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Partial null controllability of parabolic linear systems by m
forces

Farid AMMAR KHODJA* Franz CHOULY™ Michel DUPREZ*
February 11, 2015

Abstract

This paper is devoted to the partial null controllability issue of parabolic linear systems with
n equations. Given a bounded domain Q in RY (N € N*), we study the effect of m localized
controls in a nonempty open subset w only controlling p components of the solution (p, m < n).
The first main result of this paper is a necessary and sufficient condition when the coupling and
control matrices are constant. The second result provides, in a first step, a sufficient condition of
partial null controllability when the matrices only depend on time. In a second step, through an
example of partially controlled 2 x 2 parabolic system, we will give positive and negative results
on partial null controllability when the coefficients are space dependent.

1 Introduction and main results

Let © be a bounded domain in RY, N € N* with a C?-class boundary 902, w be a nonempty open
subset of 2 and T > 0. Let p, m, n € N* such that p,m < n.
We consider in this paper the following system of n parabolic linear equations

Oy =Ay+ Ay+ Bl,u  in Qr:=Qx(0,T),
y=0 on X =90 x (0,7T), (1.1)
y¥(0) = vo in Q,

where yo € L*(Q)" is the initial data, u € L?(Qr)™ is the control and for all (z,t) € Qr
A(z,t) € L(R™) and B(z,t) € L(R™;R"™).

In many fields such as chemistry, physics or biology it appeared relevant to study the controllability
of such a system (see [4]). For example, in [8], the authors study a system of three semilinear heat
equations which is a model coming from a mathematical description of the growth of brain tumors.
The unknowns are the drug concentration, the density of tumors cells and the density of wealthy
cells and the aim is to control only two of them with one control. This practical issue motivates the
introduction of the partial null controllability.

For an initial condition y(0) = yo € L*(Q)" and a control u € L?(Qr)™, it is well-known that
System (1.1) admits a unique solution in W(0,T)™, where

W(0,T) := {y € L*(0,T; H}(Q)), 0y € L*(0,T; H ()},
and the following estimate holds (see [4])

9l L2071 )m) + 1Yllcoqo,my;22(0)m) < Cllyoll2)n + [[ullz2(@rym), (1.2)
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where C' does not depend on time. We denote by y(-; yo,u) the solution to System (1.1) determined
by the couple (yo,u).
Let us consider I, the projection matriz defined as follows

0, : R™ — R?,

(Y150 ¥n) = Y1y Yp)-
System (1.1) is said to be

e Il -approximately controllable on the time interval (0,7"), if for all real number € > 0 and
Y0, yr € L*(Q)" there exists a control u € L?(Q7)™ such that

Hpr(TQ Yo, u) — prT||L2(Q)p <e.

e IT,-null controllable on the time interval (0, T), if for all initial condition yo € L?*(Q)", there
exists a control u € L?(Qr)™ such that

ILy(T; yo,u) =0 in Q.

Before stating our main results, let us recall the few known results about the (full) null controlla-
bility of System (1.1). The first of them is about cascade systems (see [16]). The authors prove the
null controllability of System (1.1) with the control matrix B := ey (the first vector of the canonical
basis of R™) and a coupling matrix A of the form

Q11 Q12 013 ce Q1 n
Q21 Qg2 023 ce Qg n
e a: a B PRI a,
A= 0 32 Q33 s |, (1.3)
0 0 e Opn—-1 Qnn

where the coefficients «; ; are elements of L>°(Qr) for all 4,5 € {1,...,n} and satisty for a positive
constant C
air1; > Cflorallie{l,..,n—1}.

A similar result on parabolic systems with cascade coupling matrices can be found in [1].

The null controllability of parabolic 3 x 3 linear systems with space/time dependent coefficients
and non cascade structure is studied in [6] and [18] (see also [16]).

If Ae L(R™) and B € L(R™,R™) (the constant case), it has been proved in [3] that System (1.1)
is null controllable on the time interval (0,7) if and only if the following condition holds

rank [A|B] = n, (1.4)
where [A|B], the so-called Kalman matriz, is defined as
[A|B] := (B|AB|...|A" ' B).

For time dependent coupling and control matrices, we need some additional regularity. More
precisely, we need to suppose that A € C"~1([0,7]; L(R™)) and B € C"([0,T]; L(R™;R™)). In this
case, the associated Kalman matrix is defined as follows. Let us define

{ Bo(t) := B(t),
Bl(t) = A(t)Bl_l(t) — 8tBi_1(t), (1 S ) < n — 1)

and denote by [A|B](-) € C*([0, T]; L(R™™;R™)) the matrix function given by
[A[B](-) := (Bo(-)|B1(")|---| Bp-1(-))- (1.5)



In [2] the authors prove first that, if there exists to € [0, 7] such that
rank [A|B](to) = n, (1.6)

then System (1.1) is null controllable on the time interval (0,7"). Secondly that System (1.1) is null
controllable on every interval (Tp, T7) with 0 < Ty < Ty < T if and only if there exists a dense subset
E of (0,T) such that

rank [A|B](t) = n for every t € E. (1.7)

In the present paper, the controls are acting on several equations but on one subset w of €.
Concerning the case where the control domains are not identical, we refer to [20].
Our first result is the following:

THEOREM 1.1. Assume that the coupling and control matrices are constant in space and time, i.
e., A€ LIR™) and B € L(R™,R™). The condition

rank IT,[A|B] =p (1.8)
is equivalent to the II,-null/approzimate controllability on the time interval (0,T) of System (1.1).

The Condition (1.8) for IT,-null controllability reduces to Condition (1.4) whenever p = n. A
second result concerns the non-autonomous case:

THEOREM 1.2. Assume that A € C"~1([0,T]; L(R™)) and B € C*([0,T]; L(R™;R™)). If
rank II,[A|B|(T) = p, (1.9)
then System (1.1) is IL,-null/approzimately controllable on the time interval (0,T).

As told before, under Condition (1.6), System (1.1) is (fully) null controllable. But unlike the
case where all the components are controlled, the II,-null controllability at a time ¢y smaller than
T does not imply this property on the time interval (0,7"). This roughly explains Condition (1.9).
Furthermore this condition can not be necessary (for a counterexample we refer to [2]).

In the proofs of Theorems 1.1 and 1.2, we will use a result of null controllability for cascade
systems (see Section 2) proved in [2, 16] where the authors consider a time-dependent second order
elliptic operator L(t) given by

N N
Lt)y(z,t) = — Z 8%, (ozivj(:v, t)(;iyj(:c, t)) + Z bi(x,t)%(x,t) + ez, t)y(z,t), (1.10)

with coefficients «; ; satisfying
aij € Wi(Qr), biyc € L¥(Qr) 1 <4,j < N,
Oéi)j(l',t) = aj7’b(x7t) V(.’I],t> € QT: 1 < l7] < N
and the uniform elliptic condition: there exists ag > 0 such that
N
> (@, t)&8 = aolél?, V(z,t) € Qr.
ij=1
Theorems 1.1 and 1.2 remain true if we replace —A by an operator L(t) in System (1.1).
Now the following question arises: what happens in the case of space and time dependent coeffi-
cients 7 As it will be shown in the following example, the answer seems to be much more tricky. Let
us now consider the following parabolic system of two equations

Oy=Ay+az+1,u in Qr,
Oz = Az in Qr,
y=2=0 on X,
y(0) =yo, 2(0) =2  inQ,

for given initial data yo, 20 € L%(Q), a control u € L*(Qr) and where the coefficient o € L°°().

(1.11)



THEOREM 1.3. (1) Assume that o € C'([0,T]). Then System (1.11) is II;-null controllable for
any open set w C Q C RN (N € N*), that is for all initial conditions yo,z0 € L?(5Y), there exists
a control u € L*(Qr) such that the solution (y, z) to System (1.11) satisfies y(T) =0 in Q.

(2) Let us suppose that o € L>(Q) with © := (a,b) C R (a,b € R) and satisfies

/ awpw; dx
Q

where Cy, Cy are two positive constants and (wy)r>1 are the L?-normalized eigenfunctions of
—A in Q with Dirichlet boundary conditions. Then System (1.11) is II1-null controllable for any
open set w C ().

