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Partial null controllability of parabolic linear systems by m

forces

Farid AMMAR KHODJA∗ Franz CHOULY∗ Michel DUPREZ∗†

February 11, 2015

Abstract

This paper is devoted to the partial null controllability issue of parabolic linear systems with
n equations. Given a bounded domain Ω in RN (N ∈ N∗), we study the e�ect of m localized
controls in a nonempty open subset ω only controlling p components of the solution (p,m 6 n).
The �rst main result of this paper is a necessary and su�cient condition when the coupling and
control matrices are constant. The second result provides, in a �rst step, a su�cient condition of
partial null controllability when the matrices only depend on time. In a second step, through an
example of partially controlled 2× 2 parabolic system, we will give positive and negative results
on partial null controllability when the coe�cients are space dependent.

1 Introduction and main results

Let Ω be a bounded domain in RN , N ∈ N∗ with a C2-class boundary ∂Ω, ω be a nonempty open
subset of Ω and T > 0. Let p, m, n ∈ N∗ such that p,m 6 n.

We consider in this paper the following system of n parabolic linear equations ∂ty = ∆y +Ay +B1ωu in QT := Ω× (0, T ),
y = 0 on ΣT := ∂Ω× (0, T ),
y(0) = y0 in Ω,

(1.1)

where y0 ∈ L2(Ω)n is the initial data, u ∈ L2(QT )m is the control and for all (x, t) ∈ QT

A(x, t) ∈ L(Rn) and B(x, t) ∈ L(Rm;Rn).

In many �elds such as chemistry, physics or biology it appeared relevant to study the controllability
of such a system (see [4]). For example, in [8], the authors study a system of three semilinear heat
equations which is a model coming from a mathematical description of the growth of brain tumors.
The unknowns are the drug concentration, the density of tumors cells and the density of wealthy
cells and the aim is to control only two of them with one control. This practical issue motivates the
introduction of the partial null controllability.

For an initial condition y(0) = y0 ∈ L2(Ω)n and a control u ∈ L2(QT )m, it is well-known that
System (1.1) admits a unique solution in W (0, T )n, where

W (0, T ) := {y ∈ L2(0, T ;H1
0 (Ω)), ∂ty ∈ L2(0, T ;H−1(Ω))},

and the following estimate holds (see [4])

‖y‖L2(0,T ;H1
0 (Ω)n) + ‖y‖C0([0,T ];L2(Ω)n) 6 C(‖y0‖L2(Ω)n + ‖u‖L2(QT )m), (1.2)
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where C does not depend on time. We denote by y(·; y0, u) the solution to System (1.1) determined
by the couple (y0, u).

Let us consider Πp the projection matrix de�ned as follows

Πp : Rn → Rp,
(y1, ..., yn) 7→ (y1, ..., yp).

System (1.1) is said to be

• Πp-approximately controllable on the time interval (0, T ), if for all real number ε > 0 and
y0, yT ∈ L2(Ω)n there exists a control u ∈ L2(QT )m such that

‖Πpy(T ; y0, u)−ΠpyT ‖L2(Ω)p 6 ε.

• Πp-null controllable on the time interval (0, T ), if for all initial condition y0 ∈ L2(Ω)n, there
exists a control u ∈ L2(QT )m such that

Πpy(T ; y0, u) ≡ 0 in Ω.

Before stating our main results, let us recall the few known results about the (full) null controlla-
bility of System (1.1). The �rst of them is about cascade systems (see [16]). The authors prove the
null controllability of System (1.1) with the control matrix B := e1 (the �rst vector of the canonical
basis of Rn) and a coupling matrix A of the form

A :=


α1,1 α1,2 α1,3 · · · α1,n

α2,1 α2,2 α2,3 · · · α2,n

0 α3,2 α3,3 · · · α3,n

...
...

. . .
. . .

...
0 0 · · · αn,n−1 αn,n

 , (1.3)

where the coe�cients αi,j are elements of L∞(QT ) for all i, j ∈ {1, ..., n} and satisfy for a positive
constant C

αi+1,i > C for all i ∈ {1, ..., n− 1}.
A similar result on parabolic systems with cascade coupling matrices can be found in [1].

The null controllability of parabolic 3 × 3 linear systems with space/time dependent coe�cients
and non cascade structure is studied in [6] and [18] (see also [16]).

If A ∈ L(Rn) and B ∈ L(Rm,Rn) (the constant case), it has been proved in [3] that System (1.1)
is null controllable on the time interval (0, T ) if and only if the following condition holds

rank [A|B] = n, (1.4)

where [A|B], the so-called Kalman matrix, is de�ned as

[A|B] := (B|AB|...|An−1B).

For time dependent coupling and control matrices, we need some additional regularity. More
precisely, we need to suppose that A ∈ Cn−1([0, T ];L(Rn)) and B ∈ Cn([0, T ];L(Rm;Rn)). In this
case, the associated Kalman matrix is de�ned as follows. Let us de�ne{

B0(t) := B(t),
Bi(t) := A(t)Bi−1(t)− ∂tBi−1(t), (1 6 i 6 n− 1)

and denote by [A|B](·) ∈ C1([0, T ];L(Rnm;Rn)) the matrix function given by

[A|B](·) := (B0(·)|B1(·)|...|Bn−1(·)). (1.5)
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In [2] the authors prove �rst that, if there exists t0 ∈ [0, T ] such that

rank [A|B](t0) = n, (1.6)

then System (1.1) is null controllable on the time interval (0, T ). Secondly that System (1.1) is null
controllable on every interval (T0, T1) with 0 6 T0 < T1 6 T if and only if there exists a dense subset
E of (0, T ) such that

rank [A|B](t) = n for every t ∈ E. (1.7)

In the present paper, the controls are acting on several equations but on one subset ω of Ω.
Concerning the case where the control domains are not identical, we refer to [20].

Our �rst result is the following:

Theorem 1.1. Assume that the coupling and control matrices are constant in space and time, i.
e., A ∈ L(Rn) and B ∈ L(Rm,Rn). The condition

rank Πp[A|B] = p (1.8)

is equivalent to the Πp-null/approximate controllability on the time interval (0, T ) of System (1.1).

The Condition (1.8) for Πp-null controllability reduces to Condition (1.4) whenever p = n. A
second result concerns the non-autonomous case:

Theorem 1.2. Assume that A ∈ Cn−1([0, T ];L(Rn)) and B ∈ Cn([0, T ];L(Rm;Rn)). If

rank Πp[A|B](T ) = p, (1.9)

then System (1.1) is Πp-null/approximately controllable on the time interval (0, T ).

As told before, under Condition (1.6), System (1.1) is (fully) null controllable. But unlike the
case where all the components are controlled, the Πp-null controllability at a time t0 smaller than
T does not imply this property on the time interval (0, T ). This roughly explains Condition (1.9).
Furthermore this condition can not be necessary (for a counterexample we refer to [2]).

In the proofs of Theorems 1.1 and 1.2, we will use a result of null controllability for cascade
systems (see Section 2) proved in [2, 16] where the authors consider a time-dependent second order
elliptic operator L(t) given by

L(t)y(x, t) = −
N∑

i,j=1

∂

∂xi

(
αi,j(x, t)

∂y

∂xj
(x, t)

)
+

N∑
i=1

bi(x, t)
∂y

∂xi
(x, t) + c(x, t)y(x, t), (1.10)

with coe�cients αi,j satisfying{
αi,j ∈W 1

∞(QT ), bi, c ∈ L∞(QT ) 1 6 i, j 6 N,
αi,j(x, t) = αj,i(x, t) ∀(x, t) ∈ QT , 1 6 i, j 6 N

and the uniform elliptic condition: there exists a0 > 0 such that

N∑
i,j=1

αi,j(x, t)ξiξj > a0|ξ|2, ∀(x, t) ∈ QT .

Theorems 1.1 and 1.2 remain true if we replace −∆ by an operator L(t) in System (1.1).
Now the following question arises: what happens in the case of space and time dependent coe�-

cients ? As it will be shown in the following example, the answer seems to be much more tricky. Let
us now consider the following parabolic system of two equations

∂ty = ∆y + αz + 1ωu in QT ,
∂tz = ∆z in QT ,
y = z = 0 on ΣT ,
y(0) = y0, z(0) = z0 in Ω,

(1.11)

for given initial data y0, z0 ∈ L2(Ω), a control u ∈ L2(QT ) and where the coe�cient α ∈ L∞(Ω).
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Theorem 1.3. (1) Assume that α ∈ C1([0, T ]). Then System (1.11) is Π1-null controllable for
any open set ω ⊂ Ω ⊂ RN (N ∈ N∗), that is for all initial conditions y0, z0 ∈ L2(Ω), there exists
a control u ∈ L2(QT ) such that the solution (y, z) to System (1.11) satis�es y(T ) ≡ 0 in Ω.

(2) Let us suppose that α ∈ L∞(Ω) with Ω := (a, b) ⊂ R (a, b ∈ R) and satis�es∣∣∣∣∫
Ω

αwkwl dx

∣∣∣∣ 6 C1e
−C2|k2−l2| for all k, l ∈ N∗, (1.12)

where C1, C2 are two positive constants and (wk)k>1 are the L2-normalized eigenfunctions of
−∆ in Ω with Dirichlet boundary conditions. Then System (1.11) is Π1-null controllable for any
open set ω ⊂ Ω.

(3) Assume that Ω := (0, 2π) and ω ⊂ (π, 2π). Let us consider α ∈ L∞(0, 2π) de�ned by

α(x) :=

∞∑
j=1

1

j2
cos(15jx) for all x ∈ (0, 2π).

Then System (1.11) is not Π1-null controllable. More precisely, there exists k1 ∈ {1, ..., 7} such
that for the initial condition (y0, z0) = (0, sin(k1x)) and any control u ∈ L2(QT ) the solution y
to System (1.11) is not identically equal to zero at time T .

In Theorem 1.3, (1) can be proved with the help of Theorem 1.2. Concerning (2), Condition
(1.12) can be rewritten as follows. We suppose that Ω := (0, π) and consider α ∈ L∞(0, π) and the
real sequence (αp)p∈N such that for all x ∈ (0, π)

α(x) :=

∞∑
p=0

αp cos(px).

