
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m = 142

Figure 2: The performance curves of three random Bernoulli matrices
from Table I, with m=102, 122 and 142.

step not greater than 1. The relevant results are underlined in
bold in Table I. Note that, due to the limitation of computer
memory, as shown in Table I, we cannot test enough samples
n to describe the performance floor, especially as m increases.
For instance, we obtain only five samples for the largest case of
m = 162. Thus to present a uniform metric, the performance
floor of each m is quantified only with the mean of the first
five k among the results underlined in Table I. The quantified
result is denoted with pf . Note that the whole performance
floor is hard to be accurately reflected with the metric pf ,
because it only considers the first five largest values on the
performance floor. To be specific, as m increases, pf tends
to behave better than the real performance floor, since with
five samples it can only consider few relatively large k and
ignores most other smaller k on the performance floor. In
contrast, for relatively small m, pf probably performs worse
than the real performance floor, as the five samples are likely
to include some relatively small k. In this case, it is reasonable
to infer that the distance between pf and the estimation kavr
will increase with the increasing of m, if kavr is close to the
real performance. This conjecture is validated by the following
simulation results.

In Figure 3, we compare the two estimations kavr and
kmax against the performance floor measured with pf . As it
is expected, the estimation kavr based on average correlation
performs much better than the estimation kmax based on
maximum correlation. Precisely, the estimation kavr is very
close to pf while the estimation kmax is of no practical use.

36 64 100 144 196 256
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pf

kavr

kmax

Figure 3: The performance floor measured with pf , and the theoretical
estimations kavr in formula (7) and kmax in formula (8).

The infeasibility of kmax results from the fact that it is derived
by simply assuming all column correlations take the value of
the maximum correlation. Obviously, this assumption is far
from the truth and suffers from significant errors. Despite
obtaining much better estimate than kmax, as illustrated in
Figure 3, kavr is still not perfect, which becomes smaller than
pf as m increases. As discussed before, this is partially due to
the inaccuracy of pf on measuring the real performance floor.
Precisely, pf tends to behave worse than the real performance
floor when m is relatively small, but perform better as m
increases. From this fact, it can be derived that the error
between kavr and the real performance floor should be smaller
than the result shown in Figure 3.

V. CONCLUSION

This paper has shown that the random Bernoulli matrix
approximately presents a performance floor with the increasing
of compression ratio, which enables the significant compres-
sion of high-dimensional sparse signals. More importantly,
we successfully estimated the performance floor by exploring
the average correlation between distinct columns of random
Bernoulli matrix, instead of the traditional maximum column
correlation. By this means, the theoretical estimation is built
on a sufficient and necessary condition derived in the limit, and
its value is thus much closer to the real sensing performance
compared with the traditional estimation only based on a
sufficient condition. Empirically, the result of this paper is
also valid for Gaussian random matrices.
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