< Cre= @M =11 for all k1 € N*, (1.12)

(8) Assume that 2 := (0,27) and w C (7,2m). Let us consider o € L>°(0,2m) defined by
— 1
a(z) = Z — cos(15jx) for all z € (0,27).
—J
Jj=1
Then System (1.11) is not Iy -null controllable. More precisely, there exists k1 € {1,...,7} such
that for the initial condition (yo,z0) = (0,sin(k1z)) and any control u € L*(Qr) the solution y
to System (1.11) is not identically equal to zero at time T.
In Theorem 1.3, (1) can be proved with the help of Theorem 1.2. Concerning (2), Condition
(1.12) can be rewritten as follows. We suppose that Q := (0, 7) and consider a € L*°(0,7) and the
real sequence (o )pen such that for all z € (0, )

a(x) == Z o, cos(pz).
p=0

Then Condition (1.12) is equivalent to find two positive constants C;, Cy such that, for all p € N,
la| < Cre=C2r"

And, as it will be shown, the proof of (3) in Theorem 1.3 can be adapted in order to get the same
conclusion for any a € H*(0,27) (k € N*) defined by

=1
a(x) == Z —5o7 0s((2k + 13)jz) for all z € (0, 2m).
—J
Jj=1
Unlike the case with a time dependent coupling matrix, if the coupling matrix depends on space,

the notions of IT;-null and approximate controllability are not necessarily equivalent. Indeed, accord-
ing to the choice of the coupling function o € L*°(£), System (1.1) can be II,-null controllable or
not. But this system is II;-approximately controllable for all a € L*():

THEOREM 1.4. Let o € L*(Qr). Then System (1.11) is I11-approzimately controllable for any
open set w C Q C RN (N € N*), that is for all yo,yr, z0 € L*(2) and all € > 0, there exists a control
u € L*(Qr) such that the solution (y,z) to System (1.11) satisfies

[¥(T) = yrllz20) <e.

This result is a direct consequence of the approximate controllability for the heat equation. Indeed
System (1.11) is II;-approximately controllable (see Proposition 2.1) if and only if for all ¢ € L?(£2)
the solution to the adjoint system

—0ip = A¢ in Qr,
—0) = AY + oo in Qr,
p=1v=0 on X,

(T) = ¢o, ¥(T) =0 inQ



satisfies
p=0in (0,T) X w = (¢,¥) =0 in Q.

If we assume that, for an initial data ¢y € L?(Q), the solution to System (5.2) satisfies ¢ = 0 in
(0,T) X w, then using Mizohata uniqueness Theorem in [19], ¢ = 0 in Q1 and consequently 1) = 0 in
Q1. For another example of parabolic systems for which those notions are not equivalent we refer to
[5].

In this paper, the sections are organized as follows. We start with some preliminary results on
the null controllability for the cascade systems and on the dual concept associated to the II,-null
controllability. Theorem 1.1 is proved in a first step with one force i.e. B € R™ in Section 3.1 and in
a second step with m forces in Section 3.2. Section 4 is devoted to proving Theorem 1.2. We consider
the situations of the second and third items of Theorem 1.3 in Section 5.1 and 5.2 respectively. This
paper ends with some numerical illustrations of II;-null controllability and non IT;-null controllability
of System (1.11) in Section 5.3.

2 Preliminaries

In this section, we recall a known result about cascade systems and provide a characterization of
the II,-controllability through the corresponding dual system.

2.1 Cascade systems

Some theorems of this paper use the following result of null controllability for the following cascade
system of n equations controlled by r distributed functions

ohw=Aw+ Cw+ Dl,u in Qr,
w=0 on X, (2.1)
w(0) = wo in 0,

where wy € L2(Q)", u = (u1,...,u,) € L*(Qr)", with r € {1,...,n}, and the coupling and control
matrices C € C°([0,T]; L(R")) and D € L(R",R"™) are given by

Cll(t) 012 (t) e Clr(t)
0 Cyut) - Colt)
C(t) = . . _ : (2.2)

0 0 Con(®)
with 4 4

o4 (t) aiz(t) 04113(75) ai,si(t)

1 agy(t)  abs(t) g, (1)

Ciilt) := 0 1 agy(t) ag . (1) |,
0 0 1 a0

s, €N, YT si=nand D= (eg,|...]es,) with S; =1 and S; =1+ Z;;ll sj, 1€ {2,...,r} (e; is the
j-th element of the canonical basis of R™).

THEOREM 2.1. System (2.1) is null controllable on the time interval (0,T), i.e. for all wy € L*(Q)"
there exists u € L*(Q)" such that the solution w in W (0,T)" to System (2.1) satisfies w(T) = 0 in
Q.

This result can be found in [2] or [16].



2.2 Adjoint system

2.2 Partial null controllability of a parabolic linear system by m forces
and adjoint system

It is nowadays well-known that the controllability has a dual concept called observability (see for
instance [4]). We detail below the observability for the II,-controllability.

PROPOSITION 2.1. 1. System (1.1) is IL,-null controllable on the time interval (0,T) if and
only if there exists a constant Cops > 0 such that for all oo = (9, ..., ¢p) € L*(Q)P the solution
p € W(0,T)" to the adjoint system

—Op=Ap+ A*p in Qr,
=0 on X, (2.3)
@(7T) :H;(PO = ((10(1)’190;0)70170) in O

satisfies the observability inequality

T
1P(0)]122(cy < Cons / 1B l12 o . (2.4)

2. System (1.1) is II,-approzimately controllable on the time interval (0,T) if and only if for all
o € L%(Q)P the solution o to System (2.8) satisfies
B*o=0in (0,T) xw = ¢ =0in Qr.

Proof. For all yo € L*(Q)", and u € L?(Q7)™, we denote by y(t; yo,u) the solution to System (1.1)
at time ¢ € [0,T]. For all ¢ € [0, 7], let us consider the operators S; and L; defined as follows

Syt L) —  LAEQ)" Ly L*Qr)™ — L*(Q)

w oyl M u = y(t;0,u). (25)
1. System (1.1) is IT,-null controllable on the time interval (0,7") if and only if
Vyo € L*(Q)", Ju € L*(Qr)™ such that (2.6)
IL, Lru = —I1,57y0.
Problem (2.6) admits a solution if and only if
Im T1,S7 C Im TT, Ly (2.7)
The inclusion (2.7) is equivalent to (see [9], Lemma 2.48 p. 58)
3C > 0 such that Vi, € L2(2)P, (2.8)

157 50l 7 2y < CILEIT 00172 (0 0 ym-
We note that
SpIly: LXQP — LX(Q)" Lyl s LA(QP = LA(Qr)"
p and P *
vo = 9(0) o 2 LB

where ¢ € W (0,T)™ is the solution to System (2.3). Indeed, for all yo € L*(Q)", u € L*(Qr)™
and g € L(Q)P

<y(T; Yo, O)a <)0(T)>L2(Q)n

T
/<6ty(3§9070)7§0(3)>L2(Q)"d3
’ T (2.9)
+/ (y(s;90,0), Dep(5)) 2(@)nds + (Yo, 9(0)) 20y

0
(vo, 50(0)>L2(Q)n

(I, STyo, wo) L2 ()r



and

(I, L, @o) £2(Q)r <y(TT; 0,u), o(T)) L2 () .

/O<8ty(5§Ov”)a‘P(S»L?(Q)”dS+/ (y(5;0,u),0r0(s)) L2()nds

0
(Lo Bu, 9)r2(Qry» = (U, Lo B*@) 2(Qpym-

(2.10)
The inequality (2.8) combined with (2.9)-(2.10) lead to the conclusion.

2. In view of the definition in (2.5) of S7 and Ly, System (1.1) is II,-approximately controllable
on the time interval (0,7T) if and only if

¥(yo, yr) € LA(Q)" x LA(Q)P, Ve >0, Ju € L*(Qr)™ such that
T, Lru + 11, S7y0 — yrllL2)p < €.