Then Condition (1.12) is equivalent to �nd two positive constants C1, C2 such that, for all p ∈ N,

|αp| 6 C1e
−C2p

2

.

And, as it will be shown, the proof of (3) in Theorem 1.3 can be adapted in order to get the same
conclusion for any α ∈ Hk(0, 2π) (k ∈ N∗) de�ned by

α(x) :=

∞∑
j=1

1

jk+1
cos((2k + 13)jx) for all x ∈ (0, 2π).

Unlike the case with a time dependent coupling matrix, if the coupling matrix depends on space,
the notions of Π1-null and approximate controllability are not necessarily equivalent. Indeed, accord-
ing to the choice of the coupling function α ∈ L∞(Ω), System (1.1) can be Πp-null controllable or
not. But this system is Π1-approximately controllable for all α ∈ L∞(Ω):

Theorem 1.4. Let α ∈ L∞(QT ). Then System (1.11) is Π1-approximately controllable for any
open set ω ⊂ Ω ⊂ RN (N ∈ N∗), that is for all y0, yT , z0 ∈ L2(Ω) and all ε > 0, there exists a control
u ∈ L2(QT ) such that the solution (y, z) to System (1.11) satis�es

‖y(T )− yT ‖L2(Ω) 6 ε.

This result is a direct consequence of the approximate controllability for the heat equation. Indeed
System (1.11) is Π1-approximately controllable (see Proposition 2.1) if and only if for all φ0 ∈ L2(Ω)
the solution to the adjoint system

−∂tφ = ∆φ in QT ,
−∂tψ = ∆ψ + αφ in QT ,
φ = ψ = 0 on ΣT ,
φ(T ) = φ0, ψ(T ) = 0 in Ω
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satis�es
φ ≡ 0 in (0, T )× ω ⇒ (φ, ψ) ≡ 0 in QT .

If we assume that, for an initial data φ0 ∈ L2(Ω), the solution to System (5.2) satis�es φ ≡ 0 in
(0, T )× ω, then using Mizohata uniqueness Theorem in [19], φ ≡ 0 in QT and consequently ψ ≡ 0 in
QT . For another example of parabolic systems for which those notions are not equivalent we refer to
[5].

In this paper, the sections are organized as follows. We start with some preliminary results on
the null controllability for the cascade systems and on the dual concept associated to the Πp-null
controllability. Theorem 1.1 is proved in a �rst step with one force i.e. B ∈ Rn in Section 3.1 and in
a second step with m forces in Section 3.2. Section 4 is devoted to proving Theorem 1.2. We consider
the situations of the second and third items of Theorem 1.3 in Section 5.1 and 5.2 respectively. This
paper ends with some numerical illustrations of Π1-null controllability and non Π1-null controllability
of System (1.11) in Section 5.3.

2 Preliminaries

In this section, we recall a known result about cascade systems and provide a characterization of
the Πp-controllability through the corresponding dual system.

2.1 Cascade systems

Some theorems of this paper use the following result of null controllability for the following cascade
system of n equations controlled by r distributed functions ∂tw = ∆w + Cw +D1ωu in QT ,

w = 0 on ΣT ,
w(0) = w0 in Ω,

(2.1)

where w0 ∈ L2(Ω)n, u = (u1, ..., ur) ∈ L2(QT )r, with r ∈ {1, ..., n}, and the coupling and control
matrices C ∈ C0([0, T ];L(Rn)) and D ∈ L(Rr,Rn) are given by

C(t) :=


C11(t) C12(t) · · · C1r(t)

0 C22(t) · · · C2r(t)
...

...
. . .

...
0 0 · · · Crr(t)

 (2.2)

with

Cii(t) :=


αi11(t) αi12(t) αi13(t) · · · αi1,si(t)

1 αi22(t) αi23(t) · · · αi2,si(t)
0 1 αi33(t) · · · αi3,si(t)
...

...
. . .

. . .
...

0 0 · · · 1 αisi,si(t)

 ,

si ∈ N,
∑r
i=1 si = n and D := (eS1

|...|eSr ) with S1 = 1 and Si = 1 +
∑i−1
j=1 sj , i ∈ {2, ..., r} (ej is the

j-th element of the canonical basis of Rn).

Theorem 2.1. System (2.1) is null controllable on the time interval (0, T ), i.e. for all w0 ∈ L2(Ω)n

there exists u ∈ L2(Ω)r such that the solution w in W (0, T )n to System (2.1) satis�es w(T ) ≡ 0 in
Ω.

This result can be found in [2] or [16].
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2.2 Adjoint system

2.2 Partial null controllability of a parabolic linear system by m forces

and adjoint system

It is nowadays well-known that the controllability has a dual concept called observability (see for
instance [4]). We detail below the observability for the Πp-controllability.

Proposition 2.1. 1. System (1.1) is Πp-null controllable on the time interval (0, T ) if and
only if there exists a constant Cobs > 0 such that for all ϕ0 = (ϕ0

1, ..., ϕ
0
p) ∈ L2(Ω)p the solution

ϕ ∈W (0, T )n to the adjoint system
−∂tϕ = ∆ϕ+A∗ϕ in QT ,
ϕ = 0 on ΣT ,
ϕ(·, T ) = Π∗pϕ0 = (ϕ0

1, ..., ϕ
0
p, 0, ..., 0) in Ω

(2.3)

satis�es the observability inequality

‖ϕ(0)‖2L2(Ω)n 6 Cobs

∫ T

0

‖B∗ϕ‖2L2(ω)m dt. (2.4)

2. System (1.1) is Πp-approximately controllable on the time interval (0, T ) if and only if for all
ϕ0 ∈ L2(Ω)p the solution ϕ to System (2.3) satis�es

B∗ϕ ≡ 0 in (0, T )× ω ⇒ ϕ ≡ 0 in QT .

Proof. For all y0 ∈ L2(Ω)n, and u ∈ L2(QT )m, we denote by y(t; y0, u) the solution to System (1.1)
at time t ∈ [0, T ]. For all t ∈ [0, T ], let us consider the operators St and Lt de�ned as follows

St : L2(Ω)n → L2(Ω)n

y0 7→ y(t; y0, 0)
and

Lt : L2(QT )m → L2(Ω)n

u 7→ y(t; 0, u).
(2.5)

1. System (1.1) is Πp-null controllable on the time interval (0, T ) if and only if

∀y0 ∈ L2(Ω)n, ∃u ∈ L2(QT )m such that
ΠpLTu = −ΠpST y0.

(2.6)

Problem (2.6) admits a solution if and only if

Im ΠpST ⊂ Im ΠpLT . (2.7)

The inclusion (2.7) is equivalent to (see [9], Lemma 2.48 p. 58)

∃C > 0 such that ∀ϕ0 ∈ L2(Ω)p,
‖S∗TΠ∗pϕ0‖2L2(Ω)n 6 C‖L∗TΠ∗pϕ0‖2L2(QT )m .

(2.8)

We note that

S∗TΠ∗p : L2(Ω)p → L2(Ω)n

ϕ0 7→ ϕ(0)
and

L∗TΠ∗p : L2(Ω)p → L2(QT )m

ϕ0 7→ 1ωB
∗ϕ,

where ϕ ∈W (0, T )n is the solution to System (2.3). Indeed, for all y0 ∈ L2(Ω)n, u ∈ L2(QT )m

and ϕ0 ∈ L2(Ω)p

〈ΠpST y0, ϕ0〉L2(Ω)p = 〈y(T ; y0, 0), ϕ(T )〉L2(Ω)n

=

∫ T

0

〈∂ty(s; y0, 0), ϕ(s)〉L2(Ω)nds

+

∫ T

0

〈y(s; y0, 0), ∂tϕ(s)〉L2(Ω)nds+ 〈y0, ϕ(0)〉L2(Ω)n

= 〈y0, ϕ(0)〉L2(Ω)n

(2.9)
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and

〈ΠpLTu, ϕ0〉L2(Ω)p = 〈y(T ; 0, u), ϕ(T )〉L2(Ω)n

=

∫ T

0

〈∂ty(s; 0, u), ϕ(s)〉L2(Ω)nds+

∫ T

0

〈y(s; 0, u), ∂tϕ(s)〉L2(Ω)nds

= 〈1ωBu,ϕ〉L2(QT )n = 〈u,1ωB∗ϕ〉L2(QT )m .
(2.10)

The inequality (2.8) combined with (2.9)-(2.10) lead to the conclusion.

2. In view of the de�nition in (2.5) of ST and LT , System (1.1) is Πp-approximately controllable
on the time interval (0, T ) if and only if

∀(y0, yT ) ∈ L2(Ω)n × L2(Ω)p, ∀ε > 0, ∃u ∈ L2(QT )m such that
‖ΠpLTu+ ΠpST y0 − yT ‖L2(Ω)p 6 ε.

This is equivalent to

∀ε > 0, ∀zT ∈ L2(Ω)p,∃u ∈ L2(QT )m such that
‖ΠpLTu− zT ‖L2(Ω)p 6 ε.

That means
ΠpLT (L2(QT )m) = L2(Ω)p.

In other words
ker L∗TΠ∗p = {0}.

Thus System (1.1) is Πp-approximately controllable on the time interval (0, T ) if and only if for
all ϕ0 ∈ L2(Ω)p

L∗TΠ∗pϕ0 = 1ωB
∗ϕ ≡ 0 in QT ⇒ ϕ ≡ 0 in QT .

Corollary 2.1. Let us suppose that for all ϕ0 ∈ L2(Ω)p, the solution ϕ to the adjoint System (2.3)
satis�es the observability inequality (2.4). Then for all initial condition y0 ∈ L2(Ω)n, there exists a
control u ∈ L2(qT )m (qT := ω × (0, T )) such that the solution y to System (1.1) satis�es Πpy(T ) ≡
0 in Ω and

‖u‖L2(qT )m 6
√
Cobs‖y0‖L2(Ω)n . (2.11)

The proof is classical and will be omitted (to get (2.11) the method developed by Fursikov and
Immanuvilov in [13] could be used).

