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Abstract. This paper is devoted to the partial null controllability issue of

parabolic linear systems with n equations. Given a bounded domain Ω in RN

(N ∈ N∗), we study the effect of m localized controls in a nonempty open subset

ω only controlling p components of the solution (p,m 6 n). The first main

result of this paper is a necessary and sufficient condition when the coupling
and control matrices are constant. The second result provides, in a first step, a

sufficient condition of partial null controllability when the matrices only depend

on time. In a second step, through an example of partially controlled 2 × 2
parabolic system, we will provide positive and negative results on partial null

controllability when the coefficients are space dependent.

1. Introduction and main results. Let Ω be a bounded domain in RN (N ∈ N∗)
with a C2-class boundary ∂Ω, ω be a nonempty open subset of Ω and T > 0. Let
p, m, n ∈ N∗ such that p,m 6 n. We consider in this paper the following system of
n parabolic linear equations

∂ty = ∆y +Ay +B1ωu in QT := Ω× (0, T ),

y = 0 on ΣT := ∂Ω× (0, T ),

y(0) = y0 in Ω,

(1)

where y0 ∈ L2(Ω)n is the initial data, u ∈ L2(QT )m is the control and

A ∈ L∞(QT ;L(Rn)) and B ∈ L∞(QT ;L(Rm,Rn)).

In many fields such as chemistry, physics or biology it appeared relevant to study
the controllability of such a system (see [4]). For example, in [10], the authors
study a system of three semilinear heat equations which is a model coming from
a mathematical description of the growth of brain tumors. The unknowns are the
drug concentration, the density of tumors cells and the density of wealthy cells
and the aim is to control only two of them with one control. This practical issue
motivates the introduction of the partial null controllability.
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For an initial condition y(0) = y0 ∈ L2(Ω)n and a control u ∈ L2(QT )m, it is
well-known that System (1) admits a unique solution in W (0, T )n, where

W (0, T ) := {y ∈ L2(0, T ;H1
0 (Ω)), ∂ty ∈ L2(0, T ;H−1(Ω))},

with H−1(Ω) := H1
0 (Ω)′ and the following estimate holds (see [21])

‖y‖L2(0,T ;H1
0 (Ω)n) + ‖y‖C0([0,T ];L2(Ω)n) 6 C(‖y0‖L2(Ω)n + ‖u‖L2(QT )m), (2)

where C does not depend on time. We denote by y(·; y0, u) the solution to System
(1) determined by the couple (y0, u).

Let us consider Πp the projection matrix of L(Rn) given by Πp := (Ip 0p,n−p)
(Ip is the identity matrix of L(Rp) and 0p,n−p the null matrix of L(Rn−p,Rp)), that
is,

Πp : Rn → Rp,
(y1, ..., yn) 7→ (y1, ..., yp).

System (1) is said to be

• Πp-approximately controllable on the time interval (0, T ), if for all real
number ε > 0 and y0, yT ∈ L2(Ω)n there exists a control u ∈ L2(QT )m such
that

‖Πpy(T ; y0, u)−ΠpyT ‖L2(Ω)p 6 ε.

• Πp-null controllable on the time interval (0, T ), if for all initial condition
y0 ∈ L2(Ω)n, there exists a control u ∈ L2(QT )m such that

Πpy(T ; y0, u) ≡ 0 in Ω.

Before stating our main results, let us recall the few known results about the
(full) null controllability of System (1). The first of them is about cascade systems
(see [19]). The authors prove the null controllability of System (1) with the control
matrix B := e1 (the first vector of the canonical basis of Rn) and a coupling matrix
A of the form

A :=


α1,1 α1,2 α1,3 · · · α1,n

α2,1 α2,2 α2,3 · · · α2,n

0 α3,2 α3,3 · · · α3,n

...
...

. . .
. . .

...
0 0 · · · αn,n−1 αn,n

 , (3)

where the coefficients αi,j are elements of L∞(QT ) for all i, j ∈ {1, ..., n} and satisfy
for a positive constant C and a nonempty open set ω0 of ω

αi+1,i > C in ω0 or − αi+1,i > C in ω0 for all i ∈ {1, ..., n− 1}.
A similar result on parabolic systems with cascade coupling matrices can be found
in [1].

The null controllability of parabolic 3 × 3 linear systems with space/time de-
pendent coefficients and non cascade structure is studied in [7] and [22] (see also
[19]).

If A ∈ L(Rn) and B ∈ L(Rm,Rn) (the constant case), it has been proved in [3]
that System (1) is null controllable on the time interval (0, T ) if and only if the
following condition holds

rank [A|B] = n, (4)

where [A|B], the so-called Kalman matrix, is defined as

[A|B] := (B|AB|...|An−1B). (5)
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For time dependent coupling and control matrices, we need some additional
regularity. More precisely, we need to suppose that A ∈ Cn−1([0, T ];L(Rn)) and
B ∈ Cn([0, T ];L(Rm;Rn)). In this case, the associated Kalman matrix is defined as
follows. Let us define{

B0(t) := B(t),

Bi(t) := A(t)Bi−1(t)− ∂tBi−1(t) for all i ∈ {1, ..., n− 1}

and denote by [A|B](·) ∈ C1([0, T ];L(Rnm;Rn)) the matrix function given by

[A|B](·) := (B0(·)|B1(·)|...|Bn−1(·)). (6)

In [2] the authors prove first that, if there exists t0 ∈ [0, T ] such that

rank [A|B](t0) = n, (7)

then System (1) is null controllable on the time interval (0, T ). Secondly that
System (1) is null controllable on every interval (T0, T1) with 0 6 T0 < T1 6 T if
and only if there exists a dense subset E of (0, T ) such that

rank [A|B](t) = n for every t ∈ E. (8)

In the present paper, the controls are acting on several equations but on one
subset ω of Ω. Concerning the case where the control domains are not identical, we
refer to [24].

Our first result is the following:

Theorem 1.1. Assume that the coupling and control matrices are constant in space
and time, i. e., A ∈ L(Rn) and B ∈ L(Rm,Rn). The condition

rank Πp[A|B] = p (9)

is equivalent to the Πp-null/approximate controllability on the time interval (0, T )
of System (1).

The Condition (9) for Πp-null controllability reduces to Condition (4) whenever
p = n. A second result concerns the non-autonomous case:

Theorem 1.2. Assume that

A ∈ Cn−1([0, T ];L(Rn)) and B ∈ Cn([0, T ];L(Rm;Rn)).

If

rank Πp[A|B](T ) = p, (10)

then System (1) is Πp-null/approximately controllable on the time interval (0, T ).

In Theorems 1.1 and 1.2, we control the p first components of the solution y. If
we want to control some other components a permutation of lines leads to the same
situation.

Remark 1. 1. When the components of the matrices A and B are analytic
functions on the time interval [0, T ], Condition (7) is necessary for the null
controllability of System (1) (see Th. 1.3 in [2]). Under the same assumption,
the proof of this result can be adapted to show that the following condition{

there exists t0 ∈ [0, T ] such that :

rank Πp[A|B](t0) = p,

is necessary to the Πp-null controllability of System (1).



4 F. AMMAR KHODJA, F. CHOULY AND M. DUPREZ

2. As told before, under Condition (7), System (1) is null controllable. But unlike
the case where all the components are controlled, the Πp-null controllability
at a time t0 smaller than T does not imply this property on the time interval
(0, T ). This roughly explains Condition (10). Furthermore this condition can
not be necessary under the assumptions of Theorem 1.2 (for a counterexample
we refer to [2]).

Remark 2. In the proofs of Theorems 1.1 and 1.2, we will use a result of null
controllability for cascade systems (see Section 2) proved in [2, 19] where the authors
consider a time-dependent second order elliptic operator L(t) given by

L(t)y(x, t) = −
N∑

i,j=1

∂

∂xi

(
αi,j(x, t)

∂y

∂xj
(x, t)

)
+

N∑
i=1

bi(x, t)
∂y

∂xi
(x, t) + c(x, t)y(x, t),

(11)
with coefficients αi,j , bi, c satisfying{

αi,j ∈W 1
∞(QT ), bi, c ∈ L∞(QT ) 1 6 i, j 6 N,

αi,j(x, t) = αj,i(x, t) ∀(x, t) ∈ QT , 1 6 i, j 6 N

and the uniform elliptic condition: there exists a0 > 0 such that

N∑
i,j=1

αi,j(x, t)ξiξj > a0|ξ|2, ∀(x, t) ∈ QT .

Theorems 1.1 and 1.2 remain true if we replace −∆ by an operator L(t) in System
(1).

Now the following question arises: what happens in the case of space and time
dependent coefficients ? As it will be shown in the following example, the answer
seems to be much more tricky. Let us now consider the following parabolic system
of two equations 

∂ty = ∆y + αz + 1ωu in QT ,

∂tz = ∆z in QT ,

y = z = 0 on ΣT ,

y(0) = y0, z(0) = z0 in Ω,

(12)

for given initial data y0, z0 ∈ L2(Ω), a control u ∈ L2(QT ) and where the coefficient
α ∈ L∞(Ω).

Theorem 1.3. (1) Assume that α ∈ C1([0, T ]). Then System (12) is Π1-null con-
trollable for any open set ω ⊂ Ω ⊂ RN (N ∈ N∗), that is for all initial conditions
y0, z0 ∈ L2(Ω), there exists a control u ∈ L2(QT ) such that the solution (y, z)
to System (12) satisfies y(T ) ≡ 0 in Ω.

(2) Let Ω := (a, b) ⊂ R (a, b ∈ R), α ∈ L∞(Ω), (wk)k>1 be the L2-normalized
eigenfunctions of −∆ in Ω with Dirichlet boundary conditions and for all k, l ∈
N∗,

αkl :=

∫
Ω

α(x)wk(x)wl(x) dx.

If the function α satisfies

|αkl| 6 C1e
−C2|k−l| for all k, l ∈ N∗, (13)

for two positive constants C1 > 0 and C2 > b− a, then System (12) is Π1-null
controllable for any open set ω ⊂ Ω.
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(3) Assume that Ω := (0, 2π) and ω ⊂ (π, 2π). Let us consider α ∈ L∞(0, 2π)
defined by

α(x) :=

∞∑
j=1

1

j2
cos(15jx) for all x ∈ (0, 2π).