This is equivalent to

Ve >0, Vzr € L2(Q)?,3u € L?(Q7)™ such that
||HpLT’LL — ZTHL2(Q)p g E.

That means

I, L (L*(Qr)™) = L*(Q)".
In other words
ker L7117 = {0}.
Thus System (1.1) is II,-approximately controllable on the time interval (0,T) if and only if for
all pg € L*(Q)P
Lyl po =1,B"p =0in Qr = ¢ =0in Q.

O

Corollary 2.1. Let us suppose that for all oo € L*(Q)P, the solution o to the adjoint System (2.3)
satisfies the observability inequality (2.4). Then for all initial condition yo € L*(Q)", there exists a
control uw € L*(gr)™ (qr == w x (0,7T)) such that the solution y to System (1.1) satisfies IL,y(T) =
0 in 2 and

[ull 22 (grym < v/ Cobsllyoll 2@y (2.11)

The proof is classical and will be omitted (to get (2.11) the method developed by Fursikov and
Immanuvilov in [13] could be used).

3 Partial null controllability with constant coupling matrices

In this section, we prove Theorem 1.1 in two steps. In subsection 3.1, we begin by studying the
case where B € R™ and the general case is considered in subsection 3.2.
Let us consider the system

Oy = Ay+ Ay + Bl,u in Qr,
y=20 on X, (3.1)
y(0) = yo in Q,

where yo € L*(Q)", u € L*(Q7)™, A € L(R") and B € L(R™;R").
Let the natural number s be defined by

s :=rank [A|B] (3.2)

and X C R” be the linear space spanned by the columns of [A|B].
All along this section, we will use the lemma below which proof is straightforward.



3.1 One control force

Lemma 3.1. Let be yo € L?(Q)", u € L*(Qr)™ and P € C1([0,T], L(R™)) such that P(t) is invertible
for allt € [0,T). Then the change of variable w = P~'(t)y transforms System (3.1) into the equivalent
system

Ow=Aw+ C{t)w+ D(t)1,u  in Qr,

w=0 on X, (3.3)

w(0) = wy in Q,

with wo := P~1(0)yo, C(t) := —P~1(t)0; P(t) + P~1(t)AP(t) and D(t) := P~1(t)B. Moreover
Ly(T)=0in Q < IL,P(T)w(T)=0 in Q.
If P is constant, we have

[C|D] = P~'[A|B].

3.1 One control force

In this subsection, we suppose that A € L(R"), B € R” and denote by [A|B] =: (ki;j)1<i,j<n and
s :=rank [A|B]. We begin with the following observation.

Lemma 3.2. {B,..., A 1B} is a basis of X.

Proof. If s = rank [A|B] = 1, since B # 0, the conclusion of the lemma is clearly true. Let
s > 2. Suppose to the contrary that {B,..., A*"!B} is not a basis of X, that is for some i €
{0,...,5 — 2} the family {B, ..., A’B} is linearly independent and A**'B € span(B, ..., A'B). Hence,
by induction, A'B € span(B,...,A'B) for all | € {i +1,...,n — 1}. Then rank (B|AB|...|A""'B) =
rank (B|AB|...]A*B) =i + 1 < s, contradicting with (3.2). O

Proof of Theorem 1.1. Let us remark that
rank IT,[A|B] = dim II,[A|B](R") < rank [A|B] = s. (3.4)

Lemma 3.2 yields
rank (B|AB|...|A* ' B) = rank [A|B] = s. (3.5)

Thus, for all [ € {s,s+1,...,n} and i € {0, ..., s — 1}, there exist «;; such that
s—1 )
A'B = Z i A'B. (3.6)
i=0

Since, for all I € {s,...,n}, [[,A'B = 325"} oy ;T A B, then
rank I1,(B|AB|...| A" ' B) = rank II,[A|B]. (3.7)
Let us assume first that condition (1.8) holds. Then, using (3.7), we have
rank I1,(B|AB|...| A*"'B) = p. (3.8)

Let be yo € L?(Q2)™. We will study the IT,-null controllability of System (3.1) according to the values
of p and s.

Case 1 : p =s. The idea is to find an appropriate change of variable P to the solution y to System
(3.1). More precisely, we would like the new variable w := P~'y to be the solution to a
cascade system apply Theorem 2.1. So let us define, for all ¢ € [0, T,

P(t) := (B|AB|...| A"  B| Py i1 (t)]...|Pa (1), (3.9)



3.1 One control force

where, for all [ € {s+ 1,...,n}, Pi(t) is the solution in C1([0,T])" to the system of ordinary
differential equations

8P (t) = AR(t) in [0, 7],
1
{ P(T) = &. (3-10)
Using (3.9) and (3.10), we can write
o P11 0
P(T) = ( Py L. ) (3.11)

where Py := II,(B|AB|...|A*"'B) € L(R®), P»; € L(R*,R""®) and I,,_, is the identity
matrix of size n — s. Using (3.8), Py is invertible and thus P(T) also. Furthermore, since
P(t) is an element of C*([0,T], £(R")) continuous in time on the time interval [0, 7], there
exists T* € [0,T) such that P(¢) is invertible for all ¢t € [T, T.

Let us suppose first that 7% = 0. Since P(t) is an element of C!([0,7], L(R™)) and
invertible, in view of Lemma 3.1: for a fixed control u € L?(Q7), v is the solution to System
(3.1) if and only if w := P(t)~'y is the solution to System (3.3) where C, D are given by

C(t):=—P Y (t)o,P(t) + P"*(t)AP(t) and D(t):= P '(t)B,

for all t € [0,T]. Using (3.6) and (3.10), we obtain

— s _ C]_]_ 0 .
-0, P(t)+ AP(t) = (AB]...|A*B|0]...]0) = P(¢) ( 0 0 ) in [0, 77, (3.12)
P(t)e; = B in [0, 7],
where
00 0 s
10 0 ... ou1
Chi=| 01 0 o a2 | cpm). (3.13)
0 0 ... 1 Qg s—1
Then
Ct) = ( o ) and D(t) = e,. (3.14)
Using Theorem 2.1, there exists u € L?(Qr) such that the solution to System (3.3) satisfies
w1 (T) = ... = ws(T) =0 in Q. Moreover, using (3.11), we have

Hsy(T) = (yl(T)a 7ys(T)) = Pll(wl(T)a ~~~7ws(T)) =0in Q.

If now T* # 0, let 7 be the solution in W (0,7*)™ to System (3.1) with the initial condition
7(0) = yo in 2 and the control © = 0 in Q x (0,7*). We use the same argument as above
to prove that System (3.1) is II;-null controllable on the time interval [T*,T]. Let v be a
control in L2(Q x (T*,T)) such that the solution z in W (T*,T)" to System (3.1) with the
initial condition z(7T%) = y(T*) in Q and the control v satisfies II;z(7") = 0 in Q. Thus if we
define y and u as follows

_ [ @O)yifte.1)
(v, ) '—{ (z0) if ¢ € [T, T,

then, for this control u, y is the solution in W (0,T)™ to System (3.1). Moreover y satisfies

II;y(T) =0 in Q.



3.1 One control force

Case 2 : p < s. In order to use the previous item (i), we would like to apply an appropriate change
of variable @ to the solution y to System (3.1). If we denote by [A|B] =: (ki;):;, equalities
(3.5) and (3.8) can be rewritten

ki e Eas ki oo ks
rank =s and rank =p.
knl e kns kpl T kps
Then there exist distinct natural numbers Apy1, ..., As such that {\,41,..., A} C {p+1,...,n}
and
k11 k1s
rank P Fops =s. (3.15)
Ry i1 kxpias
kx.1 Exs

Let @ be the matrix defined by

Q= (el|...|ep|e>\p+l|...\6An)t,

where {Asi1, .., An} = {p+1,...; n\{Aps1, ..y As }. @ is invertible, so taking w := P~y with
P := Q! for a fixed control u in L?(Qr), v is solution to System (3.1) if and only if w is
solution to System (3.3) where wg := Qyo, C := QAQ~! € L(R") and D := QB € L(R;R").
Moreover there holds

[C1D] = Q[A|B].
Thus, equation (3.15) yields
ki o Kin
kpi o kpm
rank IT;[C|D] = rank II;Q[A|B] = rank =s.
Ryt kxpian
kxao 0 kan

Since rank [C|D] = rank [A|B] = s, we proceed as in Case 1 forward deduce that System
(3.3) is II;-null controllable, that is there exists a control u € L?(Qr) such that the solution
w to System (3.3) satisfies

ITsw(T) =0 1in Q.