3 Partial null controllability with constant coupling matrices

In this section, we prove Theorem 1.1 in two steps. In subsection 3.1, we begin by studying the
case where B ∈ Rn and the general case is considered in subsection 3.2.

Let us consider the system  ∂ty = ∆y +Ay +B1ωu in QT ,
y = 0 on ΣT ,
y(0) = y0 in Ω,

(3.1)

where y0 ∈ L2(Ω)n, u ∈ L2(QT )m, A ∈ L(Rn) and B ∈ L(Rm;Rn).
Let the natural number s be de�ned by

s := rank [A|B] (3.2)

and X ⊂ Rn be the linear space spanned by the columns of [A|B].
All along this section, we will use the lemma below which proof is straightforward.
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3.1 One control force

Lemma 3.1. Let be y0 ∈ L2(Ω)n, u ∈ L2(QT )m and P ∈ C1([0, T ],L(Rn)) such that P (t) is invertible
for all t ∈ [0, T ]. Then the change of variable w = P−1(t)y transforms System (3.1) into the equivalent
system  ∂tw = ∆w + C(t)w +D(t)1ωu in QT ,

w = 0 on ΣT ,
w(0) = w0 in Ω,

(3.3)

with w0 := P−1(0)y0, C(t) := −P−1(t)∂tP (t) + P−1(t)AP (t) and D(t) := P−1(t)B. Moreover

Πpy(T ) ≡ 0 in Ω ⇔ ΠpP (T )w(T ) ≡ 0 in Ω.

If P is constant, we have
[C|D] = P−1[A|B].

3.1 One control force

In this subsection, we suppose that A ∈ L(Rn), B ∈ Rn and denote by [A|B] =: (kij)16i,j6n and
s := rank [A|B]. We begin with the following observation.

Lemma 3.2. {B, ..., As−1B} is a basis of X.

Proof. If s = rank [A|B] = 1, since B 6= 0, the conclusion of the lemma is clearly true. Let
s > 2. Suppose to the contrary that {B, ..., As−1B} is not a basis of X, that is for some i ∈
{0, ..., s − 2} the family {B, ..., AiB} is linearly independent and Ai+1B ∈ span(B, ..., AiB). Hence,
by induction, AlB ∈ span(B, ..., AiB) for all l ∈ {i + 1, ..., n − 1}. Then rank (B|AB|...|An−1B) =
rank (B|AB|...|AiB) = i+ 1 < s, contradicting with (3.2).

Proof of Theorem 1.1. Let us remark that

rank Πp[A|B] = dim Πp[A|B](Rn) 6 rank [A|B] = s. (3.4)

Lemma 3.2 yields
rank (B|AB|...|As−1B) = rank [A|B] = s. (3.5)

Thus, for all l ∈ {s, s+ 1, ..., n} and i ∈ {0, ..., s− 1}, there exist αl,i such that

AlB =

s−1∑
i=0

αl,iA
iB. (3.6)

Since, for all l ∈ {s, ..., n}, ΠpA
lB =

∑s−1
i=0 αl,iΠpA

iB, then

rank Πp(B|AB|...|As−1B) = rank Πp[A|B]. (3.7)

Let us assume �rst that condition (1.8) holds. Then, using (3.7), we have

rank Πp(B|AB|...|As−1B) = p. (3.8)

Let be y0 ∈ L2(Ω)n. We will study the Πp-null controllability of System (3.1) according to the values
of p and s.

Case 1 : p = s. The idea is to �nd an appropriate change of variable P to the solution y to System
(3.1). More precisely, we would like the new variable w := P−1y to be the solution to a
cascade system apply Theorem 2.1. So let us de�ne, for all t ∈ [0, T ],

P (t) := (B|AB|...|As−1B|Ps+1(t)|...|Pn(t)), (3.9)
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3.1 One control force

where, for all l ∈ {s + 1, ..., n}, Pl(t) is the solution in C1([0, T ])n to the system of ordinary
di�erential equations {

∂tPl(t) = APl(t) in [0, T ],
Pl(T ) = el.

(3.10)

Using (3.9) and (3.10), we can write

P (T ) =

(
P11 0
P21 In−s

)
, (3.11)

where P11 := Πp(B|AB|...|As−1B) ∈ L(Rs), P21 ∈ L(Rs,Rn−s) and In−s is the identity
matrix of size n − s. Using (3.8), P11 is invertible and thus P (T ) also. Furthermore, since
P (t) is an element of C1([0, T ],L(Rn)) continuous in time on the time interval [0, T ], there
exists T ∗ ∈ [0, T ) such that P (t) is invertible for all t ∈ [T ∗, T ].

Let us suppose �rst that T ∗ = 0. Since P (t) is an element of C1([0, T ],L(Rn)) and
invertible, in view of Lemma 3.1: for a �xed control u ∈ L2(QT ), y is the solution to System
(3.1) if and only if w := P (t)−1y is the solution to System (3.3) where C, D are given by

C(t) := −P−1(t)∂tP (t) + P−1(t)AP (t) and D(t) := P−1(t)B,

for all t ∈ [0, T ]. Using (3.6) and (3.10), we obtain −∂tP (t) +AP (t) = (AB|...|AsB|0|...|0) = P (t)

(
C11 0
0 0

)
in [0, T ],

P (t)e1 = B in [0, T ],
(3.12)

where

C11 :=


0 0 0 . . . αs,0
1 0 0 . . . αs,1
0 1 0 . . . αs,2
...

...
. . .

. . .
...

0 0 . . . 1 αs,s−1

 ∈ L(Rs). (3.13)

Then

C(t) =

(
C11 0
0 0

)
and D(t) = e1. (3.14)

Using Theorem 2.1, there exists u ∈ L2(QT ) such that the solution to System (3.3) satis�es
w1(T ) ≡ ... ≡ ws(T ) ≡ 0 in Ω. Moreover, using (3.11), we have

Πsy(T ) = (y1(T ), ..., ys(T )) = P11(w1(T ), ..., ws(T )) ≡ 0 in Ω.

If now T ∗ 6= 0, let y be the solution inW (0, T ∗)n to System (3.1) with the initial condition
y(0) = y0 in Ω and the control u ≡ 0 in Ω × (0, T ∗). We use the same argument as above
to prove that System (3.1) is Πs-null controllable on the time interval [T ∗, T ]. Let v be a
control in L2(Ω × (T ∗, T )) such that the solution z in W (T ∗, T )n to System (3.1) with the
initial condition z(T ∗) = y(T ∗) in Ω and the control v satis�es Πsz(T ) ≡ 0 in Ω. Thus if we
de�ne y and u as follows

(y, u) :=

{
(y, 0) if t ∈ [0, T ∗],
(z, v) if t ∈ [T ∗, T ],

then, for this control u, y is the solution in W (0, T )n to System (3.1). Moreover y satis�es

Πsy(T ) ≡ 0 in Ω.
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3.1 One control force

Case 2 : p < s. In order to use the previous item (i), we would like to apply an appropriate change
of variable Q to the solution y to System (3.1). If we denote by [A|B] =: (kij)ij , equalities
(3.5) and (3.8) can be rewritten

rank

 k11 · · · k1s

...
...

kn1 · · · kns

 = s and rank

 k11 · · · k1s

...
...

kp1 · · · kps

 = p.

Then there exist distinct natural numbers λp+1, ..., λs such that {λp+1, ..., λs} ⊂ {p+1, ..., n}
and

rank



k11 · · · k1s

...
...

kp1 · · · kps
kλp+11 · · · kλp+1s

...
...

kλs1 · · · kλss


= s. (3.15)

Let Q be the matrix de�ned by

Q := (e1|...|ep|eλp+1
|...|eλn)t,

where {λs+1, ..., λn} := {p+1, ..., n}\{λp+1, ..., λs}. Q is invertible, so taking w := P−1y with
P := Q−1, for a �xed control u in L2(QT ), y is solution to System (3.1) if and only if w is
solution to System (3.3) where w0 := Qy0, C := QAQ−1 ∈ L(Rn) and D := QB ∈ L(R;Rn).
Moreover there holds

[C|D] = Q[A|B].

Thus, equation (3.15) yields

rank Πs[C|D] = rank ΠsQ[A|B] = rank



k11 · · · k1n

...
...

kp1 · · · kpn
kλp+11 · · · kλp+1n

...
...

kλs1 · · · kλsn


= s.

Since rank [C|D] = rank [A|B] = s, we proceed as in Case 1 forward deduce that System
(3.3) is Πs-null controllable, that is there exists a control u ∈ L2(QT ) such that the solution
w to System (3.3) satis�es

Πsw(T ) ≡ 0 in Ω.

Moreover the matrix Q can be rewritten

Q =

(
Ip 0
0 Q22

)
,

where Q22 ∈ L(Rn−p). Thus

Πpy(T ) = ΠpQy(T ) = Πpw(T ) ≡ 0 in Ω.

Let us denote by [A|B] =: (kij)ij . We suppose now that (1.8) is not satis�ed: there exist

p ∈ {1, ..., p} and βi for all i ∈ {1, ..., p}\{p} such that kpj =
p∑

i=1,i6=p
βikij for all j ∈ {1, ..., s}. The

idea is to �nd a change of variable w := Qy that allows to handle more easily our system. We will
achieve this in two steps starting from the simplest situation.
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3.1 One control force

Step 1. Let us suppose �rst that

k11 = ... = k1s = 0 and rank

 k21 · · · k2s

...
...

ks+1,1 · · · ks+1,s

 = s. (3.16)

We want to prove that, for some initial condition y0 ∈ L2(Ω)n, a control u ∈ L2(QT ) cannot
be found such that the solution to System (3.1) satis�es y1(T ) ≡ 0 in Ω. Let us consider the
matrix P ∈ L(Rn) de�ned by

P := (B|...|As−1B|e1|es+2|...|en). (3.17)

Using the assumption (3.16), P is invertible. Thus, in view of Lemma 3.1, for a �xed control
u ∈ L2(QT ), y is a solution to System (3.1) if and only if w := P−1y is a solution to System
(3.3) where C, D are given by C := P−1AP and D := P−1B. Using (3.6) we remark that

A(B|AB|...|BAs−1) = (B|AB|...|BAs−1)

(
C11

0

)
,

with C11 de�ned in (3.13). Then C can be rewritten as

C =

(
C11 C12

0 C22

)
, (3.18)

where C12 ∈ L(Rn−s,Rs) and C22 ∈ L(Rn−s). Furthermore

D = P−1B = P−1Pe1 = e1.

and with the De�nition (3.17) of P we get

y1(T ) = ws+1(T ) in Ω.