Then System (12) is not Π1-null controllable. More precisely, there exists k1 ∈
{1, ..., 7} such that for the initial condition (y0, z0) = (0, sin(k1x)) and any
control u ∈ L2(QT ) the solution y to System (12) is not identically equal to
zero at time T .

We will not prove item (1) in Theorem 1.3, because it is a direct consequence of
Theorem 1.2.

Remark 3. Suppose that Ω := (0, π). Consider α ∈ L∞(0, π) and the real sequence
(αp)p∈N such that for all x ∈ (0, π)

α(x) :=

∞∑
p=0

αp cos(px).

Concerning item (2), we remark that Condition (13) is equivalent to the existence
of two constants C1 > 0, C2 > π such that, for all p ∈ N,

|αp| 6 C1e
−C2p.

As it will be shown, the proof of item (3) in Theorem 1.3 can be adapted in order
to get the same conclusion for any α ∈ Hk(0, 2π) (k ∈ N∗) defined by

α(x) :=

∞∑
j=1

1

jk+1
cos((2k + 13)jx) for all x ∈ (0, 2π). (14)

These given functions α belong to Hk(0, π) but not to D((−∆)k/2). Indeed, in the
proof of the third item in Theorem 1.3, we use the fact that the matrix (αkl)k,l∈N∗

is sparse (see (103)), what seems true only for coupling terms α of the form (14).
Thus α is not zero on the boundary.

Remark 4. From Theorem 1.3, one can deduce some new results concerning the
null controllability of the heat equation with a right-hand side. Consider the system

∂ty = ∆y + f + 1ωu in (0, π)× (0, T ),

y(0) = y(π) = 0 on (0, T ),

y(0) = y0 in (0, π),

(15)

where y0 ∈ L2(0, π) is the initial data and f, u ∈ L2(QT ) are the right-hand side
and the control, respectively. Using the Carleman inequality (see [16]), one can
prove that System (15) is null controllable when f satisfies

e
C
T−t f ∈ L2(QT ), (16)

for a positive constant C. For more general right-hand sides it was rather open.
The second and third points of Theorem 1.3 provide some positive and negative
null controllability results for System (15) with right-hand side f which does not
fulfil Condition (16).
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Remark 5. Consider the same system as System (12) except that the control is
now on the boundary, that is

∂ty = ∆y + αz in (0, π)× (0, T ),

∂tz = ∆z in (0, π)× (0, T ),

y(0, t) = v(t), y(π, t) = z(0, t) = z(π, t) = 0 on (0, T ),

y(x, 0) = y0(x), z(x, 0) = z0(x) in (0, π),

(17)

where y0, z0 ∈ H−1(0, π). In Theorem 5.4, we provide an explicit coupling function
α for which the Π1-null controllability of System (17) does not hold. Moreover
one can adapt the proof of the second point in Theorem 1.3 to prove the Π1-null
controllability of System (17) under Condition (13).

If the coupling matrix depends on space, the notions of Π1-null and approximate
controllability are not necessarily equivalent. Indeed, according to the choice of the
coupling function α ∈ L∞(Ω), System (12) can be Π1-null controllable or not. But
this system is Π1-approximately controllable for all α ∈ L∞(Ω):

Theorem 1.4. Let α ∈ L∞(QT ). Then System (12) is Π1-approximately control-
lable for any open set ω ⊂ Ω ⊂ RN (N ∈ N∗), that is for all y0, yT , z0 ∈ L2(Ω) and
all ε > 0, there exists a control u ∈ L2(QT ) such that the solution (y, z) to System
(12) satisfies

‖y(T )− yT ‖L2(Ω) 6 ε.

This result is a direct consequence of the unique continuation property and exis-
tence/unicity of solutions for a single heat equation. Indeed System (12) is Π1-
approximately controllable (see Proposition 1) if and only if for all φ0 ∈ L2(Ω) the
solution to the adjoint system

−∂tφ = ∆φ in QT ,

−∂tψ = ∆ψ + αφ in QT ,

φ = ψ = 0 on ΣT ,

φ(T ) = φ0, ψ(T ) = 0 in Ω

(18)

satisfies

φ ≡ 0 in ω × (0, T ) ⇒ (φ, ψ) ≡ 0 in QT .

If we assume that, for an initial data φ0 ∈ L2(Ω), the solution to System (18)
satisfies φ ≡ 0 in ω× (0, T ), then using Mizohata uniqueness Theorem in [23], φ ≡ 0
in QT and consequently ψ ≡ 0 in QT . For another example of parabolic systems
for which these notions are not equivalent we refer for instance to [5].

Remark 6. The quantity αkl, which appears in the second item of Theorem 1.3,
has already been considered in some controllability studies for parabolic systems.
Let us define for all k ∈ N∗

I1,k(α) :=

∫ a

0

α(x)wk(x)2dx,

Ik(α) := αkk.
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In [6], the authors have proved that the system
∂ty = ∆y + αz in (0, π)× (0, T ),

∂tz = ∆z + 1ωu in (0, π)× (0, T ),

y(0, t) = y(π, t) = z(0, t) = z(π, t) = 0 on (0, T ),

y(x, 0) = y0(x), z(x, 0) = z0(x) in (0, π),

(19)

is approximately controllable if and only if

|Ik(α)|+ |I1,k(α)| 6= 0 for all k ∈ N∗.

A similar result has been obtained for the boundary approximate controllability in
[9]. Consider now

T0(α) := lim sup
k→∞

− log(min{|Ik| , |I1,k|})
k2

.

It is also proved in [6] that: If T > T0(α), then System (19) is null controllable
at time T and if T < T0(α), then System (19) is not null controllable at time T .
As in the present paper, we observe a difference between the approximate and null
controllability, in contrast with the scalar case (see [4]).

In this paper, the sections are organized as follows. We start with some pre-
liminary results on the null controllability for the cascade systems and on the dual
concept associated to the Πp-null controllability. Theorem 1.1 is proved in a first
step with one force i.e. B ∈ Rn in Section 3.1 and in a second step with m forces in
Section 3.2. Section 4 is devoted to proving Theorem 1.2. We consider the situations
of the second and third items of Theorem 1.3 in Section 5.1 and 5.2 respectively.
This paper ends with some numerical illustrations of Π1-null controllability and non
Π1-null controllability of System (12) in Section 5.3.

2. Preliminaries. In this section, we recall a known result about cascade systems
and provide a characterization of the Πp-controllability through the corresponding
adjoint system.

2.1. Cascade systems. Some theorems of this paper use the following result of
null controllability for the following cascade system of n equations controlled by r
distributed functions

∂tw = ∆w + Cw +D1ωu in QT ,

w = 0 on ΣT ,

w(0) = w0 in Ω,

(20)

where w0 ∈ L2(Ω)n, u = (u1, ..., ur) ∈ L2(QT )r, with r ∈ {1, ..., n}, and the
coupling and control matrices C ∈ C0([0, T ];L(Rn)) and D ∈ L(Rr,Rn) are given
by

C(t) :=


C11(t) C12(t) · · · C1r(t)

0 C22(t) · · · C2r(t)
...

...
. . .

...
0 0 · · · Crr(t)

 (21)
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with

Cii(t) :=


αi11(t) αi12(t) αi13(t) · · · αi1,si(t)

1 αi22(t) αi23(t) · · · αi2,si(t)
0 1 αi33(t) · · · αi3,si(t)
...

...
. . .

. . .
...

0 0 · · · 1 αisi,si(t)

 ,

si ∈ N,
∑r
i=1 si = n and D := (eS1

|...|eSr ) with S1 = 1 and Si = 1 +
∑i−1
j=1 sj ,

i ∈ {2, ..., r} (ej is the j-th element of the canonical basis of Rn).

Theorem 2.1. System (20) is null controllable on the time interval (0, T ), i.e. for
all w0 ∈ L2(Ω)n there exists u ∈ L2(Ω)r such that the solution w in W (0, T )n to
System (20) satisfies w(T ) ≡ 0 in Ω.

The proof of this result uses a Carleman estimate (see [16]) and can be found in
[2] or [19].

2.2. Partial null controllability of a parabolic linear system by m forces
and adjoint system. It is nowadays well-known that the controllability has a dual
concept called observability (see for instance [4]). We detail below the observability
for the Πp-controllability.

Proposition 1. 1. System (1) is Πp-null controllable on the time interval (0, T )
if and only if there exists a constant Cobs > 0 such that for all initial data
ϕ0 = (ϕ0

1, ..., ϕ
0
p) ∈ L2(Ω)p the solution ϕ ∈W (0, T )n to the adjoint system
−∂tϕ = ∆ϕ+A∗ϕ in QT ,

ϕ = 0 on ΣT ,

ϕ(·, T ) = Π∗pϕ0 = (ϕ0
1, ..., ϕ

0
p, 0, ..., 0) in Ω

(22)

satisfies the observability inequality

‖ϕ(0)‖2L2(Ω)n 6 Cobs

∫ T

0

‖B∗ϕ‖2L2(ω)m dt. (23)

2. System (1) is Πp-approximately controllable on the time interval (0, T ) if and
only if for all ϕ0 ∈ L2(Ω)p the solution ϕ to System (22) satisfies

B∗ϕ ≡ 0 in (0, T )× ω ⇒ ϕ ≡ 0 in QT .

Proof. For all y0 ∈ L2(Ω)n, and u ∈ L2(QT )m, we denote by y(t; y0, u) the solution
to System (1) at time t ∈ [0, T ]. For all t ∈ [0, T ], let us consider the operators St
and Lt defined as follows

St : L2(Ω)n → L2(Ω)n

y0 7→ y(t; y0, 0)
and

Lt : L2(QT )m → L2(Ω)n

u 7→ y(t; 0, u).
(24)

1. System (1) is Πp-null controllable on the time interval (0, T ) if and only if

∀y0 ∈ L2(Ω)n, ∃u ∈ L2(QT )m such that

ΠpLTu = −ΠpST y0.
(25)

Problem (25) admits a solution if and only if

Im ΠpST ⊂ Im ΠpLT . (26)



PARTIAL NULL CONTROLLABILITY 9

The inclusion (26) is equivalent to (see [11], Lemma 2.48 p. 58)

∃C > 0 such that ∀ϕ0 ∈ L2(Ω)p,

‖S∗TΠ∗pϕ0‖2L2(Ω)n 6 C‖L
∗
TΠ∗pϕ0‖2L2(QT )m .