Moreover the matrix ) can be rewritten

I 0
©= ( 6; Q22 > ’
where Q22 € L(R"P). Thus
ILy(T) =1,Qy(T) = IL,w(T) =0 in Q.

Let us denote by [A|B] =: (ki;)ij. We suppose now that (1.8) is not satisfied: there exist
P

p € {l,..,p} and B; for all i € {1,...,p}\{P} such that kp; = > Bk for all j € {1,...,s}. The
i=1,i#p

idea is to find a change of variable w := Qy that allows to handle more easily our system. We will

achieve this in two steps starting from the simplest situation.
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3.1 One control force

Step 1. Let us suppose first that
kor oo kas
kin=..=kis=0 and rank : ; = s. (3.16)

ks+1,1 e ks+1,s

We want to prove that, for some initial condition yo € L?(2)", a control u € L?(Qr) cannot
be found such that the solution to System (3.1) satisfies y1(7) = 0 in 2. Let us consider the
matrix P € L(R™) defined by

P = (B..]A* " Blei|esial... en). (3.17)

Using the assumption (3.16), P is invertible. Thus, in view of Lemma 3.1, for a fixed control
u € L?(Q7), y is a solution to System (3.1) if and only if w := P~y is a solution to System
(3.3) where C, D are given by C := P"'AP and D := P~!B. Using (3.6) we remark that

A(B|AB|...|BA*™') = (B|AB|...|BA*™ ) < Cgl > 7

with Cy; defined in (3.13). Then C can be rewritten as

[ Cu Cig
e o), -

where C15 € L(R" % R®) and Cs € L(R"#). Furthermore

D=P 'B=P !'Pe; =e¢.
and with the Definition (3.17) of P we get

y1(T) = wsy1(T) in Q.

Thus we need only to prove that there exists wy € L?(2)™ such that we cannot find a control
u € L?(Q) with the corresponding solution w to System (3.3) satisfying ws41(7) = 0 in Q.
Therefore we apply Proposition 2.1 and prove that the observability inequality (2.4) can not
be satisfied. More precisely, for all wy € L*(Q2)", there exists a control v € L?(Q7) such that

the solution to System (3.3) satisfies wsy1(T) = 0 in Q, if and only if there exists Cops > 0
such that for all ¢%,, € L?(2) the solution to the adjoint system

Cy 0 .

—8t<p = A(p + ( C«il Cx ) ¥ m QTa
1222 (3.19)

o = 0 on X,

o(T) = (0,...,0,¢%,1,0,....,0)" = es119%; inQ
satisfies the observability inequality
/ ©0(0)? dx < C’obs/ 2 da dt. (3.20)
Q wx (0,T)

But for all ¢%,; # 0 in €, the inequality (3.20) is not satisfied. Indeed, we remark first that,
since o1 (T) = ... = ¢s(T) = 0in 2, we have 1 = ... = p5 = 0in Qr, so that wa(O 7) prdr =
0, while, if we choose ? 41 # 0in €, using the results on backward uniqueness for this type
of parabolic system (see [14]), we have clearly (¢s+1(0), ..., ¢, (0)) # 0 in Q.

11



3.1 One control force

Step 2.

Step 3.

Let us suppose only that ki3 = ... = k15 = 0. Since rank (B|...|A*"!B) = s, there exists
distinct A1, ..., A\s € {2,...,n} such that
k)\l,l e k)\l,s
rank =s.
Ex.1 - kas

R

Let us consider the following matrix

Q = (61 |6)\1 |"'|e>\n—1)ta

where {\g11,..; An_1} = {2, ..., n}\{ A1, ..., A }. Thus, for P := Q~1, again, for a fixed control
u € L*(Qr), vy is a solution to System (3.1) if and only if w := P~ !y is a solution to System
(3.3) where C, D are given by C := QAQ~! and D := QB. Moreover, we have

[C|D] = Q[A|B].
If we note (];U)w := [C| D], this implies ki1 =...=kis =0 and
ko1 o ko kxir oo ks
rank = rank = s.
]%s+1,1 te I%s+1,s kAs,l e k)\sﬁ

Proceeding as in Step 1 for w, there exists an initial condition wg such that for all control
w in L?(Qr) the solution w to System (3.3) satisfies w1 (T) # 0 in Q. Thus, for the initial
condition yo := Q~lwy, for all control u in L?(Q7), the solution y to System (3.1) satisfies

y1(T) = w1 (T) # 0 in Q.

Without loss of generality, we can suppose that there exists §; for all i € {2,...,p} such that
P

ki1j = Biki; for all j € {1,..., s} (otherwise a permutation of lines leads to this case). Let
i=2

us define the following matrix

P t
Q= <(61 - Zﬂiei)|eg|...|en> .
=2

Thus, for P := Q~1, again, for a fixed initial condition yo € L?(Q)" and a control u € L*(Qr),
consider System (3.3) with w := P~'y, y being a solution to System (3.1). We remark that
if we denote by (k;;) := [C|D], we have k11 = ... = k1, = 0. Applying step 2 to w, there
exists an initial condition wg such that for all control v in L?(Q7) the solution w to System
(3.3) satisfies

wi(T) £ 0 in Q. (3.21)
Thus, with the definition of @, for all control u in L?(Qr) the solution y to System (3.1)
satisfies

wi(T) = y1(T) = > Biyi(T) in Q.
=2

Suppose IL,y(T) = 0 in Q, then w1(T) =0 in O and this contradicts (3.21).

As a consequence of Proposition 2.1, the IL,-null controllability implies the II,-approximate con-
trollability of System (3.3). If now Condition (1.8) is not satisfied, as for the IT,-null controllability,
we can find a solution to System (3.19) such that ¢; = 0 in w x (0,7) and ¢ £ 0 in Qr and we
conclude again with Proposition 2.1.

O
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3.2 m-control forces

3.2 m-control forces

In this subsection, we will suppose that A € L(R") and B € L(R™,R™). We denote by B =:
(b1]...]b™). To prove Theorem 1.1, we will use the following lemma which can be found in [2].

Lemma 3.3. There exist r € {1,...,s} and sequences {lj}1<j<r C {1,...m} and {sj}icj<r C
{1,...,n} with 37%_, s; = s, such that

B:= [ J{bh, Ay, ..., A%}

Jj=1

is a basis of X. Moreover, for every 1 < j < r, there exist O‘;c,sj eERfor1<i<jandl <k<s;
such that _
j
Asiph =y (oﬂi’sj Wt ah AV ol Asﬁlbli) . (3.22)
i=1
Proof of Theorem 1.1. Consider the basis B of X given by Lemma 3.3. Note that
rank II,[A|B] = dim II,[A| B](R") < rank [A|B] = s.
If M is the matrix whose columns are the elements of B, i.e.
M = (myj)ij o= (0" |AbM [ |AS 1l | |bln [Abl || A5~ b))
we can remark that
rank IT,M = rank II,[A|B]. (3.23)
Indeed, relationship (3.22) yields
A% =3 (a;sjnpbli +ab, AV 4. +al H,,Asi_lb“) .
i=1

Let us suppose first that (1.8) is satisfied. Let be yo € L%(2)". We will prove that we need
only r forces to control System (3.1). More precisely, we will study the IL,-null controllability of the
system

Oy =Ay+ Ay+ Blyv inQr,

y=0 on X, (3.24)
y¥(0) = wo in €,
where B = (b |b%2|---|b'") € L(R",R"). Using (1.8) and (3.23), we have

rank I, (6" | Ab"|...| A%~ ol | bl | Abl7 ... A5~ 1blr) = p. (3.25)

Case 1 : p=s. As in the case of one control force, we want to apply a change of variable P to the
solution y to System (3.24). Let us define for all ¢ € [0,T] the following matrix

P(t) := (b |Ab1 .| A5 1l . bl | Ablr)...| As 1l

P (D)) |Pa(t) € LR™),  (3.26)

where for all [ € {s+1,...,n}, P, is solution in C1([0, T])™ to the system of ordinary differential

equations
0. P, (t) = AP,(t) in [0, T7,
3.27
{ R(T) = a1 (8:27)
Using (3.26) and (3.27) we have
[Py 0
P(T) = < Py I, ) (3.28)

13



3.2 m-control forces

where Pyy := IL, (b | A1 ]...| A5 161 ... |blr | AbEr|... | A5 1br) € £(R®) and Py € L(R"%,R?).
From (3.25), P;; and thus P(T') are invertible. Furthermore, since P is continuous on [0, T],
there exists a T € [0,T') such that P(t) is invertible for all ¢t € [T*,T.