Thus we need only to prove that there exists w0 ∈ L2(Ω)n such that we cannot �nd a control
u ∈ L2(QT ) with the corresponding solution w to System (3.3) satisfying ws+1(T ) ≡ 0 in Ω.
Therefore we apply Proposition 2.1 and prove that the observability inequality (2.4) can not
be satis�ed. More precisely, for all w0 ∈ L2(Ω)n, there exists a control u ∈ L2(QT ) such that
the solution to System (3.3) satis�es ws+1(T ) ≡ 0 in Ω, if and only if there exists Cobs > 0
such that for all ϕ0

s+1 ∈ L2(Ω) the solution to the adjoint system
−∂tϕ = ∆ϕ+

(
C∗11 0
C∗12 C∗22

)
ϕ in QT ,

ϕ = 0 on ΣT ,
ϕ(T ) = (0, ..., 0, ϕ0

s+1, 0, ..., 0)t = es+1ϕ
0
s+1 in Ω

(3.19)

satis�es the observability inequality∫
Ω

ϕ(0)2 dx 6 Cobs

∫
ω×(0,T )

ϕ2
1 dx dt. (3.20)

But for all ϕ0
s+1 6≡ 0 in Ω, the inequality (3.20) is not satis�ed. Indeed, we remark �rst that,

since ϕ1(T ) = ... = ϕs(T ) = 0 in Ω, we have ϕ1 = ... = ϕs = 0 in QT , so that
∫
ω×(0,T )

ϕ2
1 dx =

0, while, if we choose ϕ0
s+1 6≡ 0 in Ω, using the results on backward uniqueness for this type

of parabolic system (see [14]), we have clearly (ϕs+1(0), ..., ϕn(0)) 6≡ 0 in Ω.
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3.1 One control force

Step 2. Let us suppose only that k11 = ... = k1s = 0. Since rank (B|...|As−1B) = s, there exists
distinct λ1, ..., λs ∈ {2, ..., n} such that

rank

 kλ1,1 · · · kλ1,s

...
...

kλs,1 · · · kλs,s

 = s.

Let us consider the following matrix

Q := (e1|eλ1 |...|eλn−1)t,

where {λs+1, ..., λn−1} = {2, ..., n}\{λ1, ..., λs}. Thus, for P := Q−1, again, for a �xed control
u ∈ L2(QT ), y is a solution to System (3.1) if and only if w := P−1y is a solution to System
(3.3) where C, D are given by C := QAQ−1 and D := QB. Moreover, we have

[C|D] = Q[A|B].

If we note (k̃ij)ij := [C|D], this implies k̃11 = ... = k̃1s = 0 and

rank

 k̃21 · · · k̃2s

...
...

k̃s+1,1 · · · k̃s+1,s

 = rank

 kλ11 · · · kλ1s

...
...

kλs,1 · · · kλs,s

 = s.

Proceeding as in Step 1 for w, there exists an initial condition w0 such that for all control
u in L2(QT ) the solution w to System (3.3) satis�es w1(T ) 6≡ 0 in Ω. Thus, for the initial
condition y0 := Q−1w0, for all control u in L2(QT ), the solution y to System (3.1) satis�es

y1(T ) = w1(T ) 6≡ 0 in Ω.

Step 3. Without loss of generality, we can suppose that there exists βi for all i ∈ {2, ..., p} such that

k1j =
p∑
i=2

βikij for all j ∈ {1, ..., s} (otherwise a permutation of lines leads to this case). Let

us de�ne the following matrix

Q :=

(
(e1 −

p∑
i=2

βiei)|e2|...|en

)t

.

Thus, for P := Q−1, again, for a �xed initial condition y0 ∈ L2(Ω)n and a control u ∈ L2(QT ),
consider System (3.3) with w := P−1y, y being a solution to System (3.1). We remark that
if we denote by (k̃ij) := [C|D], we have k̃11 = ... = k̃1s = 0. Applying step 2 to w, there
exists an initial condition w0 such that for all control u in L2(QT ) the solution w to System
(3.3) satis�es

w1(T ) 6≡ 0 in Ω. (3.21)

Thus, with the de�nition of Q, for all control u in L2(QT ) the solution y to System (3.1)
satis�es

w1(T ) = y1(T )−
p∑
i=2

βiyi(T ) in Ω.

Suppose Πpy(T ) ≡ 0 in Ω, then w1(T ) ≡ 0 in Ω and this contradicts (3.21).

As a consequence of Proposition 2.1, the Πp-null controllability implies the Πp-approximate con-
trollability of System (3.3). If now Condition (1.8) is not satis�ed, as for the Πp-null controllability,
we can �nd a solution to System (3.19) such that φ1 ≡ 0 in ω × (0, T ) and φ 6≡ 0 in QT and we
conclude again with Proposition 2.1.
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3.2 m-control forces

3.2 m-control forces

In this subsection, we will suppose that A ∈ L(Rn) and B ∈ L(Rm,Rn). We denote by B =:
(b1|...|bm). To prove Theorem 1.1, we will use the following lemma which can be found in [2].

Lemma 3.3. There exist r ∈ {1, ..., s} and sequences {lj}16j6r ⊂ {1, ...,m} and {sj}16j6r ⊂
{1, ..., n} with

∑r
j=1 sj = s, such that

B :=

r⋃
j=1

{blj , Ablj , ..., Asj−1blj}

is a basis of X. Moreover, for every 1 6 j 6 r, there exist αik,sj ∈ R for 1 6 i 6 j and 1 6 k 6 sj
such that

Asj blj =

j∑
i=1

(
αi1,sj b

li + αi2,sjAb
li + ...+ αisi,sjA

si−1bli
)
. (3.22)

Proof of Theorem 1.1. Consider the basis B of X given by Lemma 3.3. Note that

rank Πp[A|B] = dim Πp[A|B](Rn) 6 rank [A|B] = s.

If M is the matrix whose columns are the elements of B, i.e.

M = (mij)ij :=
(
bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr

)
,

we can remark that
rank ΠpM = rank Πp[A|B]. (3.23)

Indeed, relationship (3.22) yields

ΠpA
sj blj =

j∑
i=1

(
αi1,sjΠpb

li + αi2,sjΠpAb
li + ...+ αisi,sjΠpA

si−1bli
)
.

Let us suppose �rst that (1.8) is satis�ed. Let be y0 ∈ L2(Ω)n. We will prove that we need
only r forces to control System (3.1). More precisely, we will study the Πp-null controllability of the
system  ∂ty = ∆y +Ay + B̃1ωv in QT ,

y = 0 on ΣT ,
y(0) = y0 in Ω,

(3.24)

where B̃ = (bl1 |bl2 | · · · |blr ) ∈ L(Rr,Rn). Using (1.8) and (3.23), we have

rank Πp(b
l1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr ) = p. (3.25)

Case 1 : p = s. As in the case of one control force, we want to apply a change of variable P to the
solution y to System (3.24). Let us de�ne for all t ∈ [0, T ] the following matrix

P (t) := (bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr |Ps+1(t)|...|Pn(t)) ∈ L(Rn), (3.26)

where for all l ∈ {s+1, ..., n}, Pl is solution in C1([0, T ])n to the system of ordinary di�erential
equations {

∂tPl(t) = APl(t) in [0, T ],
Pl(T ) = el.

(3.27)

Using (3.26) and (3.27) we have

P (T ) =

(
P11 0
P21 In−s

)
, (3.28)
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3.2 m-control forces

where P11 := Πs(b
l1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr ) ∈ L(Rs) and P21 ∈ L(Rn−s,Rs).

From (3.25), P11 and thus P (T ) are invertible. Furthermore, since P is continuous on [0, T ],
there exists a T ∗ ∈ [0, T ) such that P (t) is invertible for all t ∈ [T ∗, T ].

We suppose �rst that T ∗ = 0. Since P is invertible and continuous on [0, T ], for a �xed
control v ∈ L2(QT )r, y is the solution to System (3.24) if and only if w := P (t)−1y is the
solution to System (3.3) where C, D are given by

C(t) := −P−1(t)∂tP (t) + P−1(t)AP (t) and D(t) := P−1(t)B̃,

for all t ∈ [0, T ]. Using (3.22) and (3.27), we obtain
−∂tP (t) +AP (t) = (Abl1 |A2bl1 |...|As1bl1 |...|Ablr |A2blr |...|Asrblr |0|...|0),

= P (t)

(
C̃11 0
0 0

)
in [0, T ],

P (t)eSi = bli in [0, T ],
(3.29)

where Si = 1 +
∑i−1
j=1 sj for i ∈ {1, ..., r},

C̃11 :=


C11 C12 · · · C1r

0 C22 · · · C2r

...
...

. . .
...

0 0 · · · Crr

 ∈ L(Rs) (3.30)

and for 1 6 i 6 j 6 r the matrices Cij ∈ L(Rsj ,Rsi) are given by

Cii :=


0 0 0 . . . αi1,si
1 0 0 . . . αi2,si
0 1 0 . . . αi3,si
...

...
. . .

. . .
...

0 0 . . . 1 αisi,si

 and Cij :=


0 0 0 . . . αi1,sj
0 0 0 . . . αi2,sj
0 0 0 . . . αi3,sj
...

...
. . .

. . .
...

0 0 . . . 0 αisi,sj

 for j > i.

(3.31)
Then

C(t) =

(
C̃11 0
0 0

)
and D(t) = (eS1 |...|eSr ). (3.32)

Using Theorem 2.1, there exists v ∈ L2(QT )r such that the solution to System (3.3) satis�es
w1(T ) = ... = ws(T ) ≡ 0 in Ω. Moreover, using (3.28), we have

Πsy(T ) = (y1(T ), ..., ys(T )) = P11(w1(T ), ..., ws(T )) ≡ 0 in Ω.