(27)

We note that

S∗TΠ∗p : L2(Ω)p → L2(Ω)n

ϕ0 7→ ϕ(0)
and

L∗TΠ∗p : L2(Ω)p → L2(QT )m

ϕ0 7→ 1ωB
∗ϕ,

where ϕ ∈ W (0, T )n is the solution to System (22). Indeed, for all y0 ∈
L2(Ω)n, u ∈ L2(QT )m and ϕ0 ∈ L2(Ω)p

〈ΠpST y0, ϕ0〉L2(Ω)p = 〈y(T ; y0, 0), ϕ(T )〉L2(Ω)n

=

∫ T

0

〈∂ty(s; y0, 0), ϕ(s)〉L2(Ω)nds

+

∫ T

0

〈y(s; y0, 0), ∂tϕ(s)〉L2(Ω)nds+ 〈y0, ϕ(0)〉L2(Ω)n

= 〈y0, ϕ(0)〉L2(Ω)n

(28)
and

〈ΠpLTu, ϕ0〉L2(Ω)p = 〈y(T ; 0, u), ϕ(T )〉L2(Ω)n

=

∫ T

0

〈∂ty(s; 0, u), ϕ(s)〉L2(Ω)nds

+

∫ T

0

〈y(s; 0, u), ∂tϕ(s)〉L2(Ω)nds

= 〈1ωBu,ϕ〉L2(QT )n = 〈u,1ωB∗ϕ〉L2(QT )m .

(29)

The inequality (27) combined with (28)-(29) lead to the conclusion.
2. In view of the definition in (24) of ST and LT , System (1) is Πp-approximately

controllable on the time interval (0, T ) if and only if

∀(y0, yT ) ∈ L2(Ω)n × L2(Ω)p, ∀ε > 0, ∃u ∈ L2(QT )m such that
‖ΠpLTu+ ΠpST y0 − yT ‖L2(Ω)p 6 ε.

This is equivalent to

∀ε > 0, ∀zT ∈ L2(Ω)p,∃u ∈ L2(QT )m such that

‖ΠpLTu− zT ‖L2(Ω)p 6 ε.

That means

ΠpLT (L2(QT )m) = L2(Ω)p.

In other words

ker L∗TΠ∗p = {0}.
Thus System (1) is Πp-approximately controllable on the time interval (0, T )
if and only if for all ϕ0 ∈ L2(Ω)p

L∗TΠ∗pϕ0 = 1ωB
∗ϕ ≡ 0 in QT ⇒ ϕ ≡ 0 in QT .

Corollary 1. Let us suppose that for all ϕ0 ∈ L2(Ω)p, the solution ϕ to the adjoint
System (22) satisfies the observability inequality (23). Then for all initial condition
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y0 ∈ L2(Ω)n, there exists a control u ∈ L2(qT )m (qT := ω × (0, T )) such that the
solution y to System (1) satisfies Πpy(T ) ≡ 0 in Ω and

‖u‖L2(qT )m 6
√
Cobs‖y0‖L2(Ω)n . (30)

The proof is classical and will be omitted (estimate (30) can be obtained directly
following the method developed in [15]).

3. Partial null controllability with constant coupling matrices. Let us con-
sider the system 

∂ty = ∆y +Ay +B1ωu in QT ,

y = 0 on ΣT ,

y(0) = y0 in Ω,

(31)

where y0 ∈ L2(Ω)n, u ∈ L2(QT )m, A ∈ L(Rn) and B ∈ L(Rm;Rn). Let the natural
number s be defined by

s := rank [A|B] (32)

and X ⊂ Rn be the linear space spanned by the columns of [A|B].
In this section, we prove Theorem 1.1 in two steps. In subsection 3.1, we begin

by studying the case where B ∈ Rn and the general case is considered in subsection
3.2.

All along this section, we will use the lemma below which proof is straightforward.

Lemma 3.1. Let be y0 ∈ L2(Ω)n, u ∈ L2(QT )m and P ∈ C1([0, T ],L(Rn)) such
that P (t) is invertible for all t ∈ [0, T ]. Then the change of variable w = P−1(t)y
transforms System (31) into the equivalent system

∂tw = ∆w + C(t)w +D(t)1ωu in QT ,

w = 0 on ΣT ,

w(0) = w0 in Ω,

(33)

with w0 := P−1(0)y0, C(t) := −P−1(t)∂tP (t)+P−1(t)AP (t) and D(t) := P−1(t)B.
Moreover

Πpy(T ) ≡ 0 in Ω ⇔ ΠpP (T )w(T ) ≡ 0 in Ω.

If P is constant, we have

[C|D] = P−1[A|B].

3.1. One control force. In this subsection, we suppose that A ∈ L(Rn), B ∈ Rn
and denote by [A|B] =: (kij)16i,j6n and s := rank [A|B]. We begin with the
following observation.

Lemma 3.2. {B, ..., As−1B} is a basis of X.

Proof. If s = rank [A|B] = 1, then the conclusion of the lemma is clearly true, since
B 6= 0. Let s > 2. Suppose to the contrary that {B, ..., As−1B} is not a basis of
X, that is for some i ∈ {0, ..., s− 2} the family {B, ..., AiB} is linearly independent

and Ai+1B ∈ span(B, ..., AiB), that is Ai+1B =
∑i
k=0 αkA

kB with α0, ..., αi ∈ R.
Multiplying by A this expression, we deduce that Ai+2B ∈ span(AB, ..., Ai+1B) =
span(B, ..., AiB). Thus, by induction, AlB ∈ span(B, ..., AiB) for all l ∈ {i +
1, ..., n − 1}. Then rank (B|AB|...|An−1B) = rank (B|AB|...|AiB) = i + 1 < s,
contradicting with (32).
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Proof of Theorem 1.1. Let us remark that

rank Πp[A|B] = dim Πp[A|B](Rn) 6 rank [A|B] = s. (34)

Lemma 3.2 yields

rank (B|AB|...|As−1B) = rank [A|B] = s. (35)

Thus, for all l ∈ {s, s+ 1, ..., n} and i ∈ {0, ..., s− 1}, there exist αl,i such that

AlB =

s−1∑
i=0

αl,iA
iB. (36)

Since, for all l ∈ {s, ..., n}, ΠpA
lB =

∑s−1
i=0 αl,iΠpA

iB, then

rank Πp(B|AB|...|As−1B) = rank Πp[A|B]. (37)

We first prove in (a) that condition (9) is sufficient, and then in (b) that this
condition is necessary.

(a) Sufficiency part: Let us assume first that condition (9) holds. Then, using
(37), we have

rank Πp(B|AB|...|As−1B) = p. (38)

Let be y0 ∈ L2(Ω)n. We will study the Πp-null controllability of System (31)
according to the values of p and s.

Case 1 : p = s. The idea is to find an appropriate change of variable P to the
solution y to System (31). More precisely, we would like the new variable
w := P−1y to be the solution to a cascade system and then, apply Theorem
2.1. So let us define, for all t ∈ [0, T ],

P (t) := (B|AB|...|As−1B|Ps+1(t)|...|Pn(t)), (39)

where, for all l ∈ {s + 1, ..., n}, Pl(t) is the solution in C1([0, T ])n to the
system of ordinary differential equations{

∂tPl(t) = APl(t) in [0, T ],
Pl(T ) = el.

(40)

Using (39) and (40), we can write

P (T ) =

(
P11 0
P21 In−s

)
, (41)

where P11 := Πp(B|AB|...|As−1B) ∈ L(Rs), P21 ∈ L(Rs,Rn−s) and In−s is
the identity matrix of size n−s. Using (38), P11 is invertible and thus P (T )
also. Furthermore, since P (t) ∈ C1([0, T ],L(Rn)) continuous in time on the
time interval [0, T ], there exists T ∗ ∈ [0, T ) such that P (t) is invertible for
all t ∈ [T ∗, T ].

Let us suppose first that T ∗ = 0. Since P (t) ∈ C1([0, T ],L(Rn)) and
invertible, in view of Lemma 3.1: for a fixed control u ∈ L2(QT ), y is the
solution to System (31) if and only if w := P (t)−1y is the solution to System
(33) where C, D are given by

C(t) := −P−1(t)∂tP (t) + P−1(t)AP (t) and D(t) := P−1(t)B,

for all t ∈ [0, T ]. Using (36) and (40), we obtain −∂tP (t) +AP (t) = (AB|...|AsB|0|...|0) = P (t)

(
C11 0
0 0

)
in [0, T ],

P (t)e1 = B in [0, T ],
(42)
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where

C11 :=


0 0 0 . . . αs,0
1 0 0 . . . αs,1
0 1 0 . . . αs,2
...

...
. . .

. . .
...

0 0 . . . 1 αs,s−1

 ∈ L(Rs). (43)

Then

C(t) =

(
C11 0
0 0

)
and D(t) = e1. (44)

Using Theorem 2.1, there exists u ∈ L2(QT ) such that the solution to
System (33) satisfies w1(T ) ≡ ... ≡ ws(T ) ≡ 0 in Ω. Moreover, using (41),
we have

Πsy(T ) = (y1(T ), ..., ys(T )) = P11(w1(T ), ..., ws(T )) ≡ 0 in Ω.

If now T ∗ 6= 0, let y be the solution in W (0, T ∗)n to System (31) with
the initial condition y(0) = y0 in Ω and the control u ≡ 0 in Ω × (0, T ∗).
We use the same argument as above to prove that System (31) is Πs-null
controllable on the time interval [T ∗, T ]. Let v be a control in L2(Ω ×
(T ∗, T )) such that the solution z in W (T ∗, T )n to System (31) with the
initial condition z(T ∗) = y(T ∗) in Ω and the control v satisfies Πsz(T ) ≡ 0
in Ω. Thus if we define y and u as follows

(y, u) :=

{
(y, 0) if t ∈ [0, T ∗],

(z, v) if t ∈ [T ∗, T ],

then, for this control u, y is the solution in W (0, T )n to System (31). More-
over y satisfies

Πsy(T ) ≡ 0 in Ω.