We suppose first that 7* = 0. Since P is invertible and continuous on [0, 7], for a fixed
control v € L?(Qr)", vy is the solution to System (3.24) if and only if w := P(t)~ly is the
solution to System (3.3) where C, D are given by

C(t) .= —P~Y(t)8,P(t) + P~*(t)AP(t) and D(t):= P~1(t)B,

for all t € [0,T]. Using (3.22) and (3.27), we obtain

—OP(t)+ AP(t) = (Ab" |AQ~bl1 |...|A%1bh .| Abr| A%bE|...| A% 6P| 0)...|0),
o Cll 0 .
= P(t) < 0 o > in [0, 77,
P(t)es, = bl in [0, 77,
, (3.29)
where S; =1+ Z;;ll sjforie{1,...,r},
Cun Ci2 -+ Cup
. 0 Cy - Cy
Chn = . . . € L(R?) (3.30)
0 0 - O,
and for 1 < < j < r the matrices C;; € L(R%,R*¢) are given by
0 0 ol 00 0 1,5
10 0 ... a5, 0 0 O A,
Cii = 0 1 0 T O[é’si and Cij = 00 0 Oéé s fOI‘j > 1.
0 0 1 o, 0 0 0 gi)sj
(3.31)
Then ~
Ci1 O
Ct) = 0 0 and D(t) = (eg,|..-les,)- (3.32)
Using Theorem 2.1, there exists v € L?(Q7)" such that the solution to System (3.3) satisfies
w1 (T) = ... = ws(T) =0 in Q. Moreover, using (3.28), we have

ay(T) = (1 (T), ., ys(T)) = Pr1(w1(T), ..., ws(T)) =0 in Q.
If now 7™ # 0, we conclude as in the proof of Theorem 1.1 with one force (see § 3.1).

Case 2 : p < s. The proof is a direct adaptation of the proof of Theorem 1.1 with one force, it is
possible to find a change of variable in order to get back to the situation of Case 1 (see § 3.1).

If (1.8) is not satisfied, there exist p € {1, ...,p} and, for all ¢ € {1, ..., p}\{Pp}, scalars §; such that
P

i=1,i#p

mp; = Bim,; for all j € {1,...,s}. As previously, without loss of generality, we can suppose
that
mop v Mmas
mi1 =..=mis=0 and rank =3 (3.33)
merl,l e merl,s

14



3.2 m-control forces

(otherwise a permutation of lines leads to this case). Let us consider the matrix P defined by

P = (" AD" || AT T bl Abf L A

e1lest2|---len)- (3.34)

Relationship ensures (3.33) that P is invertible. Thus, again, for a fixed control u € L?(Qr)™, y is
the solution to System (3.1) if and only if w := P~'y is the solution to System (3.3) where C, D are
given by C := P~ AP and D := P71 B. Using (3.22), we remark that

AV |AD! .| A1 716 | bl AB .| A%~ Th)
— (A A2 || A1 B .. | Abl | A2b .. | ASr i) = P( Cu ) :

where Cy; is defined in (3.30). Then C' can be written as

_ Cii Cha
C = ( 0 Gy ) , (3.35)

where Cy5 € L(R%, R™*) and Cos € L(R™*). Furthermore, the matrix D can be written

_( D
=(1),
where Dy € L(R™,R?). Using (3.34), we get

y1(T) = ws41(T) in Q.

Thus, we need only to prove that there exists wy € L?(Q)" such that we cannot find a control
u € L*(Qr)™ with the corresponding solution w to System (3.3) satisfying ws1(T) = 0 in Q.
Therefore we apply Proposition 2.1 and prove that the observability inequality (2.4) can not be
satisfied. More precisely, for all wy € L?(2)", there exists a control u € L?(Q7)™ such that the
solution w to System (3.3) satisfies wy41(7T) = 0 in €, if and only if there exists Cyps > 0 such that
for all %, ; € L?(Q) the solution to the adjoint system

Cy 0 :
O = As@+( S )w in Qr,
Ciy O3 (3.36)
p = 0 on X,
QD(T) = (0,...,0,@2+1,0,...,0)t :es-i-l@g-i-l in
satisfies the observability inequality
/ ©0(0)?dx < Oobs/ (D} (@1, ..., 0s))? da dt. (3.37)
Q wx (0,T)

But for all 9., # 0 in €, the inequality (3.37) is not satisfied. Indeed, we remark first that, since
©1(T) = ... = ps(T) =0 in Q, we have ¢1 = ... = ¢, = 0 in Q7. Furthermore, if we choose Y, # 0
in €2, as previously, we get (©s+1(0),...,n(0)) Z 0 in Q.

We recall that, as a consequence of Proposition 2.1, the II,-null controllability implies the IL,-
approximate controllability of System (3.24). If Condition (1.8) is not satisfied, as for the II,-null
controllability, we can find a solution to System (3.36) such that D} (¢1,...,¢5)" = 0in w x (0,T) and
¢ # 0 in Q7 and we conclude again with Proposition 2.1.

O
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4 Partial null controllability with time dependent matrices

We recall that [A|B](-) = (Bo(-)|...|Bn_1(-)) (see (1.5)). Since A(t) € C"1([0,T]; L(R™)) and
B(t) € C™([0,T]; L(R™;R™)), we remark that the matrix [A|B] is well defined and is an element of
CL([0,T], L(R™™ R™). We will use the notation B; =: (bi]...|b%,) for all i € {0,...,n — 1}. To prove
Theorem 1.2, we will use the following lemma of [16]

Lemma 4.1. Assume that max{rank [A|B](t) : t € [0,T]} = s < n. Then there exist Ty, Ty € [0,T],
with Ty < Ty, r € {1,...,m} and sequences (s;)i1<j<r C {1,...,n}, with >_._, s; = s, and (Ij)1<j<r C
{1,...,m} such that, for everyt € [Ty, T1], the set

B(t) = [ J{bg (£). b7 (1), ... b7 (D)}, (4.1)

is linearly independent, spans the columns of [A|B](t) and satisfies

J
0= (005 (1) + 02 OB () + o+ 00 O, (1)) (42)
k=1

for every t € [To,Th] and j € {1,...,r}, where

0775 (1), 05 (1), 090" () € CM([To, Th)).

I Vsj,sp—1
With exactly the same argument for the proof of the previous lemma, we can obtain the
Lemma 4.2. If rank [A|B](T) = s, then the conclusions of Lemma 4.1 hold true with Ty = T.

Proof of Theorem 1.2. Let yo € L*(Q)™ and s be the rank of the matrix [A|B](T). As in the proof of
the controllability by one force with constant matrices, let X being the linear space spanned by the
columns of the matrix [A|B](T"). We consider B = B(t) the basis of X defined in (4.1).