If now T ∗ 6= 0, we conclude as in the proof of Theorem 1.1 with one force (see § 3.1).

Case 2 : p < s. The proof is a direct adaptation of the proof of Theorem 1.1 with one force, it is
possible to �nd a change of variable in order to get back to the situation of Case 1 (see § 3.1).

If (1.8) is not satis�ed, there exist p ∈ {1, ..., p} and, for all i ∈ {1, ..., p}\{p}, scalars βi such that

mpj =
p∑

i=1,i6=p
βimij for all j ∈ {1, ..., s}. As previously, without loss of generality, we can suppose

that

m11 = ... = m1s = 0 and rank

 m21 · · · m2s

...
...

ms+1,1 · · · ms+1,s

 = s (3.33)
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3.2 m-control forces

(otherwise a permutation of lines leads to this case). Let us consider the matrix P de�ned by

P := (bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr |e1|es+2|...|en). (3.34)

Relationship ensures (3.33) that P is invertible. Thus, again, for a �xed control u ∈ L2(QT )m, y is
the solution to System (3.1) if and only if w := P−1y is the solution to System (3.3) where C, D are
given by C := P−1AP and D := P−1B. Using (3.22), we remark that

A(bl1 |Abl1 |...|As1−1bl1 |...|blr |Ablr |...|Asr−1blr )

= (Abl1 |A2bl1 |...|As1bl1 |...|Ablr |A2blr |...|Asrblr ) = P

(
C̃11

0

)
,

where C̃11 is de�ned in (3.30). Then C can be written as

C =

(
C̃11 C̃12

0 C̃22

)
, (3.35)

where C̃12 ∈ L(Rs,Rn−s) and C̃22 ∈ L(Rn−s). Furthermore, the matrix D can be written

D =

(
D1

0

)
,

where D1 ∈ L(Rm,Rs). Using (3.34), we get

y1(T ) = ws+1(T ) in Ω.

Thus, we need only to prove that there exists w0 ∈ L2(Ω)n such that we cannot �nd a control
u ∈ L2(QT )m with the corresponding solution w to System (3.3) satisfying ws+1(T ) ≡ 0 in Ω.
Therefore we apply Proposition 2.1 and prove that the observability inequality (2.4) can not be
satis�ed. More precisely, for all w0 ∈ L2(Ω)n, there exists a control u ∈ L2(QT )m such that the
solution w to System (3.3) satis�es ws+1(T ) ≡ 0 in Ω, if and only if there exists Cobs > 0 such that
for all ϕ0

s+1 ∈ L2(Ω) the solution to the adjoint system
−∂tϕ = ∆ϕ+

(
C̃∗11 0

C̃∗12 C̃∗22

)
ϕ in QT ,

ϕ = 0 on ΣT ,
ϕ(T ) = (0, ..., 0, ϕ0

s+1, 0, ..., 0)t = es+1ϕ
0
s+1 in Ω

(3.36)

satis�es the observability inequality∫
Ω

ϕ(0)2 dx 6 Cobs

∫
ω×(0,T )

(D∗1(ϕ1, ..., ϕs)
t)2 dx dt. (3.37)

But for all ϕ0
s+1 6≡ 0 in Ω, the inequality (3.37) is not satis�ed. Indeed, we remark �rst that, since

ϕ1(T ) = ... = ϕs(T ) = 0 in Ω, we have ϕ1 = ... = ϕs = 0 in QT . Furthermore, if we choose ϕ0
s+1 6≡ 0

in Ω, as previously, we get (ϕs+1(0), ..., ϕn(0)) 6≡ 0 in Ω.
We recall that, as a consequence of Proposition 2.1, the Πp-null controllability implies the Πp-

approximate controllability of System (3.24). If Condition (1.8) is not satis�ed, as for the Πp-null
controllability, we can �nd a solution to System (3.36) such that D∗1(φ1, ..., φs)

t ≡ 0 in ω× (0, T ) and
φ 6≡ 0 in QT and we conclude again with Proposition 2.1.
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4 Partial null controllability with time dependent matrices

We recall that [A|B](·) = (B0(·)|...|Bn−1(·)) (see (1.5)). Since A(t) ∈ Cn−1([0, T ];L(Rn)) and
B(t) ∈ Cn([0, T ];L(Rm;Rn)), we remark that the matrix [A|B] is well de�ned and is an element of
C1([0, T ],L(Rmn,Rn). We will use the notation Bi =: (bi1|...|bim) for all i ∈ {0, ..., n − 1}. To prove
Theorem 1.2, we will use the following lemma of [16]

Lemma 4.1. Assume that max{rank [A|B](t) : t ∈ [0, T ]} = s 6 n. Then there exist T0, T1 ∈ [0, T ],
with T0 < T1, r ∈ {1, ...,m} and sequences (sj)16j6r ⊂ {1, ..., n}, with

∑r
i=1 sj = s, and (lj)16j6r ⊂

{1, ...,m} such that, for every t ∈ [T0, T1], the set

B(t) =

r⋃
j=1

{blj0 (t), b
lj
1 (t), ..., b

lj
sj−1(t)}, (4.1)

is linearly independent, spans the columns of [A|B](t) and satis�es

bljsj (t) =

j∑
k=1

(
θ
lj ,lk
sj ,0

(t)blk0 (t) + θ
lj ,lk
sj ,1

(t)blk1 (t) + ...+ θ
lj ,lk
sj ,sk−1(t)blksk−1(t)

)
, (4.2)

for every t ∈ [T0, T1] and j ∈ {1, ..., r}, where

θ
lj ,lk
sj ,0

(t), θ
lj ,lk
sj ,1

(t), ..., θ
lj ,lk
sj ,sk−1(t) ∈ C1([T0, T1]).

With exactly the same argument for the proof of the previous lemma, we can obtain the

Lemma 4.2. If rank [A|B](T ) = s, then the conclusions of Lemma 4.1 hold true with T1 = T .

Proof of Theorem 1.2. Let y0 ∈ L2(Ω)n and s be the rank of the matrix [A|B](T ). As in the proof of
the controllability by one force with constant matrices, let X being the linear space spanned by the
columns of the matrix [A|B](T ). We consider B = B(t) the basis of X de�ned in (4.1).

As in the constant case, we will prove that we need only r forces to control System (1.1)
that is we study the partial null controllability of System (3.24) with the coupling matrix A(t) ∈
Cn−1([0, T ];L(Rn)) and the control matrix B̃(t) = (Bl1(t)|Bl2(t)| · · · |Blr (t)) ∈ Cn([0, T ];L(Rr,Rn)).
If we de�ne M as the matrix whose columns are the elements of B(t), i.e. for all t ∈ [0, T ]

M(t) = (mij(t))16i6n,16j6s :=
(
bl10 (t)|bl11 (t)|...|bl1s1−1(t)|...|blr0 (t)|blr1 (t)|...|blrsr−1(t)

)
,

we can remark that
rank ΠpM(T ) = rank Πp[A|B](T ) = p. (4.3)

Indeed, using (4.2),

Πpb
lj
sj (t) =

j∑
k=1

(
θ
lj ,lk
sj ,0

(t)Πpb
lk
0 (t) + θ

lj ,lk
sj ,1

(t)Πpb
lk
1 (t) + ...+ θ

lj ,lk
sj ,sk−1(t)Πpb

lk
sk−1(t)

)
.

Case 1 : p = s. As in the constant case, we want to apply a change of variable P to the solution y
to System (3.24). Let us de�ne for all t ∈ [0, T ] the following matrix

P (t) := (bl10 (t)|bl11 (t)|...|bl1s1−1(t)|...|blr0 (t)|blr1 (t)|...|blrsr−1(t)|Ps+1(t)|...|Pn(t)) ∈ L(Rn), (4.4)

where for all i ∈ {s+1, ..., n}, Pl is solution in C1([0, T ])n to the system of ordinary di�erential
equations {

∂tPl(t) = APl(t) in [0, T ],
Pl(T ) = el.

(4.5)
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Using (4.4) and (4.5), P (T ) can be rewritten

P (T ) =

(
P11 0
P21 In−s

)
, (4.6)

where P11 := Πp(b
l1
0 (T )|bl11 (T )|...|bl1s1−1(T )|...|blr0 (T )|blr1 (T )|...|blrsr−1(T )) ∈ L(Rs) and P21 ∈

L(Rn−s,Rs). Using (4.3), P11, and thus P (T ), are invertible. Furthermore, since P is
continuous on [0, T ], there exists a T ∗ ∈ [0, T ) such that P (t) is invertible for all t ∈ [T ∗, T ].

As previously it is su�cient to prove the result for T ∗ = 0. Since P (t) ∈ C1([0, T ],L(Rn))
and is invertible on the time interval [0, T ], again, for a �xed control v ∈ L2(QT )r, y is the
solution to System (3.24) if and only if w := P (t)−1y is the solution to System (3.3) where
C, D are given by

C(t) := −P−1(t)∂tP (t) + P−1(t)AP (t) and D(t) := P−1(t)B̃,

for all t ∈ [0, T ]. Using (4.2) and (4.5), we obtain
−∂tP (t) +AP (t) = (bl11 (t)|bl12 (t)|...|bl1s1(t)|...|blr1 (t)|blr2 (t)|...|blrsr (t)|0|...|0),

= P (t)

(
C̃11 0
0 0

)
in [0, T ],

P (t)eSi = bli0 in [0, T ],
(4.7)

where Si = 1 +
∑i−1
j=1 sj for 1 6 i 6 r,

C̃11 :=


C11 C12 · · · C1r

0 C22 · · · C2r

...
...

. . .
...

0 0 · · · Crr

 ∈ L(Rs), (4.8)

and for 1 6 i 6 j 6 r, the matrices Cij ∈ C0([0, T ];∈ L(Rsj ,Rsi)) are given here by

Cii =


0 0 0 . . . θli,lisi,0

1 0 0 . . . θli,lisi,1

0 1 0 . . . θli,lisi,2
...

...
. . .

. . .
...