Case 2 : p < s. In order to use Case 1, we would like to apply an appropriate
change of variable Q to the solution y to System (31). If we denote by
[A|B] =: (kij)ij , equalities (35) and (38) can be rewritten

rank

 k11 · · · k1s

...
...

kn1 · · · kns

 = s and rank

 k11 · · · k1s

...
...

kp1 · · · kps

 = p.

Then there exist distinct natural numbers λp+1, ..., λs such that we have
{λp+1, ..., λs} ⊂ {p+ 1, ..., n} and

rank



k11 · · · k1s

...
...

kp1 · · · kps
kλp+11 · · · kλp+1s

...
...

kλs1 · · · kλss


= s. (45)

Let Q be the matrix defined by

Q := (e1|...|ep|eλp+1 |...|eλn)t,

where {λs+1, ..., λn} := {p + 1, ..., n}\{λp+1, ..., λs}. Q is invertible, so
taking w := P−1y with P := Q−1, for a fixed control u in L2(QT ), y is
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solution to System (31) if and only if w is solution to System (33) where
w0 := Qy0, C := QAQ−1 ∈ L(Rn) and D := QB ∈ L(R;Rn). Moreover
there holds

[C|D] = Q[A|B].

Thus, equation (45) yields

rank Πs[C|D] = rank ΠsQ[A|B] = rank



k11 · · · k1n

...
...

kp1 · · · kpn
kλp+11 · · · kλp+1n

...
...

kλs1 · · · kλsn


= s.

Since rank [C|D] = rank [A|B] = s, we proceed as in Case 1 forward
deduce that System (33) is Πs-null controllable, that is there exists a control
u ∈ L2(QT ) such that the solution w to System (33) satisfies

Πsw(T ) ≡ 0 in Ω.

Moreover the matrix Q can be rewritten

Q =

(
Ip 0
0 Q22

)
,

where Q22 ∈ L(Rn−p). Thus

Πpy(T ) = ΠpQy(T ) = Πpw(T ) ≡ 0 in Ω.

(b) Necessary part: Let us denote by [A|B] =: (kij)ij . We suppose now that
(9) is not satisfied: there exist p ∈ {1, ..., p} and βi for all i ∈ {1, ..., p}\{p} such

that kpj =
p∑

i=1,i6=p
βikij for all j ∈ {1, ..., s}. The idea is to find a change of variable

w := Qy that allows to handle more easily our system. We will achieve this in three
steps starting from the simplest situation.

Step 1. Let us suppose first that

k11 = ... = k1s = 0 and rank

 k21 · · · k2s

...
...

ks+1,1 · · · ks+1,s

 = s. (46)

We want to prove that, for some initial condition y0 ∈ L2(Ω)n, a control
u ∈ L2(QT ) cannot be found such that the solution to System (31) satisfies
y1(T ) ≡ 0 in Ω. Let us consider the matrix P ∈ L(Rn) defined by

P := (B|...|As−1B|e1|es+2|...|en). (47)

Using the assumption (46), P is invertible. Thus, in view of Lemma 3.1,
for a fixed control u ∈ L2(QT ), y is a solution to System (31) if and only
if w := P−1y is a solution to System (33) where C, D are given by C :=
P−1AP and D := P−1B. Using (36) we remark that

A(B|AB|...|BAs−1) = (B|AB|...|BAs−1)

(
C11

0

)
,
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with C11 defined in (43). Then C can be rewritten as

C =

(
C11 C12

0 C22

)
, (48)

where C12 ∈ L(Rn−s,Rs) and C22 ∈ L(Rn−s). Furthermore

D = P−1B = P−1Pe1 = e1.

and with the Definition (47) of P we get

y1(T ) = ws+1(T ) in Ω.

Thus we need only to prove that there exists w0 ∈ L2(Ω)n such that we
cannot find a control u ∈ L2(QT ) with the corresponding solution w to
System (33) satisfying ws+1(T ) ≡ 0 in Ω. Therefore we apply Proposition
1 and prove that the observability inequality (23) can not be satisfied. More
precisely, for all w0 ∈ L2(Ω)n, there exists a control u ∈ L2(QT ) such that
the solution to System (33) satisfies ws+1(T ) ≡ 0 in Ω, if and only if there
exists Cobs > 0 such that for all ϕ0

s+1 ∈ L2(Ω) the solution to the adjoint
system

−∂tϕ = ∆ϕ+

(
C∗11 0
C∗12 C∗22

)
ϕ in QT ,

ϕ = 0 on ΣT ,

ϕ(T ) = (0, ..., 0, ϕ0
s+1, 0, ..., 0)t = es+1ϕ

0
s+1 in Ω

(49)

satisfies the observability inequality∫
Ω

ϕ(0)2 dx 6 Cobs

∫
ω×(0,T )

ϕ2
1 dx dt. (50)

But for all ϕ0
s+1 6≡ 0 in Ω, the inequality (50) is not satisfied. Indeed, we

remark first that, since ϕ1(T ) = ... = ϕs(T ) = 0 in Ω, we have ϕ1 = ... =
ϕs = 0 in QT , so that

∫
ω×(0,T )

ϕ2
1 dx = 0, while, if we choose ϕ0

s+1 6≡ 0 in Ω,

using the results on backward uniqueness for this type of parabolic system
(see [17]), we have clearly (ϕs+1(0), ..., ϕn(0)) 6≡ 0 in Ω.

Step 2. Let us suppose only that k11 = ... = k1s = 0. Since rank (B|...|As−1B) = s,
there exists distinct λ1, ..., λs ∈ {2, ..., n} such that

rank

 kλ1,1 · · · kλ1,s

...
...

kλs,1 · · · kλs,s

 = s.

Let us consider the following matrix

Q := (e1|eλ1
|...|eλn−1

)t,

where {λs+1, ..., λn−1} = {2, ..., n}\{λ1, ..., λs}. Thus, for P := Q−1, again,
for a fixed control u ∈ L2(QT ), y is a solution to System (31) if and only
if w := P−1y is a solution to System (33) where C, D are given by C :=
QAQ−1 and D := QB. Moreover, we have

[C|D] = Q[A|B].
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If we note (k̃ij)ij := [C|D], this implies k̃11 = ... = k̃1s = 0 and

rank

 k̃21 · · · k̃2s

...
...

k̃s+1,1 · · · k̃s+1,s

 = rank

 kλ11 · · · kλ1s

...
...

kλs,1 · · · kλs,s

 = s.

Proceeding as in Step 1 for w, there exists an initial condition w0 such
that for all control u in L2(QT ) the solution w to System (33) satisfies
w1(T ) 6≡ 0 in Ω. Thus, for the initial condition y0 := Q−1w0, for all control
u in L2(QT ), the solution y to System (31) satisfies

y1(T ) = w1(T ) 6≡ 0 in Ω.

Step 3. Without loss of generality, we can suppose that there exists βi for all

i ∈ {2, ..., p} such that k1j =
p∑
i=2

βikij for all j ∈ {1, ..., s} (otherwise a

permutation of lines leads to this case). Let us define the following matrix

Q :=

(
(e1 −

p∑
i=2

βiei)|e2|...|en

)t

.

Thus, for P := Q−1, again, for a fixed initial condition y0 ∈ L2(Ω)n and
a control u ∈ L2(QT ), consider System (33) with w := P−1y, y being a

solution to System (31). We remark that if we denote by (k̃ij) := [C|D],

we have k̃11 = ... = k̃1s = 0. Applying step 2 to w, there exists an initial
condition w0 such that for all control u in L2(QT ) the solution w to System
(33) satisfies

w1(T ) 6≡ 0 in Ω. (51)

Thus, with the definition of Q, for all control u in L2(QT ) the solution y to
System (31) satisfies

w1(T ) = y1(T )−
p∑
i=2

βiyi(T ) in Ω.

Suppose Πpy(T ) ≡ 0 in Ω, then w1(T ) ≡ 0 in Ω and this contradicts (51).

As a consequence of Proposition 1, the Πp-null controllability implies the Πp-
approximate controllability of System (33). If now Condition (9) is not satisfied,
as for the Πp-null controllability, we can find a solution to System (49) such that
φ1 ≡ 0 in ω × (0, T ) and φ 6≡ 0 in QT and we conclude again with Proposition 1.

3.2. m-control forces. In this subsection, we will suppose that A ∈ L(Rn) and
B ∈ L(Rm,Rn). We denote by B =: (b1|...|bm). To prove Theorem 1.1, we will use
the following lemma which can be found in [2].

Lemma 3.3. There exist r ∈ {1, ..., s} and sequences {lj}16j6r ⊂ {1, ...,m} and
{sj}16j6r ⊂ {1, ..., n} with

∑r
j=1 sj = s, such that

B :=

r⋃
j=1

{blj , Ablj , ..., Asj−1blj}
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is a basis of X. Moreover, for every 1 6 j 6 r, there exist αik,sj ∈ R for 1 6 i 6 j

and 1 6 k 6 sj such that

Asj blj =

j∑
i=1

(
αi1,sj b

li + αi2,sjAb
li + ...+ αisi,sjA

si−1bli
)
. (52)

Proof of Theorem 1.1. Consider the basis B of X given by Lemma 3.3. Note that

rank Πp[A|B] = dim Πp[A|B](Rn) 6 rank [A|B] = s.

If M is the matrix whose columns are the elements of B, i.e.

M = (mij)ij :=
(
bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr

)
,

we can remark that
rank ΠpM = rank Πp[A|B]. (53)

Indeed, relationship (52) yields

ΠpA
sj blj =

j∑
i=1

(
αi1,sjΠpb

li + αi2,sjΠpAb
li + ...+ αisi,sjΠpA

si−1bli
)
.

We first prove in (a) that condition (9) is sufficient, and then in (b) that this
condition is necessary.