As in the constant case, we will prove that we need only r forces to control System (1.1)
that is we study the partial null controllability of System (3.24) with the coupling matrix A(t) €
C"1([0,T); L(R™)) and the control matrix B(t) = (By, (t)|B,(t)|---|Bi,.(t)) € C*([0,T]; L(R",R™)).
If we define M as the matrix whose columns are the elements of B(t), i.e. for all ¢ € [0, T

M(t) = (mig(ODrcicni<ies == (05 OB O (O] O 04 (1))
we can remark that
rank II, M (T) = rank II,[A|B](T) = p. (4.3)
Indeed, using (4.2),

J

B (1) = D (0 6 OB (1) + 02 (OTLbY (1) + 4+ 620 (OILbE (1)) -
k=1

Case 1 : p=s. As in the constant case, we want to apply a change of variable P to the solution y
to System (3.24). Let us define for all ¢ € [0, 7] the following matrix

P(t) := (b (£)[6 (1)) [0 3 (O] 1B (£)1B7 (8)]...1b5, 3 ()| Psga ()| Pa(1)) € LR™),  (4.4)
where for all i € {s+1,...,n}, P, is solution in C! ([0, T])" to the system of ordinary differential

equations

{ 8th(75) = A}Dl(t) in [OvT]a (45)

B(T) = €.
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Using (4.4) and (4.5), P(T') can be rewritten

P 0
ry=( g 0. (16)
where Pyy := TL,(b5 (T)[b} (T)]... |64

b (D) bl (D)W (D)o, (T)) € L(RS) and Py €
L(R"* R®). Using (4.3), P11, and thus P(T), are invertible. Furthermore, since P is
continuous on [0, T, there exists a T* € [0,T') such that P(t) is invertible for all ¢t € [T, T].

As previously it is sufficient to prove the result for T7* = 0. Since P(t) € C*([0,T], L(R"™))
and is invertible on the time interval [0, T, again, for a fixed control v € L?(Q7)", y is the
solution to System (3.24) if and only if w := P(t)~!y is the solution to System (3.3) where
C, D are given by

C(t) == —P~Y(t)8,P(t) + P~*(t)AP(t) and D(t):= P~1(t)B,

for all t € [0,T]. Using (4.2) and (4.5), we obtain

—0uP(t) + AP(t) = (b7 (£)[b (£)]---[6 ()]...[by (£)[B5 ()]---[BL: (£)]0]..]0),
_ Ciu 0O
= P(t) < 00 ) in [0, 7],
P(t)es, = by in [0, 7],
‘ (4.7)
where S; =1 +Z;;11 s;for 1 <i<r,
Cu Ciz -+ Cir
- 0 Co -+ Co
Cn = . . ) . € L(R?), (4.8)
0 0 - O,
and for 1 < < j < r, the matrices C;; € C°([0,T]; € L(R%,R%)) are given here by
lj,,li l'vli
00 0 ... 6% 00 0 ... 9?;’19
1 0 ... obh 0 0 ... 0]
Cu=]0 1 0 ... 055 and Gy = | 0 0 ... 0% | forj>i
00 ... 1 Hi"i’fsii_l 0 0 0 iJJ 7,l;r )
(4.9)
Then .
C= ( CSI 8 ) and D = (eg, |...|es, ). (4.10)

Using Theorem 2.1, there exists v € L?(Qr)" such that the solution to System (3.3) satisfies
w1 (T) = ... = ws(T) =0 in Q. Moreover, the equality (4.6) leads to

y(T) = (y1(T), ..., ys(T))" = Pr1(wi(T), ..., ws(T))" =0 in Q.

Case 2 : p < s. The same method as in the constant case leads to the conclusion (see § 3.1).

The m,-approximate controllability can proved also as in the constant case.
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5 Partial null controllability for a space dependent coupling
matrix

All along this section, the dimension N will be equal to 1, more precisely Q := (0, 7) with the
exception of the proof of the third point in Theorem 1.3 and the numerical illustration in Section 5.3
where Q := (0,27). We recall that the eigenvalues of —A in Q with Dirichlet boundary conditions
are given by py := k? for all k > 1 and we will denote by (wy)r>1 the associated L?-normalized
eigenfunctions. Let us consider the following parabolic system of two equations

Oy=Ay+az+1,u in Qr,
8t2: = Az in QT,
y=2=0 on X,
y(0) =yo, 2(0) =20  inf,

(5.1)

where yo, 2o € L%(2) are the initial data, u € L%(Q7) is the control and the coupling coefficient a
is an element of L>°(£2). We recall that System (5.1) is II1-null controllable, if for all 3°, 20 € L?(Q),
we can find a control u € L?(Qr) such that the solution (y,2) € W(0,T)? to System (5.1) satisfies
y(T)=01in Q.

5.1 Example of controllability

In this subsection, we will give an example of II;-null controllability for System (5.1) with the
help of the method of moments initially developed in [11]. As already mentioned, we suppose that
Q := (0, ), but the argument of Section 5.1 can be adapted for any open bounded interval of R. Let
us introduce the adjoint system associated to our control problem

0,6 = A¢ in (0,) x (0,7),
—0p = Ay + ag in (0,7) x (0,7, (5.2)
$(0) = ¢(m) = ¥(0) = ¢(m) =0 on (0,T), '
¢(T) = ¢o, w(T) =0 in (077T)7
where ¢o € L?(0,7). For all k > 1, if we consider ¢q := wy, in dual System (5.2), we get
™ L ™ T
/0 wry(T) dz — /0 $(0)yo dx — /0 ¥(0)zp dz = /0 /wqﬁu dx dt, (5.3)

Since (wy)k>1 spans L?(0, ), System (5.1) is I1; -null controllable if and only if there exists u € L?(qr)
such that for all ¢9 = wy, € L?(0,7), k > 1; the solution to System (5.2) satisfies the following equality

_/07r ¢(0)y0dm—/0ﬂw(0)zodx:/OT/wqﬁuda:dt, (5.4)

where (¢, 1) is the solution to dual System (5.2) for the initial data ¢y = wy.
Let us consider ¢y € L%(0,7) defined by

Po(x) = Z Powy(z) for all z € (0,7).
k=1
With this initial condition ¢q is associated the solution (¢,) to adjoint System (5.2):

e_kz(T_t)qbgwk in (0,7)

M8

o(t) =

b
Il

1
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5.1 Example of controllability

for all ¢t € [0, T]. If we write:
= Yi(t)wy(z) for all (z,t) € (0,7) x (0,T),

then a simple computation leads to the formula
ek (T—t) _ o—1*(T—1)

—kZ 12

vp(t) = > ap@) forall k > 1, t € (0,T), (5.5)
I=1

where, for all k,] € N*,
= / oww; dx. (5.6)
0

In (5.5) we implicitly used the convention: if I = k the term (e=* (T=0) — = (T=0) /(_2 4+ [2) ig
replaced by (T'— t)e_kz(T_t). With these expressions of ¢ and v, the equality (5.4) reads for all k > 1

—kT —

l2
A _ 1.2
—e " Ty — Z 2 +12 —————ap?) = / / R =Dy, (@) u(t, x) da dt. (5.7)

>1

In the proof of Theorem 1.3, we will search a control w expressed as u(z,t) = f(z)y(t) with

Y(t) = > p>17ak(t) and (gx)r>1 a family biorthogonal to (e=+°1)
following lemma

k>1. Thus, we will need the two

Lemma 5.1. (see [5]) There exists f € L?*(0,m) such that Supp f C w and for all € > 0 one has
égf; fresk* >0, where, for all k € N*, fi, == Jo fwy da.

Lemma 5.2. (see [11]) There exists a biorthogonal sequence (qx)k>1 C L*(0,T) to (ekzt)k>1 that is

2
(g, € ) 20.1) = Ot

Moreover, for all € > 0, there exists C. > 0, independent of k, such that
2
llarllz20,1) < C.e®F Yk >1.