0 0 . . . 1 θli,lisi,si−1

 and Cij =



0 0 0 . . . θ
lj ,li
sj ,0

0 0 0 . . . θ
lj ,li
sj ,1

0 0 0 . . . θ
lj ,li
sj ,2

...
...

. . .
. . .

...

0 0 . . . 0 θ
lj ,li
sj ,si−1


for j > i.

(4.9)
Then

C =

(
C̃11 0
0 0

)
and D = (eS1

|...|eSr ). (4.10)

Using Theorem 2.1, there exists v ∈ L2(QT )r such that the solution to System (3.3) satis�es
w1(T ) = ... = ws(T ) ≡ 0 in Ω. Moreover, the equality (4.6) leads to

Πsy(T ) = (y1(T ), ..., ys(T ))t = P11(w1(T ), ..., ws(T ))t ≡ 0 in Ω.

Case 2 : p < s. The same method as in the constant case leads to the conclusion (see § 3.1).

The πp-approximate controllability can proved also as in the constant case.
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5 Partial null controllability for a space dependent coupling

matrix

All along this section, the dimension N will be equal to 1, more precisely Ω := (0, π) with the
exception of the proof of the third point in Theorem 1.3 and the numerical illustration in Section 5.3
where Ω := (0, 2π). We recall that the eigenvalues of −∆ in Ω with Dirichlet boundary conditions
are given by µk := k2 for all k > 1 and we will denote by (wk)k>1 the associated L2-normalized
eigenfunctions. Let us consider the following parabolic system of two equations

∂ty = ∆y + αz + 1ωu in QT ,
∂tz = ∆z in QT ,
y = z = 0 on ΣT ,
y(0) = y0, z(0) = z0 in Ω,

(5.1)

where y0, z0 ∈ L2(Ω) are the initial data, u ∈ L2(QT ) is the control and the coupling coe�cient α
is an element of L∞(Ω). We recall that System (5.1) is Π1-null controllable, if for all y0, z0 ∈ L2(Ω),
we can �nd a control u ∈ L2(QT ) such that the solution (y, z) ∈ W (0, T )2 to System (5.1) satis�es
y(T ) ≡ 0 in Ω.

5.1 Example of controllability

In this subsection, we will give an example of Π1-null controllability for System (5.1) with the
help of the method of moments initially developed in [11]. As already mentioned, we suppose that
Ω := (0, π), but the argument of Section 5.1 can be adapted for any open bounded interval of R. Let
us introduce the adjoint system associated to our control problem

−∂tφ = ∆φ in (0, π)× (0, T ),
−∂tψ = ∆ψ + αφ in (0, π)× (0, T ),
φ(0) = φ(π) = ψ(0) = ψ(π) = 0 on (0, T ),
φ(T ) = φ0, ψ(T ) = 0 in (0, π),

(5.2)

where φ0 ∈ L2(0, π). For all k > 1, if we consider φ0 := wk in dual System (5.2), we get∫ π

0

wky(T ) dx−
∫ π

0

φ(0)y0 dx−
∫ π

0

ψ(0)z0 dx =

∫ T

0

∫
ω

φu dx dt, (5.3)

Since (wk)k>1 spans L2(0, π), System (5.1) is Π1-null controllable if and only if there exists u ∈ L2(qT )
such that for all φ0 = wk ∈ L2(0, π), k ≥ 1; the solution to System (5.2) satis�es the following equality

−
∫ π

0

φ(0)y0 dx−
∫ π

0

ψ(0)z0 dx =

∫ T

0

∫
ω

φu dx dt, (5.4)

where (φ, ψ) is the solution to dual System (5.2) for the initial data φ0 = wk.
Let us consider φ0 ∈ L2(0, π) de�ned by

φ0(x) =

∞∑
k=1

φ0
kwk(x) for all x ∈ (0, π).

With this initial condition φ0 is associated the solution (φ, ψ) to adjoint System (5.2):

φ(t) =

∞∑
k=1

e−k
2(T−t)φ0

kwk in (0, π)
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5.1 Example of controllability

for all t ∈ [0, T ]. If we write:

ψ(x, t) :=

∞∑
k=1

ψk(t)wk(x) for all (x, t) ∈ (0, π)× (0, T ),

then a simple computation leads to the formula

ψk(t) =
∞∑
l=1

e−k
2(T−t) − e−l2(T−t)

−k2 + l2
αklφ

0
l for all k > 1, t ∈ (0, T ), (5.5)

where, for all k, l ∈ N∗,

αkl :=

∫ π

0

αwkwl dx. (5.6)

In (5.5) we implicitly used the convention: if l = k the term (e−k
2(T−t) − e−l2(T−t))/(−k2 + l2) is

replaced by (T − t)e−k2(T−t). With these expressions of φ and ψ, the equality (5.4) reads for all k > 1

−e−k
2T y0

k −
∑
l>1

e−k
2T − e−l2T

−k2 + l2
αklz

0
l =

∫ T

0

∫
ω

e−k
2(T−t)wk(x)u(t, x) dx dt. (5.7)

In the proof of Theorem 1.3, we will search a control u expressed as u(x, t) = f(x)γ(t) with
γ(t) =

∑
k>1 γkqk(t) and (qk)k>1 a family biorthogonal to (e−k

2t)k>1. Thus, we will need the two
following lemma

Lemma 5.1. (see [5]) There exists f ∈ L2(0, π) such that Supp f ⊂ ω and for all ε > 0 one has

inf
k>1

fke
εk2 > 0, where, for all k ∈ N∗, fk :=

∫ π
0
fwk dx.

Lemma 5.2. (see [11]) There exists a biorthogonal sequence (qk)k>1 ⊂ L2(0, T ) to (ek
2t)k>1 that is

〈qk, el
2t〉L2(0,T ) = δkl.

Moreover, for all ε > 0, there exists Cε > 0, independent of k, such that

‖qk‖L2(0,T ) 6 Cεe
εk2 , ∀k > 1.

Proof of the second point in Theorem 1.3. As mentioned above, let us search the control u of the
form u(x, t) = f(x)γ(t), where f is as in Lemma 5.1. Since fk 6= 0 for all k ∈ N∗, using (5.7), the
Π1-null controllability of System (5.1) is reduced to �nd a solution γ ∈ L2(0, T ) to the following
problem of moments:

∫ T

0

γ(T − t)e−k
2t dt = f−1

k

−e−k2T y0
k −

∑
l>1

e−k
2T − e−l2T

−k2 +2 l
αklz

0
l

 := Mk ∀k > 0. (5.8)

The function γ(t) :=
∑
k>1Mkqk(T − t) is a solution to this problem of moments. We need only to

prove that γ ∈ L2(0, T ). Using the convexity of the exponential function, we get for all k ∈ N∗,

∑
l>1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl| =
k∑
l=1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl|+ ∞∑
l=k+1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl|
6

k∑
l=1

Te−l
2T |αkl|+

∞∑
l=k+1

Te−k
2T |αkl|

=: A1 +A2.

(5.9)
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5.2 Example of non controllability

Let us suppose for the moment that T 6 C2. With Condition (1.12) on α we deduce that

A1 6 C1T

k∑
l=1

e−l
2T e−C2(k2−l2) 6 C1Tke

−k2T (5.10)

and

A2 6 C1Te
−k2T

∞∑
l=k+1

e−C2(l2−k2)

= C1Te
−k2T

∞∑
j=0

e−C2((j+k+1)2−k2)

6 C1Te
−k2T

∞∑
j=0

(e−C2)j

6 C1Te
−k2T 1

1− e−C2
.

(5.11)

Let ε ∈ (0, 1). Combining the three last inequalities (5.9)-(5.11), there exists k1 ∈ N∗ such that for
all k > k1, ∑

l>1

∣∣∣∣∣e−k
2T − e−l2T

−k2 + l2

∣∣∣∣∣ |αkl| 6 Cke−k
2T 6 Cεe

−(1−ε)k2T , (5.12)

where, here and thereafter, Cε is a constant which does not depend on k. Then, with Lemma 5.1,
(5.8) and (5.12), there exists k2 > k1 such that for all k > k2

|Mk| 6 eεk
2T
(
e−k

2T ‖y0‖L2(0,π) + Cεe
−(1−ε)k2T ‖z0‖L2(0,π)

)
6 Cεe

−(1−2ε)k2T (‖y0‖L2(0,π) + ‖z0‖L2(0,π)).

Thus, using Lemma 5.2, for ε < 1/3,

‖γ‖L2(0,T ) 6 (Cε + Cε
∑
k>k2

e−(1−3ε)k2T )(‖y0‖L2(0,π) + ‖z0‖L2(0,π)) <∞.

If T > C2, we conclude with the same argument that was ending of the proof of Theorem 1.1 with
one force (see Section 3.1, end of Case 1). More precisely, we consider System (5.1) in (0, T − C2)
with u ≡ 0 in ω× (0, T −C2), and applying the above strategy we construct a control in (T −C2, T )
such that the solution to System (5.1) in (T − C2, T ) satis�es y(T ) ≡ 0 in (0, π).

5.2 Example of non controllability

In this subsection, to give an example of non Π1-null controllability of System (5.1), we will �rst
study the boundary controllability of the following parabolic system of two equations

∂ty = ∆y + αz in QT := (0, π)× (0, T ),
∂tz = ∆z in QT ,
y(0, t) = v(t), y(π, t) = z(0, t) = z(π, t) = 0 on (0, T ),
y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω := (0, π),

(5.13)

where y0, z0 ∈ L2(0, π) are the initial data, v ∈ L2(0, T ) is the boundary control and α ∈ L∞(0, π).
For all K > 1, we de�ne the set

EK := span(wk : k 6 K). (5.14)

For any given y0, z0 ∈ L2(0, π) and v ∈ L2(0, T ), System (5.13) has a unique solution in L2(QT )2 ∩
C0([0, T ];H−1(Ω)2) (de�ned by transposition; see [12]).
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5.2 Example of non controllability

System (5.13) is Π1-null controllable if and only if there exists a constant C such that for all
φ0 ∈ L2(0, π) the solution to adjoint System (5.2) satis�es the following observability inequality∫ π

0

φ(0)2 dx+

∫ π

0

ψ(0)2 dx 6 C

∫ T

0

φx(0, t)2 dt. (5.15)

In the same way as in (5.7), if System (5.13) is Π1-null controllable, there exists Cobs > 0 such
that for a K > 0 and all φ0 :=

∑K
k=1 φ

0
kwk ∈ EK , the solution (φ, ψ) to the adjoint System (5.2)

satis�es

K∑
k=1

e−2k2T (φ0
k)2 +

∑
k>1

∣∣∣∣∣
K∑
l=1

e−k
2T − e−l2T

−k2 + l2
αklφ

0
l

∣∣∣∣∣
2

6 Cobs

∫ T

0

∣∣∣∣∣
K∑
k=1

ke−k
2(T−t)φ0

k

∣∣∣∣∣
2

dt. (5.16)

Theorem 5.1. Let T > 0 and let α be the function of L∞(0, π) de�ned by

α(x) :=

∞∑
j=1

1

j2
cos(15jx) for all x ∈ (0, π). (5.17)

Then System (5.13) is not Π1-null controllable.