(a) Sufficiency part: Let us suppose first that (9) is satisfied. Let be y0 ∈
L2(Ω)n. We will prove that we need only r forces to control System (31). More
precisely, we will study the Πp-null controllability of the system

∂ty = ∆y +Ay + B̃1ωv in QT ,

y = 0 on ΣT ,

y(0) = y0 in Ω,

(54)

where B̃ = (bl1 |bl2 | · · · |blr ) ∈ L(Rr,Rn). Using (9) and (53), we have

rank Πp(b
l1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr ) = p. (55)

Case 1 : p = s. As in the case of one control force, we want to apply a change of
variable P to the solution y to System (54). Let us define for all t ∈ [0, T ]
the following matrix

P (t) := (bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr |Ps+1(t)|...|Pn(t)) ∈ L(Rn),
(56)

where for all l ∈ {s+ 1, ..., n}, Pl is solution in C1([0, T ])n to the system of
ordinary differential equations{

∂tPl(t) = APl(t) in [0, T ],

Pl(T ) = el.
(57)

Using (56) and (57) we have

P (T ) =

(
P11 0
P21 In−s

)
, (58)

where P11 := Πs(b
l1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr ) ∈ L(Rs) and

P21 ∈ L(Rn−s,Rs). From (55), P11 and thus P (T ) are invertible. Further-
more, since P is continuous on [0, T ], there exists a T ∗ ∈ [0, T ) such that
P (t) is invertible for all t ∈ [T ∗, T ].

We suppose first that T ∗ = 0. Since P is invertible and continuous
on [0, T ], for a fixed control v ∈ L2(QT )r, y is the solution to System (54)
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if and only if w := P (t)−1y is the solution to System (33) where C, D are
given by

C(t) := −P−1(t)∂tP (t) + P−1(t)AP (t) and D(t) := P−1(t)B̃,

for all t ∈ [0, T ]. Using (52) and (57), we obtain
−∂tP (t) +AP (t) = (Abl1 |A2bl1 |...|As1bl1 |...|Ablr |A2blr |...|Asrblr |0|...|0),

= P (t)

(
C̃11 0
0 0

)
in [0, T ],

P (t)eSi = bli in [0, T ],

(59)

where Si = 1 +
∑i−1
j=1 sj for i ∈ {1, ..., r},

C̃11 :=


C11 C12 · · · C1r

0 C22 · · · C2r

...
...

. . .
...

0 0 · · · Crr

 ∈ L(Rs) (60)

and for 1 6 i 6 j 6 r the matrices Cij ∈ L(Rsj ,Rsi) are given by

Cii :=


0 0 0 . . . αi1,si
1 0 0 . . . αi2,si
0 1 0 . . . αi3,si
...

...
. . .

. . .
...

0 0 . . . 1 αisi,si


and

Cij :=


0 0 0 . . . αi1,sj
0 0 0 . . . αi2,sj
0 0 0 . . . αi3,sj
...

...
. . .

. . .
...

0 0 . . . 0 αisi,sj

 for j > i.

Then

C(t) =

(
C̃11 0
0 0

)
and D(t) = (eS1 |...|eSr ). (61)

Using Theorem 2.1, there exists v ∈ L2(QT )r such that the solution to
System (33) satisfies w1(T ) = ... = ws(T ) ≡ 0 in Ω. Moreover, using (58),
we have

Πsy(T ) = (y1(T ), ..., ys(T )) = P11(w1(T ), ..., ws(T )) ≡ 0 in Ω.

If now T ∗ 6= 0, we conclude as in the proof of Theorem 1.1 with one
force (see § 3.1).

Case 2 : p < s. The proof is a direct adaptation of the proof of Theorem 1.1 with
one force, it is possible to find a change of variable in order to get back to
the situation of Case 1 (see § 3.1).

(b) Necessary part: If (9) is not satisfied, there exist p ∈ {1, ..., p} and, for all

i ∈ {1, ..., p}\{p}, scalars βi such that mpj =
p∑

i=1,i6=p
βimij for all j ∈ {1, ..., s}. As
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previously, without loss of generality, we can suppose that

m11 = ... = m1s = 0 and rank

 m21 · · · m2s

...
...

ms+1,1 · · · ms+1,s

 = s (62)

(otherwise a permutation of lines leads to this case). Let us consider the matrix P
defined by

P := (bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr |e1|es+2|...|en). (63)

Relationship ensures (62) that P is invertible. Thus, again, for a fixed control
u ∈ L2(QT )m, y is the solution to System (31) if and only if w := P−1y is the
solution to System (33) where C, D are given by C := P−1AP and D := P−1B.
Using (52), we remark that

A(bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr )

= (Abl1 |A2bl1 |...|As1bl1 |...|Ablr |A2blr |...|Asrblr ) = P

(
C̃11

0

)
,

where C̃11 is defined in (60). Then C can be written as

C =

(
C̃11 C̃12

0 C̃22

)
, (64)

where C̃12 ∈ L(Rs,Rn−s) and C̃22 ∈ L(Rn−s). Furthermore, the matrix D can be
written

D =

(
D1

0

)
,

where D1 ∈ L(Rm,Rs). Using (63), we get

y1(T ) = ws+1(T ) in Ω.

Thus, we need only to prove that there exists w0 ∈ L2(Ω)n such that we cannot
find a control u ∈ L2(QT )m with the corresponding solution w to System (33)
satisfying ws+1(T ) ≡ 0 in Ω. Therefore we apply Proposition 1 and prove that
the observability inequality (23) can not be satisfied. More precisely, for all w0 ∈
L2(Ω)n, there exists a control u ∈ L2(QT )m such that the solution w to System
(33) satisfies ws+1(T ) ≡ 0 in Ω, if and only if there exists Cobs > 0 such that for all
ϕ0
s+1 ∈ L2(Ω) the solution to the adjoint system

−∂tϕ = ∆ϕ+

(
C̃∗11 0

C̃∗12 C̃∗22

)
ϕ in QT ,

ϕ = 0 on ΣT ,

ϕ(T ) = (0, ..., 0, ϕ0
s+1, 0, ..., 0)t = es+1ϕ

0
s+1 in Ω

(65)

satisfies the observability inequality∫
Ω

ϕ(0)2 dx 6 Cobs

∫
ω×(0,T )

(D∗1(ϕ1, ..., ϕs)
t)2 dx dt. (66)

But for all ϕ0
s+1 6≡ 0 in Ω, the inequality (66) is not satisfied. Indeed, we remark

first that, since ϕ1(T ) = ... = ϕs(T ) = 0 in Ω, we have ϕ1 = ... = ϕs = 0 in QT .
Furthermore, if we choose ϕ0

s+1 6≡ 0 in Ω, as previously, we get (ϕs+1(0), ..., ϕn(0)) 6≡
0 in Ω.

We recall that, as a consequence of Proposition 1, the Πp-null controllability
implies the Πp-approximate controllability of System (54). If Condition (9) is not
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satisfied, as for the Πp-null controllability, we can find a solution to System (65)
such that D∗1(φ1, ..., φs)

t ≡ 0 in ω × (0, T ) and φ 6≡ 0 in QT and we conclude again
with Proposition 1.

4. Partial null controllability with time dependent matrices. We recall that
[A|B](·) = (B0(·)|...|Bn−1(·)) (see (6)). Since A(t) ∈ Cn−1([0, T ];L(Rn)) and B(t) ∈
Cn([0, T ];L(Rm;Rn)), we remark that the matrix [A|B] is well defined and is an
element of C1([0, T ],L(Rmn,Rn). We will use the notation Bi =: (bi1|...|bim) for all
i ∈ {0, ..., n− 1}. To prove Theorem 1.2, we will use the following lemma of [19]

Lemma 4.1. Assume that max{rank [A|B](t) : t ∈ [0, T ]} = s 6 n. Then there
exist T0, T1 ∈ [0, T ], with T0 < T1, r ∈ {1, ...,m} and sequences (sj)16j6r ⊂
{1, ..., n}, with

∑r
i=1 sj = s, and (lj)16j6r ⊂ {1, ...,m} such that, for every t ∈

[T0, T1], the set

B(t) =

r⋃
j=1

{blj0 (t), b
lj
1 (t), ..., b

lj
sj−1(t)}, (67)

is linearly independent, spans the columns of [A|B](t) and satisfies

bljsj (t) =

j∑
k=1

(
θ
lj ,lk
sj ,0

(t)blk0 (t) + θ
lj ,lk
sj ,1

(t)blk1 (t) + ...+ θ
lj ,lk
sj ,sk−1(t)blksk−1(t)

)
, (68)

for every t ∈ [T0, T1] and j ∈ {1, ..., r}, where

θ
lj ,lk
sj ,0

(t), θ
lj ,lk
sj ,1

(t), ..., θ
lj ,lk
sj ,sk−1(t) ∈ C1([T0, T1]).

With exactly the same argument for the proof of the previous lemma, we can
obtain the

Lemma 4.2. If rank [A|B](T ) = s, then the conclusions of Lemma 4.1 hold true
with T1 = T .

Proof of Theorem 1.2. Let y0 ∈ L2(Ω)n and s be the rank of the matrix [A|B](T ).
As in the proof of the controllability by one force with constant matrices, let X
being the linear space spanned by the columns of the matrix [A|B](T ). We consider
B = B(t) the basis of X defined in (67).