Proof of the second point in Theorem 1.3. As mentioned above, let us search the control u of the
form u(z,t) = f(x)y(t), where f is as in Lemma 5.1. Since fj # 0 for all £k € N*, using (5.7), the
I1;-null controllability of System (5.1) is reduced to find a solution v € L?(0,T) to the following
problem of moments:

2 2
o k2T _ 1T

T
— _ e
/ ~(T — t)e*kzt dt = fit [ —e kQTyg _ Z kQ——&ﬁlaklle = My Vk > 0. (5.8)
0 >1

The function (t) := > 4, Mkqr(T — ) is a solution to this problem of moments. We need only to
prove that v € L?(0,T). Using the convexity of the exponential function, we get for all k € N*,

efk2T o 67l2T k 7k2T N 6712T oo ekaT o eflr"T
_— = _— _|_ -
51 —k2 +l2 |akl| ; _kg +12 |akl| l:%%—l —k2 +12 |akl|

k 00 5 (59)
< ZTG Pl + Y Te ™ 7T|a|
=1 I=k+1
= A1 + A2
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5.2 Example of non controllability

Let us suppose for the moment that 7' < Cy. With Condition (1.12) on « we deduce that

k
A< OT Y e e « 0y Tke T (5.10)
=1
and
Ay < C’lTe_sz > e—Ca2(®—K?)
I=k+1
— O, Te*T i o= Ca((G+k+1)—k?)
=0 (5.11)
2 .
< O1Te FT Y (emC2)d
j=0
—k2T
é ClTe m

Let € € (0,1). Combining the three last inequalities (5.9)-(5.11), there exists k; € N* such that for
all k> ki,
e—k’T _ —I°T

_k-2 + l2 |akl| g Ck@ikQT < Csei(lie)sza (512)

2.

I>1

where, here and thereafter, C. is a constant which does not depend on k. Then, with Lemma 5.1,
(5.8) and (5.12), there exists ko > kq such that for all k& > ko

ook T (€_k2T||y0||L2(O,7T) + Cﬁe_(l_s)sz”zOHL2(O,7r))

<
2
< Cse—(1—28)k T(

llyollz20,x) + 20l L2(0,7))-

Thus, using Lemma 5.2, for ¢ < 1/3,

_ _ 2
IVlz2 0.7y < (Ce+Ce > e M3 ([lyo | p20.m) + |20l 22(0,m)) < 00
k>ko

If T > C5, we conclude with the same argument that was ending of the proof of Theorem 1.1 with
one force (see Section 3.1, end of Case 1). More precisely, we consider System (5.1) in (0,7 — C5)
with 4 = 0in w x (0,7 — Cs), and applying the above strategy we construct a control in (7' — Cs,T)
such that the solution to System (5.1) in (T'— Cs, T satisfies y(7') = 0 in (0, 7). O

5.2 Example of non controllability

In this subsection, to give an example of non II;-null controllability of System (5.1), we will first
study the boundary controllability of the following parabolic system of two equations

Oy = Ay + az %n Qr = (0,m) x (0,7,

atZ = 62’ B B B m QT, (513)
y(0,t) = v(t), y(m,t) = 2(0,t) = z(m,t) =0 on (0,7),

y(ﬂj,O) = yO(z)7 Z(I,O) = Zo(l’) in := (O,ﬂ'),

where yo, 20 € L?(0,) are the initial data, v € L?(0,7) is the boundary control and o € L>(0, ).
For all K > 1, we define the set
Ex :=span(wy : k < K). (5.14)

For any given 4o, 20 € L?(0,7) and v € L?(0,T), System (5.13) has a unique solution in L?(Q7)? N
CO([0, T); H=1(Q)?) (defined by transposition; see [12]).
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5.2 Example of non controllability

System (5.13) is IIy-null controllable if and only if there exists a constant C such that for all
¢o € L*(0, ) the solution to adjoint System (5.2) satisfies the following observability inequality

T T T
/0 $(0) dm+/0 (0) d:c<0/0 6.(0,1)2 dt. (5.15)

In the same way as in (5.7), if System (5.13) is II;-null controllable, there exists Cops > 0 such
that for a K > 0 and all ¢g := Zszl ®wy, € Ex, the solution (¢,v) to the adjoint System (5.2)

satisfies
K 5 K o=k°T _ =0T 2
—2k%T (1012 - 0 —k*(T— o
e (¢k‘) +Z Z—]{;Q——makl(ﬁl < obs/ Zke ( dt. (516)
k=1 k21 li=1
THEOREM 5.1. Let T > 0 and let « be the function of L*°(0,7) defined by
1
Z ]—2 s(15jx) for all x € (0, ). (5.17)
j=1

Then System (5.13) is not 111 -null controllable.
Proof. This proof is inspired from [17]. To understand why the number «15» appears in the definition

(5.17) of the function «, we will consider for all z € (0,7)

— 1
ax) = Z = cos(Gjzx) for all z € (0,7),

—

Jj=

where G € N*. The idea is to prove that there exist a sequence of initial conditions (¢ ar)men and
two positive constants v; and 7, such that, for all M € {2, ...}, the solution (¢ar, ar) to the adjoint
System (5.2) satisfies

T T
/0(</5M)aa(07t)2dt<% and /0 Var(0)2 dz > A”;S

So that, for a sufficiently large M, the observability inequality (5.15) cannot be true. Let us take
M € {2,...}. We will search a sequence of initial conditions of the form

(bO,M —( O ¢GM+17¢GM+27' 7¢GM+m7 7"')7

for a fixed m € N, independent of M. The value of m will be determined in the proof. First, we set

T GM+m g2 _2T 2
2 € —¢ 0,M
A= / Ym(0)” dr = Z Z _kz—wakmﬁl’ (5.18)
0 k>1[I=GM+1
and
T 7| GM+m 2
=/ (6ar)2(0,)*d / S ke MITOGM ar, (5.19)
0 k=GM+1

Estimate for (5.19)
We can rewrite B as follows:

2

T m T
B = / GM—I—]) —(G®*M?4+2G M j+32)(T—t) ¢GM+] dt :/ 6_2G2M2(T—t)gM(t) dt, (5.20)
0
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5.2 Example of non controllability

where, for all ¢ € [0,T], gar(t) := far(t)? with

m . _ . -2 _
far(t) == Z(GM-i-j)@ (2GMj+35>)(T t)¢%1\1\/41+]
j=1

Let (¢%%+1, QS%’%JFQ, e QS%%JFm) be a non nontrivial solution of the following homogeneous linear
system of m — 1 equations with m unknowns

= (GM +j)(2GMj + j*)'pgpr; =0, for all 1 €{0,...,m —2}. (5.21)
j=1

Using Leibniz formula
l
l k) p(1—k
g§}=2< )f< i
k=0
we deduce that
g (T) =0, for all 1€{0,...,2m —4}. (5.22)

Using (5.22), after 2m — 3 integrations by part in (5.20), we obtain

_ _2G2 M2 T —2G?*M?*(T—t)

g 0)e 2G*M=T e

p - 9l )2 — gy (D)t
2G2 M o (—2G?2M?)

(2m=5) 1) .

om—a (1) 0)e—2G*M*T T —2G*M*(T—t)
957 (0) + € — g
o (_2G2M2)2m 39M

= l;) (—2G2M2)i+ 1
By linearity, in (5.21) we can choose ¢2§]\N4{+1, ey (b%’%er such that
%M loo = 1. (5.23)

Thus, for all I € N and all ¢ € [0, 7], the following estimate holds

MN

ol = | () Wen o)
< 2 (4 )| B ieeuy+ precomstrng
=k )|

m .
Z(GM+J)(2GMJ+j2)l7k67(QGMJ+J (T t)¢GM+J

(GM + m)*m? > ( j>_(2GMm +m?)!

<
< CM'*2,

where C' does not depend on M. Then, since ||¢% | o, = 1, there exist C,7 > 0 such that

m— (2m—3)
B < 6—2GZM2TQZ4 H92 H(XZ + T||9 Hio
=0 (2G MQ) +1 (2G2M2)2m 3
M2 x C C
< € ZE:O Ml + ~emos M2m—5
1 C

2
< CMfQGfTM

1— M-2 + M2m=5"
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5.2 Example of non controllability

Thus there exists v; > 0 such that we have the estimate

il

B g M2m75 2

where v; does not depend on M.
Estimate for (5.18)
We recall that for all z € (0, )

i% s(Gj).

j=1 J

The function « is of the form a(z) = > «, cos(pz) for all z € (0, 7), with

p=0

o jiz if p=Gj with j € N*,
L 0 otherwise.