Proof. This proof is inspired from [17]. To understand why the number �15� appears in the de�nition
(5.17) of the function α, we will consider for all x ∈ (0, π)

α(x) :=

∞∑
j=1

1

j2
cos(Gjx) for all x ∈ (0, π),

where G ∈ N∗. The idea is to prove that there exist a sequence of initial conditions (φ0,M )M∈N and
two positive constants γ1 and γ2 such that, for all M ∈ {2, ...}, the solution (φM , ψM ) to the adjoint
System (5.2) satis�es ∫ T

0

(φM )x(0, t)2 dt 6
γ1

M9
and

∫ π

0

ψM (0)2 dx >
γ2

M8
.

So that, for a su�ciently large M , the observability inequality (5.15) cannot be true. Let us take
M ∈ {2, ...}. We will search a sequence of initial conditions of the form

φ0,M = (0, ..., 0, φ0,M
GM+1, φ

0,M
GM+2, ..., φ

0,M
GM+m, 0, ...),

for a �xed m ∈ N, independent of M . The value of m will be determined in the proof. First, we set

A :=

∫ π

0

ψM (0)2 dx =
∑
k>1

∣∣∣∣∣
GM+m∑
l=GM+1

e−k
2T − e−l2T

−k2 + l2
αklφ

0,M
l

∣∣∣∣∣
2

(5.18)

and

B :=

∫ T

0

(φM )x(0, t)2 dt =

∫ T

0

∣∣∣∣∣
GM+m∑
k=GM+1

ke−k
2(T−t)φ0,M

k

∣∣∣∣∣
2

dt. (5.19)

Estimate for (5.19)
We can rewrite B as follows:

B =

∫ T

0

∣∣∣∣∣∣
m∑
j=1

(GM + j)e−(G2M2+2GMj+j2)(T−t)φ0,M
GM+j

∣∣∣∣∣∣
2

dt =

∫ T

0

e−2G2M2(T−t)gM (t) dt, (5.20)
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5.2 Example of non controllability

where, for all t ∈ [0, T ], gM (t) := fM (t)2 with

fM (t) :=

m∑
j=1

(GM + j)e−(2GMj+j2)(T−t)φ0,M
GM+j .

Let (φ0,M
GM+1, φ

0,M
GM+2, ..., φ

0,M
GM+m) be a non nontrivial solution of the following homogeneous linear

system of m− 1 equations with m unknowns

f
(l)
M (T ) =

m∑
j=1

(GM + j)(2GMj + j2)lφ0,M
GM+j = 0, for all l ∈ {0, ...,m− 2}. (5.21)

Using Leibniz formula

g
(l)
M =

l∑
k=0

(
l
k

)
f

(k)
M f

(l−k)
M

we deduce that
g

(l)
M (T ) = 0, for all l ∈ {0, ..., 2m− 4}. (5.22)

Using (5.22), after 2m− 3 integrations by part in (5.20), we obtain

B =
−gM (0)e−2G2M2T

2G2M2
+

∫ T

0

e−2G2M2(T−t)

(−2G2M2)
g

(1)
M (t)dt

=
2m−4∑
l=0

g
(l)
M (0)e−2G2M2T

(−2G2M2)l+1
+

∫ T

0

e−2G2M2(T−t)

(−2G2M2)2m−3
g

(2m−3)
M (t) dt.

By linearity, in (5.21) we can choose φ0,M
GM+1, ..., φ

0,M
GM+m such that

‖φ0,M‖∞ = 1. (5.23)

Thus, for all l ∈ N and all t ∈ [0, T ], the following estimate holds

|g(l)
M (t)| =

∣∣∣∣ l∑
k=0

(
l
k

)
f

(k)
M (t)f

(l−k)
M (t)

∣∣∣∣
6

l∑
k=0

(
l
k

) ∣∣∣∣∣ m∑j=1

(GM + j)(2GMj + j2)ke−(2GMj+j2)(T−t)φ0,M
GM+j

∣∣∣∣∣
×

∣∣∣∣∣ m∑j=1

(GM + j)(2GMj + j2)l−ke−(2GMj+j2)(T−t)φ0,M
GM+j

∣∣∣∣∣
6 (GM +m)2m2

l∑
k=0

(
l
k

)
(2GMm+m2)l

6 CM l+2,

where C does not depend on M . Then, since ‖φ0,M‖∞ = 1, there exist C, τ > 0 such that

B 6 e−2G2M2T
2m−4∑
l=0

‖g(l)
M ‖∞

(2G2M2)l+1
+
T‖g(2m−3)

M ‖∞
(2G2M2)2m−3

6 e−τM
2
∞∑
l=0

C

M l
+

C

M2m−5

6 CM−2e−τM
2 1

1−M−2
+

C

M2m−5
.
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5.2 Example of non controllability

Thus there exists γ1 > 0 such that we have the estimate

B 6
γ1

M2m−5
, (5.24)

where γ1 does not depend on M .
Estimate for (5.18)

We recall that for all x ∈ (0, π)

α(x) :=

∞∑
j=1

1

j2
cos(Gjx).

The function α is of the form α(x) =
∞∑
p=0

αp cos(px) for all x ∈ (0, π), with

αp :=

{ 1
j2 if p = Gj with j ∈ N∗,
0 otherwise.

(5.25)

From the de�nition of αkl in (5.6), there holds for all k, l ∈ N∗

αkl = 1
2 (α|k−l| − αk+l).

Let k ∈ {1, ...,m} and l ∈ {GM + 1, ..., GM +m}. We have k + l ∈ {GM + 2, ..., GM + 2m}. Thus
if we choose

G > 2m+ 1, (5.26)

using (5.25), we obtain
αk+l = 0

and

α|k−l| =

{
1

M2
if |k − l| = GM,

0 otherwise.

So that we have the following submatrix of (αkl)16k,l6GM+m:

(αkl)16k6m,GM+16l6GM+m =
1

2M2
IRm . (5.27)

According to (5.23), there exists k1 ∈ {1, ...,m} such that

|φ0,M
GM+k1

| = 1. (5.28)

Furthermore, since m 6 GM (see (5.26)),

|e−k
2
1T − e−(GM+k1)2T | > |e−m

2T − e−G
2M2T | (5.29)

and
(GM + k1)2 − k2

1 6 (GM +m)2 − 1. (5.30)

Then, with the help of (5.27)-(5.30) in (5.18) we bound A

A >

∣∣∣∣∣e−k
2
1T − e−(GM+k1)2T

−k2
1 + (GM + k1)2

1

2M2

∣∣∣∣∣
2

>

∣∣∣∣∣e−m
2T − e−G2M2T

(GM +m)2 − 1

1

2M2

∣∣∣∣∣
2

.
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5.2 Example of non controllability

Thus, there exists γ2 > 0 such that,

A >
γ2

M8
, (5.31)

where γ2 depends on G and m but does not depend on M and k1.
We conclude from (5.24), (5.26) and (5.31), that for all m,G ∈ N∗ with G > 2m+ 1, there exist

γ1, γ2 > 0 such that

B 6
γ1

M2m−5
and A >

γ2

M8
.

Thus, if we choose
m > 7 so that G > 15,

the observability inequality (5.16) is not satis�ed for M large enough.
Construction of an initial condition

Let us �x m = 7 and G = 15. We want to construct an initial condition y0, z0 such that, for α
de�ned in (5.17) and all control v ∈ L2(0, T ) the solution y to System (5.13) can not be identically
equal to zero at t = T . Let us de�ne (φ0,M )M>2 as

φ0,M = (0, ..., 0, φ0,M
15M+1, ..., φ

0,M
15M+7, 0, ...),

where (φ0,M
15M+1, ..., φ

0,M
15M+7) is a nontrivial solution to linear System (5.21). Using (5.28), for all

M > 2, there exists k1(M) ∈ {1, ..., 7}, such that |φ0,M
15M+k1(M)| = 1. We can extract a subsequence

(Mj)j∈N of {2, ...} such that |φ0,Mj

15Mj+k1
| = 1 for a k1 independent of Mj .

Let y0 := 0 and z0 := wk1 . Let us suppose that, for this initial condition y0 and z0, System (5.17)
is Π1-null controllable to the boundary, that is there exists a control v ∈ L2(0, T ) such that y(T ) ≡ 0.
Thus, for all j ∈ N∗, we have the equality∫ π

0

y0φj(0) dx+

∫ π

0

z0ψj(0) dx =

∫ T

0

v(t)(φj)x(0, t) dt, (5.32)

where (φj , ψj) is the solution to
−∂tφj = ∆φj in (0, π)× (0, T ),
−∂tψj = ∆ψj + αφj in (0, π)× (0, T ),
φj(0) = φj(π) = ψj(0) = ψj(π) = 0 on (0, T ),
φj(T ) = φ0,Mj

, ψj(T ) = 0 in (0, π).