As in the constant case, we will prove that we need only r forces to control
System (1) that is we study the partial null controllability of System (54) with

the coupling matrix A(t) ∈ Cn−1([0, T ];L(Rn)) and the control matrix B̃(t) =
(Bl1(t)|Bl2(t)| · · · |Blr (t)) ∈ Cn([0, T ];L(Rr,Rn)). If we define M as the matrix
whose columns are the elements of B(t), i.e. for all t ∈ [0, T ]

M(t) = (mij(t))16i6n,16j6s :=
(
bl10 (t)|bl11 (t)|...|bl1s1−1(t)|...|blr0 (t)|blr1 (t)|...|blrsr−1(t)

)
,

we can remark that

rank ΠpM(T ) = rank Πp[A|B](T ) = p. (69)

Indeed, using (68),

Πpb
lj
sj (t) =

j∑
k=1

(
θ
lj ,lk
sj ,0

(t)Πpb
lk
0 (t) + θ

lj ,lk
sj ,1

(t)Πpb
lk
1 (t) + ...+ θ

lj ,lk
sj ,sk−1(t)Πpb

lk
sk−1(t)

)
.
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Case 1 : p = s. As in the constant case, we want to apply a change of variable P to
the solution y to System (54). Let us define for all t ∈ [0, T ] the following
matrix

P (t) := (bl10 (t)|bl11 (t)|...|bl1s1−1(t)|
...|blr0 (t)|blr1 (t)|...|blrsr−1(t)|Ps+1(t)|...|Pn(t)) ∈ L(Rn),

(70)

where for all i ∈ {s+ 1, ..., n}, Pl is solution in C1([0, T ])n to the system of
ordinary differential equations{

∂tPl(t) = APl(t) in [0, T ],

Pl(T ) = el.
(71)

Using (70) and (71), P (T ) can be rewritten

P (T ) =

(
P11 0
P21 In−s

)
, (72)

where P11 := Πp(b
l1
0 (T )|bl11 (T )|...|bl1s1−1(T )|...|blr0 (T )|blr1 (T )|...|blrsr−1(T )) ∈

L(Rs) and P21 ∈ L(Rn−s,Rs). Using (69), P11, and thus P (T ), are invert-
ible. Furthermore, since P is continuous on [0, T ], there exists a T ∗ ∈ [0, T )
such that P (t) is invertible for all t ∈ [T ∗, T ].

As previously it is sufficient to prove the result for T ∗ = 0. Since
P (t) ∈ C1([0, T ],L(Rn)) and is invertible on the time interval [0, T ], again,
for a fixed control v ∈ L2(QT )r, y is the solution to System (54) if and only
if w := P (t)−1y is the solution to System (33) where C, D are given by

C(t) := −P−1(t)∂tP (t) + P−1(t)AP (t) and D(t) := P−1(t)B̃,

for all t ∈ [0, T ]. Using (68) and (71), we obtain
−∂tP (t) +AP (t) = (bl11 (t)|bl12 (t)|...|bl1s1(t)|...|blr1 (t)|blr2 (t)|...|blrsr (t)|0|...|0),

= P (t)

(
C̃11 0
0 0

)
in [0, T ],

P (t)eSi = bli0 in [0, T ],
(73)

where Si = 1 +
∑i−1
j=1 sj for 1 6 i 6 r,

C̃11 :=


C11 C12 · · · C1r

0 C22 · · · C2r

...
...

. . .
...

0 0 · · · Crr

 ∈ L(Rs), (74)

and for 1 6 i 6 j 6 r, the matrices Cij ∈ C0([0, T ];∈ L(Rsj ,Rsi)) are given
here by

Cii =


0 0 0 . . . θli,lisi,0

1 0 0 . . . θli,lisi,1

0 1 0 . . . θli,lisi,2
...

...
. . .

. . .
...

0 0 . . . 1 θli,lisi,si−1
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and

Cij =



0 0 0 . . . θ
lj ,li
sj ,0

0 0 0 . . . θ
lj ,li
sj ,1

0 0 0 . . . θ
lj ,li
sj ,2

...
...

. . .
. . .

...

0 0 . . . 0 θ
lj ,li
sj ,si−1


for j > i.

Then

C =

(
C̃11 0
0 0

)
and D = (eS1 |...|eSr ). (75)

Using Theorem 2.1, there exists v ∈ L2(QT )r such that the solution to
System (33) satisfies w1(T ) = ... = ws(T ) ≡ 0 in Ω. Moreover, the equality
(72) leads to

Πsy(T ) = (y1(T ), ..., ys(T ))t = P11(w1(T ), ..., ws(T ))t ≡ 0 in Ω.

Case 2 : p < s. The same method as in the constant case leads to the conclusion
(see § 3.1).

The πp-approximate controllability can proved also as in the constant case.

5. Partial null controllability for a space dependent coupling matrix. All
along this section, the dimension N will be equal to 1, more precisely Ω := (0, π)
with the exception of the proof of the third point in Theorem 1.3 and the numerical
illustration in Section 5.3 where Ω := (0, 2π). We recall that the eigenvalues of
−∆ in Ω with Dirichlet boundary conditions are given by µk := k2 for all k > 1
and we will denote by (wk)k>1 the associated L2-normalized eigenfunctions. Let us
consider the following parabolic system of two equations

∂ty = ∆y + αz + 1ωu in QT ,

∂tz = ∆z in QT ,

y = z = 0 on ΣT ,

y(0) = y0, z(0) = z0 in Ω,

(76)

where y0, z0 ∈ L2(Ω) are the initial data, u ∈ L2(QT ) is the control and the
coupling coefficient α is in L∞(Ω). We recall that System (76) is Π1-null controllable
if for all y0, z0 ∈ L2(Ω), we can find a control u ∈ L2(QT ) such that the solution
(y, z) ∈W (0, T )2 to System (76) satisfies y(T ) ≡ 0 in Ω.

5.1. Example of controllability. In this subsection, we will provide an example
of Π1-null controllability for System (76) with the help of the method of moments
initially developed in [13]. As already mentioned, we suppose that Ω := (0, π), but
the argument of Section 5.1 can be adapted for any open bounded interval of R.
Let us introduce the adjoint system associated to our control problem

−∂tφ = ∆φ in (0, π)× (0, T ),

−∂tψ = ∆ψ + αφ in (0, π)× (0, T ),

φ(0) = φ(π) = ψ(0) = ψ(π) = 0 on (0, T ),

φ(T ) = φ0, ψ(T ) = 0 in (0, π),

(77)
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where φ0 ∈ L2(0, π). For an initial data φ0 ∈ L2(0, π) in adjoint System (77), we
get ∫ π

0

φ0y(T ) dx−
∫ π

0

φ(0)y0 dx−
∫ π

0

ψ(0)z0 dx =

∫∫
qT

φu dx dt, (78)

with the notation qT := ω × (0, T ). Since (wk)k>1 spans L2(0, π), System (76) is
Π1-null controllable if and only if there exists u ∈ L2(qT ) such that, for all k ∈ N∗,
the solution to System (77) satisfies the following equality

−
∫ π

0

φk(0)y0 dx−
∫ π

0

ψk(0)z0 dx =

∫∫
qT

φku dx dt, (79)

where (φk, ψk) is the solution to adjoint System (77) for the initial data φ0 := wk.
Let k ∈ N∗. With the initial condition φ0 := wk is associated the solution

(φk, ψk) to adjoint System (77):

φk(t) = e−k
2(T−t)wk in (0, π)

for all t ∈ [0, T ]. If we write:

ψk(x, t) :=
∑
l>1

ψkl(t)wl(x) for all (x, t) ∈ (0, π)× (0, T ),

then a simple computation leads to the formula

ψkl(t) =
e−k

2(T−t) − e−l2(T−t)

−k2 + l2
αkl for all l > 1, t ∈ (0, T ), (80)

where, for all k, l ∈ N∗, αkl is defined in (2). In (80) we implicitly used the

convention: if l = k the term (e−k
2(T−t) − e−l

2(T−t))/(−k2 + l2) is replaced by

(T − t)e−k2(T−t). With these expressions of φk and ψk, the equality (79) reads for
all k > 1

− e−k
2T y0

k −
∑
l>1

e−k
2T − e−l2T

−k2 + l2
αklz

0
l =

∫∫
qT

e−k
2(T−t)wk(x)u(t, x) dx dt. (81)

In the proof of Theorem 1.3, we will look for a control u expressed as u(x, t) =

f(x)γ(t) with γ(t) =
∑
k>1 γkqk(t) and (qk)k>1 a family biorthogonal to (e−k

2t)k>1.
Thus, we will need the two following lemma

Lemma 5.1. (see Lemma 5.1, [6]) There exists f ∈ L2(0, π) such that Supp f ⊂ ω
and for a constant β, one has

inf
k>1

fkk
3 = β > 0,

where, for all k ∈ N∗, fk :=
∫ π

0
fwk dx.

Lemma 5.2. (see Corollary 3.2, [13]) There exists a sequence (qk)k>1 ⊂ L2(0, T )

biorthogonal to (e−k
2t)k>1, that is

〈qk, e−l
2t〉L2(0,T ) = δkl.

Moreover, for all ε > 0, there exists CT,ε > 0, independent of k, such that

‖qk‖L2(0,T ) 6 CT,εe
(π+ε)k, ∀k > 1. (82)

Remark 7. When Ω := (a, b) with a, b ∈ R, the inequality (82) of Lemma 5.2 is
replaced by

‖qk‖L2(0,T ) 6 CT,εe
(b−a+ε)k, ∀k > 1.
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Proof of the second point in Theorem 1.3. As mentioned above, let us look for the
control u of the form u(x, t) = f(x)γ(t), where f is as in Lemma 5.1. Since fk 6= 0
for all k ∈ N∗, using (81), the Π1-null controllability of System (76) is reduced to
find a solution γ ∈ L2(0, T ) to the following problem of moments:

∫ T

0

γ(T − t)e−k
2t dt = f−1

k

−e−k2T y0
k −

∑
l>1

e−k
2T − e−l2T

−k2 + l2
αklz

0
l

 := Mk ∀k > 0.

(83)
The function γ(t) :=

∑
k>1Mkqk(T − t) is a solution to this problem of moments.

We need only to prove that γ ∈ L2(0, T ). Using the convexity of the exponential
function, we get for all k ∈ N∗,

∑
l>1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl| =
k∑
l=1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl|
+

∞∑
l=k+1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl|
6

k∑
l=1

Te−l
2T |αkl|+

∞∑
l=k+1

Te−k
2T |αkl|

=: A1,k +A2,k.

(84)

With the Condition (13) on α, there exists a positive constant CT which do not
depend on k such that for all k ∈ N∗

A1,k 6 C1T
k∑
l=1

e−l
2T e−C2(k−l)

6 C1Te
−C2k

∞∑
l=1

e−l
2T+C2l

6 CT e
−C2k

(85)

and

A2,k 6 C1Te
−k2T

∞∑
l=k+1

e−C2(l−k)

6 C1Te
−k2T

∞∑
j=0

(e−C2)j

6 C1Te
−k2T 1

1− e−C2
.

(86)

Combining the three last inequalities (84)-(86), for all k ∈ N∗

∑
l>1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl| 6 CT e
−C2k, (87)

where CT is a positive constant independent of k. Let ε ∈ (0, 1). Then, with Lemma
5.1, (83) and (87), there exists a positive constant CT,ε independent of k such that
for all k ∈ N∗

|Mk| 6 β−1k3
(
e−k

2T ‖y0‖L2(0,π) + CT e
−C2k‖z0‖L2(0,π)

)
6 CT,εe

−C2(1−ε)k(‖y0‖L2(0,π) + ‖z0‖L2(0,π)).
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Thus, using Lemma 5.2, for ε small enough and a positive constant CT,ε

‖γ‖L2(0,T ) 6 CT,ε(
∑
k∈N∗

e−[C2(1−ε)−π+ε]k)(‖y0‖L2(0,π) + ‖z0‖L2(0,π)) <∞.

5.2. Example of non controllability. In this subsection, to provide an exam-
ple of non Π1-null controllability of System (76), we will first study the boundary
controllability of the following parabolic system of two equations

∂ty = ∆y + αz in QT := (0, π)× (0, T ),

∂tz = ∆z in QT ,

y(0, t) = v(t), y(π, t) = z(0, t) = z(π, t) = 0 on (0, T ),

y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω := (0, π),
(88)

where y0, z0 ∈ H−1(0, π) are the initial data, v ∈ L2(0, T ) is the boundary control
and α ∈ L∞(0, π). For any given y0, z0 ∈ H−1(0, π) and v ∈ L2(0, T ), System (88)
has a unique solution in L2(QT )2 ∩ C0([0, T ];H−1(Ω)2) (defined by transposition;
see [14]).

As in Section 5.1, for an initial data (y0, z0) ∈ H−1(0, π)2 we can find a control
v ∈ L2(0, T ) such that the solution to (88) satisfies y(T ) ≡ 0 in (0, π) if and only if
for all φ0 ∈ H1

0 (0, π) the solution to System (77) verifies the equality

− 〈y0, φ(0)〉H−1,H1
0
− 〈z0, ψ(0)〉H−1,H1

0
=

∫ T

0

v(t)φx(0, t) dt, (89)

where the duality bracket 〈·, ·〉H−1,H1
0

is defined as 〈f, g〉H−1,H1
0

:= f(g) for all

f ∈ H−1(0, π) and all g ∈ H1
0 (0, π).

The used strategy here is inspired from [20]. The idea involves constructing
particular initial data for adjoint System (77):

Lemma 5.3. Let m,G ∈ N∗. For all M ∈ N\{0, 1}, there exists φ0,M ∈ L2(0, π)
given by

φ0,M =

m∑
i=1

φ0,M
GM+iwGM+i,

with φ0,M
GM+1, ..., φ

0,M
GM+m ∈ R, such that the solution (φM , ψM ) to adjoint System

(77) with φ0 = φ0,M satisfies(∫ T

0

(φM )x(0, t)2 dt

)1/2

6
γ1

M (2m−5)/2
, (90)

where γ1 does not depend on M . Morover for an increasing sequence (Mj)j∈N ⊂
N\{0, 1} and a k1 ∈ {1, ...,m}, we have |φ0,j

GMj+k1
| = 1 for all G ∈ N∗ and j ∈ N.

To study the controllability of System (88) we will use the fact that for fixed
m,G ∈ N∗, the quantity in the left-side hand in (90) converge to zero when M goes
to infinity.

Proof. We remark first that

AM :=

∫ T

0

(φM )x(0, t)2 dt =

∫ T

0

∣∣∣∣∣
GM+m∑
k=GM+1

ke−k
2(T−t)φ0,M

k

∣∣∣∣∣
2

dt. (91)
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We can rewrite AM as follows:

AM =

∫ T

0

∣∣∣∣∣∣
m∑
j=1

(GM + j)e−(G2M2+2GMj+j2)(T−t)φ0,M
GM+j

∣∣∣∣∣∣
2

dt

=

∫ T

0

e−2G2M2(T−t)gM (t) dt,

(92)

where, for all t ∈ [0, T ], gM (t) := fM (t)2 with

fM (t) :=

m∑
j=1

(GM + j)e−(2GMj+j2)(T−t)φ0,M
GM+j .

Let (φ0,M
GM+1, φ

0,M
GM+2, ..., φ

0,M
GM+m) be a nontrivial solution of the following homoge-

neous linear system of m− 1 equations with m unknowns

f
(l)
M (T ) =

m∑
j=1

(GM + j)(2GMj + j2)lφ0,M
GM+j = 0, for all l ∈ {0, ...,m− 2}. (93)

Using Leibniz formula

g
(l)
M =

l∑
k=0

(
l
k

)
f

(k)
M f

(l−k)
M

we deduce that

g
(l)
M (T ) = 0, for all l ∈ {0, ..., 2m− 4}. (94)

Using (94), after 2m− 3 integrations by part in (92), we obtain

AM =
−gM (0)e−2G2M2T

2G2M2
+

∫ T

0

e−2G2M2(T−t)

(−2G2M2)
g

(1)
M (t)dt

=
2m−4∑
l=0

g
(l)
M (0)e−2G2M2T

(−2G2M2)l+1
+

∫ T

0

e−2G2M2(T−t)

(−2G2M2)2m−3
g

(2m−3)
M (t) dt.

By linearity, in (93) we can choose φ0,M
GM+1, ..., φ

0,M
GM+m such that

sup
i∈{1,...,m}

|φ0,M
GM+i| = 1. (95)

Thus, for all l ∈ N and all t ∈ [0, T ], the following estimate holds

|g(l)
M (t)| =

∣∣∣∣ l∑
k=0

(
l
k

)
f

(k)
M (t)f

(l−k)
M (t)

∣∣∣∣
6

l∑
k=0

(
l
k

) ∣∣∣∣∣ m∑j=1

(GM + j)(2GMj + j2)ke−(2GMj+j2)(T−t)φ0,M
GM+j

∣∣∣∣∣
×

∣∣∣∣∣ m∑j=1

(GM + j)(2GMj + j2)l−ke−(2GMj+j2)(T−t)φ0,M
GM+j

∣∣∣∣∣
6 (GM +m)2m2

l∑
k=0

(
l
k

)
(2GMm+m2)l

6 CM l+2,
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where C does not depend on M . Then, since sup
i∈{1,...,m}

|φ0,M
GM+i| = 1, there exist

C, τ > 0 such that

AM 6 e−2G2M2T
2m−4∑
l=0

‖g(l)
M ‖∞

(2G2M2)l+1
+
T‖g(2m−3)

M ‖∞
(2G2M2)2m−3

6 e−τM
2
∞∑
l=0

C

M l
+

C

M2m−5

6 CM−2e−τM
2 1

1−M−2
+

C

M2m−5
.

Thus there exists γ1 > 0 such that we have the estimate

AM 6
γ1

M2m−5
,

where γ1 does not depend on M . Using (104), for all M > 2, there exists k1(M) ∈
{1, ..., 7}, such that |φ0,M

15M+k1(M)| = 1. Thus there exists an increasing sequence

(Mj)j∈N∗ such that |φ0,Mj

15Mj+k1
| = 1 for a k1 ∈ {1, ...,m} independent of j.

Theorem 5.4. Let T > 0 and α be the function of L∞(0, π) defined by

α(x) :=

∞∑
j=1

1

j2
cos(15jx) for all x ∈ (0, π). (96)

Then there exists k1 ∈ {1, .., 7} such that for (y0, z0) := (0, wk1) and all control
v ∈ L2(0, T ), the solution to System (88) verifies y(T ) 6≡ 0 in (0, π).

Proof. To understand why the number �15� appears in the definition (96) of the
function α, we will consider for all x ∈ (0, π)

α(x) :=

∞∑
j=1

1

j2
cos(Gjx) for all x ∈ (0, π), (97)

where G ∈ N∗. We recall that for an initial condition (y0, z0) ∈ L2(0, π)2 and a
control v ∈ L2(0, T ), the solution to System (96) satisfies y(T ) ≡ 0 in (0, π) if and
only if for all φ0 ∈ L2(0, π), we have the equality

− 〈y0, φ(0)〉H−1,H1
0
− 〈z0, ψ(0)〉H−1,H1

0
=

∫ T

0

v(t)φx(0, t) dt, (98)

where (φ, ψ) is the solution to the adjoint System (77). Let us consider the sequences
(Mj)j∈N∗ and (φ0,Mj

)j∈N, k1 defined in Lemma 5.3 and (φMj
, ψMj

) the solution to
−∂tφMj

= ∆φMj
in (0, π)× (0, T ),

−∂tψMj
= ∆ψMj

+ αφMj
in (0, π)× (0, T ),

φMj (0) = φMj (π) = ψMj (0) = ψMj (π) = 0 on (0, T ),

φMj
(T ) = φ0,Mj

, ψMj
(T ) = 0 in (0, π).

The goal is to prove that for the initial data (y0, z0) := (0, wk1) and φ0,Mj
for j

large enough, the equality (98) does not holds. Using Lemma 5.3, we have∣∣∣∣∣
∫ T

0

v(t)(φMj
)x(0, t) dt

∣∣∣∣∣ 6 γ1‖v‖L2(qT )

Mj
(2m−5)/2

. (99)

Since y0 = 0, we obtain
〈y0, φMj

(0)〉H−1,H1
0

= 0. (100)
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Let us now estimate the term 〈z0, ψMj (0)〉H−1,H1
0

in the equality (98). We recall

that the expression of α is given in (97). Then, the function α is of the form

α(x) =
∞∑
p=0

αp cos(px) for all x ∈ (0, π), with

αp :=

{ 1
i2 if p = Gi with i ∈ N∗,
0 otherwise.

(101)

From the definition of αkl in (2), there holds for all k, l ∈ N∗

αkl = 1
π (α|k−l| − αk+l).