We remark that, for all j ∈ N∗, ∫ π

0

y0φj(0) dx = 0. (5.33)

Since z0 = wk1 , the equality (5.27) leads to∣∣∣∣∫ π

0

z0ψj(0) dx

∣∣∣∣ =

∣∣∣∣∣ 7∑
s=1

e−k
2
1T − e−(GMj+s)2T

−k2
1 + (GMj + s)2

αk1,GMj+sφ
0,Mj

GMj+s

∣∣∣∣∣
=

∣∣∣∣∣e−k
2
1T − e−(GMj+k1)2T

−k2
1 + (GMj + k1)2

1

M2
j

∣∣∣∣∣ .
Then for all j ∈ N∗ ∣∣∣∣∫ π

0

z0ψj(0) dx

∣∣∣∣ > √γ2

M4
j

, (5.34)
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with γ2 determined in (5.31). And, using (5.24) we have∣∣∣∣∣
∫ T

0

v(t)(φj)x(0, t) dt

∣∣∣∣∣ 6 ‖v‖L2(0,T )

(∫ T

0

((φj)x(0, t))
2
dt

)1/2

6
√
γ1‖v‖L2(0,T )

M
9/2
j

. (5.35)

Combining (5.33), (5.34) and (5.35), we obtain a contradiction with (5.32). Thus, for this initial
condition y0 and z0, we can not �nd a control v ∈ L2(0, T ) such that the (y, z) solution to system
(5.17) satis�es y(T ) ≡ 0 in (0, π).

Proof of the third point in Theorem 1.3. Using Theorem 5.1, the following system

For given (p0, q0) : (0, π)→ R2, v : (0, T )→ R,
Find (p, q) : (0, π)× (0, T )→ R2 such that

∂tp = ∆p+ αq in (0, π)× (0, T ),
∂tq = ∆q in (0, π)× (0, T ),
p(π, t) = v(t), p(0, t) = q(0, t) = q(π, t) = 0 on (0, T ),
p(x, 0) = p0(x), q(x, 0) = q0(x) in (0, π)

(5.36)

is not Π1-null controllable, that is there exist initial conditions p0, q0 ∈ L2(0, π) such that for any
control v ∈ L2(0, T ) the solution (p, q) to System (5.36) is not identically equal to zero at time T.
There exist two sequences (p0

k)k and (q0
k) such that

p0(x) =
∑
k>1

p0
kwk(x) and q0(x) =

∑
k>1

q0
kwk(x) for all x ∈ (0, π).

We consider now p0, q0 ∈ L2(0, 2π) de�ned by

p0(x) =
∑
k>1

p0
kwk(x) and q0(x) =

∑
k>1

q0
kwk(x) for all x ∈ (0, 2π).

Let ω ⊂ (0, π). Suppose now that the system

For given (y0, z0) : (0, 2π)→ R2, u : (0, 2π)× (0, T )→ R,
Find (y, z) : (0, 2π)× (0, T )→ R2 such that

∂ty = ∆y + αz + 1ωu in (0, 2π)× (0, T ),
∂tz = ∆z in (0, 2π)× (0, T ),
y(0, t) = y(2π, t) = z(0, t) = z(2π, t) = 0 on (0, T ),
y(x, 0) = y0(x), z(x, 0) = z0(x) in (0, 2π)

(5.37)

is Π1-null controllable, more particularly for the initial conditions y(0) = p0 and z(0) = q0 in (0, 2π),
there exists a control u in L2((0, 2π)× (0, T )) such that the solution (y, z) to System (5.37) satis�es
y(T ) ≡ 0 in (0, 2π). We remark now that (p, q) := (y|(0,π), z|(0,π)) is a solution of (5.36) with
(p(0), q(0)) = (p0, q0) in (0, π), v(t) = y(π, t) in (0, T ) and satisfying p(T ) ≡ 0 in (0, π). This
contradicts that for any control v ∈ L2(0, T ) the solution (p, q) to System (5.36) can not be identically
equal to zero at time T.

5.3 Numerical illustration

In this section, we illustrate numerically the results obtained previously in Sections 5.1 and 5.2.
We adapt the HUM method to our control problem. For all penalty parameter ε > 0 we compute
the control that minimizes the penalized HUM functional Fε given by

Fε(u) :=
1

2
‖u‖2L2(ω×(0,T )) +

1

2ε
‖y(T ; y0, u)‖2L2(Ω),
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5.3 Numerical illustration

where y is the solution to (5.1). We can �nd in [7] the argument relating the null/approximate
controllability and this kind of functional. Using the Fenchel-Rockafellar theory (see [10] p.59) we
know that the minimum of Fε is equal to the opposite of the minimum of Jε, the so-called dual
functional, de�ned for all ϕ0 ∈ L2(Ω) by

Jε(ϕ0) := 1
2‖ϕ‖

2
L2(qT ) + ε

2‖ϕ0‖2L2(QT ) + 〈y(T ; y0, 0), ϕ0〉L2(Ω),

where ϕ is the solution to the backward System (5.38). Moreover the minimizers uε and ϕε,0 of
the functionals Fε and Jε respectively, are related through the equality uε = 1ωϕε, where ϕε is the
solution to the backward System (5.38) with the initial data ϕ(T ) = ϕε,0. A simple computation
leads to

∇Jε(ϕ0) = Λϕ0 + εϕ0 + y(T ; y0, 0),

with the Gramiam operator Λ de�ned as follows

Λ : L2(Ω) 7→ L2(Ω),
ϕ0 → w(T ),

where w is the solution to the following backward and forward systems −∂tϕ = ∆ϕ in QT ,
ϕ = 0 on ΣT ,
ϕ(T ) = ϕ0 in Ω

(5.38)

and  ∂tw = ∆w + 1ωϕ in QT ,
w = 0, on ΣT ,
w(0) = 0 in Ω.

(5.39)

Then the minimizer uε of Fε will be computed with the help of the minimizer ϕ0,ε of Jε which is the
solution to the linear problem

(Λ + ε)ϕ0,ε = −y(T ; y0, 0).

Remark 1. The proof of Theorem 1.7 in [7] can be adapted to prove that

(i) System (5.1) is Π1-null controllable if and only if sup
ε>0

(
inf

L2(ω×(0,T ))
Fε

)
<∞,

(ii) System (5.1) is Π1-approximately controllable if and only if yε(T ) −→
ε→0

0,

where yε is the solution to System (5.1) for the control uε.

System (5.1) with T = 0.005, Ω := (0, 2π), ω := (0, π) and y0 := 100 sin(x) has been considered.
We take the two expressions below for the coupling coe�cient α that correspond respectively to Cases
(1)-(2) and (3) in Theorem 1.3:

(a) α(x) = 1,

(b) α(x) =
∑
p>0

1
p2 cos(15px).

Systems (5.1) and (5.38)-(5.39) are discretized with backward Euler time-marching scheme (time step
δt = 1/400) and piecewise linear Lagrange �nite elements on a uniform mesh of size h successively
equal to 2π/50, 2π/100, 2π/200 and 2π/300. We follow the methodology of F. Boyer (see [7]) that
introduces a penalty parameter ε = φ(h) := h4. We denote by Eh, Uh and L2

δt(0, T ;Uh) the fully-
discretized spaces associated to L2(Ω), L2(ω) and L2(qT ). Fh,δtε is the discretization of Fε and
(yh,δtε , zh,δtε , uh,δtε ) the solution to the corresponding fully-discrete problem of minimisation. For more
details on the fully-discretization of System (5.1) and Gramiam Λ (used to the minimisation of Fε),
we refer to Section 3 in [7] and in [15, p. 37] respectively. The results are depicted Figure 1 and 2.
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||y h,δt
ǫ (T)||Eh

   (slope=2.23)

||u h,δt
ǫ ||L 2

δt (0,T;Uh )
   (slope=−0.08)

infuh,δt ∈L 2
δt (0,T;Uh )

F h,δt
ǫ (uh,δt )   (slope=−0.13)

Figure 1: Distance to the target ‖yh,δtε (T )‖Eh , norm of the control ‖uh,δtε ‖L2
δt(0,T ;Uh) and minimal

value of the functional infuh,δt∈L2
δt(0,T ;Uh) F

h,δt
ε (uh,δt) in Case (a).

10-3 10-2 10-1

h

10-5

10-4

10-3

10-2

10-1

100

101

||y h,δt
ǫ (T)||Eh

   (slope=0.31)

||u h,δt
ǫ ||L 2

δt (0,T;Uh )
   (slope=−0.71)

infuh,δt ∈L 2
δt (0,T;Uh )

F h,δt
ǫ (uh,δt )   (slope=−3.26)

Figure 2: Distance to the target ‖yh,δtε (T )‖Eh , norm of the control ‖uh,δtε ‖L2
δt(0,T ;Uh) and minimal

value of the functional infuh,δt∈L2
δt(0,T ;Uh) F

h,δt
ε (uh,δt) in Case (b).
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As mentioned in the introduction of the present article (see Theorem 1.3), in both situations (a)
and (b), System (5.1) is Π1-approximately controllable and we observe indeed in Figure 1 and 2 that
the norm of the numerical solution to System (5.1) at time T (−H−) is decreasing when reducing the
penality parameter ε = h4.

In Figure 1, the minimal value of the functional Fh,δtε (− • −) as well as the L2-norm of the
control uh,δtε (−N−) remain roughly constant whatever is the value of h (and ε = h4). This appears
in agreement with the results (1)-(2) of Theorem 1.3, that state the Π1-null controllability of System
(5.1) in Case (a) of a constant coupling coe�cient α (see Remark 1 (i)). Furthermore the convergence
to the null target is approximately of order 2 (slope of 2.23). This is in agreement with the convergence
rate established in [7, Proposition 2.2], which should be h2 for ε = h4 (this result should be in fact
slightly adapted to consider Π1-null controllability).

At the opposite, in Figure 2, the minimal value of the functional Fh,δtε as well as the L2-norm
of the control uh,δtε are strongly increasing whenever h (and ε) become smaller. This coincides with
point (3) of Theorem 1.3: for the chosen value of the coupling coe�cient α in Case (b), no Π1-null
controllability of System (5.1) is expected. Moreover, convergence to the null target is quite slow,
with a slope of approximately 0.31.

Acknowledgements. The authors thank Assia Benabdallah for her interesting comments, sug-
gestions and Franck Boyer for his computer program.
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