Let k ∈ {1, ...,m} and l ∈ {GMj + 1, ..., GMj +m}. We have

k + l ∈ {GMj + 2, ..., GMj + 2m}.
Thus if we choose

G > 2m+ 1, (102)

using (101), we obtain

αk+l = 0

and

α|k−l| =


1

Mj
2 if |k − l| = GMj ,

0 otherwise.

So that we have the following submatrix of (αkl)16k,l6GM+m:

(αkl)16k6m,GMj+16l6GMj+m =
1

πMj
2 IRm . (103)

According to Lemma 5.3, there exists k1 ∈ {1, ...,m} such that

|φ0,Mj

GMj+k1
| = 1. (104)

Furthermore, since k1 ∈ {1, ...,m},

|e−k
2
1T − e−(GMj+k1)2T | > |e−m

2T − e−G
2Mj

2T | (105)

and

(GMj + k1)2 − k2
1 6 (GMj +m)2 − 1. (106)

Since z0 = wk1 , the equality (103) leads to∣∣∣∣∫ π

0

z0ψMj
(0) dx

∣∣∣∣ =

∣∣∣∣∣ 7∑
s=1

e−k
2
1T − e−(GMj+s)2T

−k2
1 + (GMj + s)2

αk1,GMj+sφ
0,Mj

GMj+s

∣∣∣∣∣
=

∣∣∣∣∣e−k
2
1T − e−(GMj+k1)2T

−k2
1 + (GMj + k1)2

1

πMj
2

∣∣∣∣∣ .
Then using (105) and (106) for all j ∈ N∗∣∣∣〈z0, ψMj

(0)〉H−1,H1
0

∣∣∣ =

∣∣∣∣∫ π

0

z0ψMj
(0) dx

∣∣∣∣ > γ2

Mj
4 , (107)

where γ2 does not depend on j. Combining (99) and (107), we obtain a contradiction
with equality (98). Thus, for this initial condition y0 and z0, we can not find a
control v ∈ L2(0, T ) such that the solution (y, z) to system (96) satisfies y(T ) ≡ 0
in (0, π).
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Proof of the third point in Theorem 1.3. Using Theorem 5.4, for the initial data
(p0, q0) := (0, wk1) ∈ L2(0, π)2 and all control v ∈ L2(0, T ), the solution (p, q) ∈
W (0, T )2 (defined by transposition) to the system

∂tp = ∆p+ αq in (0, π)× (0, T ),

∂tq = ∆q in (0, π)× (0, T ),

p(π, ·) = v, p(0, ·) = q(0, ·) = q(π, ·) = 0 on (0, T ),

p(·, 0) = p0, q(·, 0) = q0 in (0, π)

(108)

satisfies p(T ) 6≡ 0 in (0, π). Consider now p0, q0 ∈ L2(0, 2π) defined by

p0(x) = 0 and q0(x) =

√
2

π
sin(k1x) for all x ∈ (0, 2π).

Remark that (p0|(0,π), q0|(0,π)) = (p0, q0). Let ω ⊂ (0, π). Suppose now that the
system

For given (y0, z0) : (0, 2π)→ R2, u : (0, 2π)× (0, T )→ R,
Find (y, z) : (0, 2π)× (0, T )→ R2 such that

∂ty = ∆y + αz + 1ωu in (0, 2π)× (0, T ),

∂tz = ∆z in (0, 2π)× (0, T ),

y(0, ·) = y(2π, ·) = z(0, ·) = z(2π, ·) = 0 on (0, T ),

y(·, 0) = y0, z(·, 0) = z0 in (0, 2π)

(109)

is Π1-null controllable, more particularly for the initial conditions y(0) = p0 and
z(0) = q0 in (0, 2π), there exists a control u in L2((0, 2π) × (0, T )) such that the
solution (y, z) to System (109) satisfies y(T ) ≡ 0 in (0, 2π). We remark now that
(p, q) := (y|(0,π), z|(0,π)) is a solution of (108) with (p(0), q(0)) = (p0, q0) in (0, π),
v(t) = y(π, t) in (0, T ) and satisfying p(T ) ≡ 0 in (0, π). This contradicts that for
any control v ∈ L2(0, T ) the solution (p, q) to System (108) can not be identically
equal to zero at time T.

5.3. Numerical illustration. In this section, we illustrate numerically the results
obtained previously in Sections 5.1 and 5.2. We adapt the HUM method to our
control problem. For all penalty parameter ε > 0, we compute the control that
minimizes the penalized HUM functional Fε given by

Fε(u) :=
1

2
‖u‖2L2(ω×(0,T )) +

1

2ε
‖y(T ; y0, u)‖2L2(Ω),

where y is the solution to (76). We can find in [8] the argument relating the
null/approximate controllability and this kind of functional. Using the Fenchel-
Rockafellar theory (see [12] p. 59) we know that the minimum of Fε is equal to
the opposite of the minimum of Jε, the so-called dual functional, defined for all
ϕ0 ∈ L2(Ω) by

Jε(ϕ0) :=
1

2
‖ϕ‖2L2(qT ) +

ε

2
‖ϕ0‖2L2(QT ) + 〈y(T ; y0, 0), ϕ0〉L2(Ω),

where ϕ is the solution to the backward System (110). Moreover the minimizers uε
and ϕ0,ε of the functionals Fε and Jε respectively, are related through the equality
uε = 1ωϕε, where ϕε is the solution to the backward System (110) with the initial
data ϕ(T ) = ϕ0,ε. A simple computation leads to

∇Jε(ϕ0) = Λϕ0 + εϕ0 + y(T ; y0, 0),
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with the Gramiam operator Λ defined as follows

Λ : L2(Ω) 7→ L2(Ω),

ϕ0 → w(T ),

where w is the solution to the following backward and forward systems
−∂tϕ = ∆ϕ in QT ,

ϕ = 0 on ΣT ,

ϕ(T ) = ϕ0 in Ω

(110)

and 
∂tw = ∆w + 1ωϕ in QT ,

w = 0, on ΣT ,

w(0) = 0 in Ω.

(111)

Then the minimizer uε of Fε will be computed with the help of the minimizer ϕ0,ε

of Jε which is the solution to the linear problem

(Λ + ε)ϕ0,ε = −y(T ; y0, 0).

Remark 8. The proof of Theorem 1.7 in [8] can be adapted to prove that

(i) System (76) is Π1-null controllable if and only if sup
ε>0

(
inf

L2(ω×(0,T ))
Fε

)
<∞,

(ii) System (76) is Π1-approximately controllable if and only if yε(T ) −→
ε→0

0,

where yε is the solution to System (76) for the control uε.

System (76) with T = 0.005, Ω := (0, 2π), ω := (0, π) and y0 := 100 sin(x) has
been considered. We take the two expressions below for the coupling coefficient α
that correspond respectively to Cases (1)-(2) and (3) in Theorem 1.3:

(a) α(x) = 1,

(b) α(x) =
∑
p>0

1
p2 cos(15px).

Systems (76) and (110)-(111) are discretized with backward Euler time-marching
scheme (time step δt = 1/400) and standard piecewise linear Lagrange finite el-
ements on a uniform mesh of size h successively equal to 2π/50, 2π/100, 2π/200
and 2π/300. We follow the methodology of F. Boyer (see [8]) that introduces a
penalty parameter ε = φ(h) := h4. We denote by Eh, Uh and L2

δt(0, T ;Uh) the fully-
discretized spaces associated to L2(Ω), L2(ω) and L2(qT ). Fh,δtε is the discretization
of Fε and (yh,δtε , zh,δtε , uh,δtε ) the solution to the corresponding fully-discrete prob-
lem of minimisation. For more details on the fully-discretization of System (76) and
Gramiam Λ (used to the minimisation of Fε), we refer to Section 3 in [8] and in [18,
p. 37] respectively. The results are depicted Figure 1 and 2.
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h

infuh,δt∈L2
δt(0,T ;Uh) F

h,δt
ε (uh,δt) (slope =-0.103)

‖uh,δtε ‖L2
δt(0,T ;Uh) (slope =-6.34e-2)

‖yh,δtε (T )‖Eh (slope =2.74)

Figure 1. Minimal value of the functional Fh,δtε in L2
δt(0, T ;Uh),

norm of the control ‖uh,δtε ‖L2
δt(0,T ;Uh), and distance to the target

‖yh,δtε (T )‖Eh in Case (a).
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infuh,δt∈L2
δt(0,T ;Uh) F

h,δt
ε (uh,δt) (slope =-3.80)

‖uh,δtε ‖L2
δt(0,T ;Uh) (slope =-1.70)

‖yh,δtε (T )‖Eh (slope =8.34e-2)

Figure 2. Minimal value of the functional Fh,δtε in L2
δt(0, T ;Uh),

norm of the control ‖uh,δtε ‖L2
δt(0,T ;Uh), and distance to the target

‖yh,δtε (T )‖Eh in Case (b).
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As mentioned in the introduction of the present article (see Theorem 1.3), in
both situations (a) and (b), System (76) is Π1-approximately controllable and we
observe indeed in Figure 1 and 2 that the norm of the numerical solution to System
(76) at time T (−N−) is decreasing when reducing the penality parameter ε = h4.

In Figure 1, the minimal value of the functional Fh,δtε (− • −) as well as the
L2-norm of the control uh,δtε (−�−) remain roughly constant whatever is the value
of h (and ε = h4). This appears in agreement with the results (1)-(2) of Theorem
1.3, that state the Π1-null controllability of System (76) in Case (a) of a constant
coupling coefficient α (see Remark 8 (i)). Furthermore the convergence to the null
target is approximately of order 2 (slope of 2.27). This is in agreement with the
convergence rate established in [8, Proposition 2.2], which should be h2 for ε = h4

(this result should be in fact slightly adapted to consider Π1-null controllability).
At the opposite, in Figure 2, the minimal value of the functional Fh,δtε as well as

the L2-norm of the control uh,δtε are strongly increasing whenever h (and ε) become
smaller. This coincides with point (3) of Theorem 1.3: for the chosen value of
the coupling coefficient α in Case (b), no Π1-null controllability of System (76) is
expected. Moreover, convergence to the null target is quite slow, with a slope of
approximately 8.34e− 2.
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