From the definition of ay; in (5.6), there holds for all k,! € N*

o = Sy — arg).

Let k€ {l,...m}andl € {GM +1,...GM +m}. Wehave k+1€ {GM +2,...,

if we choose
G>=22m+1,

using (5.25), we obtain
agy =0

and

1 .
Ollk_ll _ W lf |k_l|:GM,
0 otherwise.

So that we have the following submatrix of (ck)1<k,i<GM+m:

1

(Ol)1<hgcm, GMA1<ISGMA4m = mfﬂw

According to (5.23), there exists k; € {1,...,m} such that

|¢GM+k1| =1
Furthermore, since m < GM (see (5.26)),
|e—k§T _ e—(GM—i—kl)zT‘ > ‘e—sz _ e—G2M2T|
and
(GM +k1)? — ki < (GM +m)* — 1.
Then, with the help of (5.27)-(5.30) in (5.18) we bound A

2

e*’“fT o ef(GMJrkl)ZT 1
A 2
—k;f + (GM + k1)?2 2M?
- efm2T . 67G2M2T 1 2
~ | (GM +m)2 -1 2M?

(5.24)

(5.25)

GM + 2m}. Thus

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)
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5.2 Example of non controllability

Thus, there exists 75 > 0 such that,
Y2
A 2 W?
where v, depends on G and m but does not depend on M and k;.
We conclude from (5.24), (5.26) and (5.31), that for all m, G € N* with G > 2m + 1, there exist
Y1, v2 > 0 such that

(5.31)

Y1 Y2

S s and A >

Thus, if we choose
m >7 sothat G > 15,

the observability inequality (5.16) is not satisfied for M large enough.

Construction of an initial condition
Let us fix m = 7 and G = 15. We want to construct an initial condition ¥y, zg such that, for «
defined in (5.17) and all control v € L?(0,T) the solution y to System (5.13) can not be identically
equal to zero at t =T Let us define (¢o ar)ar>2 as

0,M 0,M
¢0,M = (07 -"707 ¢15M+17 cey ¢15M+77 07 )7

where (¢(1)’5AA4/1+1,...,¢(1)’5AA44+7) is a nontrivial solution to linear System (5.21). Using (5.28), for all
M > 2, there exists k1(M) € {1,...,7}, such that \¢(1)5A]([4+k1(M)| = 1. We can extract a subsequence
(M;)jen of {2, ...} such that \qﬁggﬂj\%Jrkl\ =1 for a k; independent of M;.

Let yo := 0 and 2 := wy,. Let us suppose that, for this initial condition yo and zq, System (5.17)

is IT;-null controllable to the boundary, that is there exists a control v € L?(0,T) such that y(T") = 0.
Thus, for all j € N*, we have the equality

™ ™ T
[ w0+ [ zous0)de = [ o(o)6.00.0) at (5:32)
0 0 0
where (¢;,1;) is the solution to
_8t¢j = A¢] in (0777) X (OvT)y
—0j = A + ag; in (0,m) x (0,T),
$;(0) = ¢;(m) = ;(0) = 1h;(m) =0 on (0,T),
6;(T) = bo,n;, ¥;(T) =0 in (0,7).
We remark that, for all j € N*,

Since zyp = wy,, the equality (5.27) leads to

e—kIT _ o—(GM;+s)2T

7
2.

s=1

’/ﬂ Zo’l/Jj (0) d:L‘
0

Oy My +sDeins
—k? + (GM; + 5)? 1,G M GM;+s

e—KIT _ o—(GM;+k1)°T 1
—k} + (GM; + k1)? M|

Then for all j € N*

0 j
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5.3 Numerical illustration

with 72 determined in (5.31). And, using (5.24) we have

T 1/2
< lollzzgo.m (/ <<¢j>x<o,t>>2dt> < Vlbleon o

/2
M;

T
/0 o(t) () (0. ) dt

Combining (5.33), (5.34) and (5.35), we obtain a contradiction with (5.32). Thus, for this initial
condition yg and zp, we can not find a control v € L%(0,T) such that the (y, z) solution to system
(5.17) satisfies y(T) =0 in (0, 7).

O
Proof of the third point in Theorem 1.8. Using Theorem 5.1, the following system
For given (pg,qo) : (0,7) — R2, v: (0,T) — R,
Find (p,q) : (0,m) x (0,T) — R? such that
8tp = Ap + aq in (07 7T) X (Ov T)a (5 36)
dug = Aqg in (0,7) x (0,7), :
p(m,t) = v(t), p(0,t) =¢q(0,t) =q(m,t) =0 on (0,T),
p(z,0) = po(x), q(x,0) = go(x) in (0, )

is not IT;-null controllable, that is there exist initial conditions pg,qo € L?(0,7) such that for any
control v € L?(0,T) the solution (p,q) to System (5.36) is not identically equal to zero at time T.
There exist two sequences (p)y, and (¢) such that

po(z) = Zpgwk(x) and ¢qo(z) = Z qhwy,(x) for all z € (0, 7).
k>1 k>1

We consider now Py, G, € L*(0,27) defined by

Do(z) = Zpgwk(as) and go(z) = Z qrwy(z) for all = € (0, 27).
k>1 k>1

Let w C (0, 7). Suppose now that the system

For given (yo,20) : (0,27) — R?, w: (0,27) x (0,T) — R,
Find (y, 2) : (0,27) x (0,T) — R? such that

8ty = Ay +az+1,u in (07 271’) X (07T), (5 37)
Oiz = Az in (0,27) x (0,T), ’
y(0,t) = y(2m,t) = 2(0,t) = z(2m,t) =0 on (0,T),

y(x,0) = yo(x), z(x,0) = zo(x) in (0,27)

is II;-null controllable, more particularly for the initial conditions y(0) = p, and z(0) = g, in (0, 27),
there exists a control u in L2((0,27) x (0,7T)) such that the solution (y, z) to System (5.37) satisfies
y(T) = 0 in (0,2m). We remark now that (p,q) := (¥|(,x),2l(0,x)) is a solution of (5.36) with
(p(0),4¢(0)) = (po,q0) in (0,7), v(t) = y(m,t) in (0,T) and satisfying p(T) = 0 in (0,7). This
contradicts that for any control v € L?(0,T') the solution (p, q) to System (5.36) can not be identically
equal to zero at time T. O

5.3 Numerical illustration

In this section, we illustrate numerically the results obtained previously in Sections 5.1 and 5.2.
We adapt the HUM method to our control problem. For all penalty parameter ¢ > 0 we compute
the control that minimizes the penalized HUM functional F. given by

1 1
Fe(u) = §||UH%2(wx(o,T)) + ?EHZ/(T; y07U)||2L2(Q),
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5.3 Numerical illustration

where y is the solution to (5.1). We can find in [7] the argument relating the null/approximate
controllability and this kind of functional. Using the Fenchel-Rockafellar theory (see [10] p.59) we
know that the minimum of F. is equal to the opposite of the minimum of .J., the so-called dual
functional, defined for all pq € L?(Q2) by

Je(po) = %H@HQB(W) + %”@0”%2@7-) + (Y(T390,0), ¢0) £2(2)»

where ¢ is the solution to the backward System (5.38). Moreover the minimizers u. and ¢, of
the functionals F. and J. respectively, are related through the equality u. = 1,p., where ¢, is the
solution to the backward System (5.38) with the initial data ¢(T') = ¢.0. A simple computation
leads to

V(o) = Apo + o + y(T5y0,0),

with the Gramiam operator A defined as follows
A: L2(Q) — L*(Q),
vo  — w(T),
where w is the solution to the following backward and forward systems
—Op=Ap inQr,

=0 on X, (5.38)
o(T) = o in Q

and
atw =Aw+ ]]-wSD in QT7
w =0, on X, (5.39)
w(0)=0 in Q.

Then the minimizer u. of F; will be computed with the help of the minimizer ¢ . of J. which is the
solution to the linear problem
(A +¢)po.e = —y(T;90,0).

Remark 1. The proof of Theorem 1.7 in [7] can be adapted to prove that

(i) System (5.1) is II;-null controllable if and only if sup ( inf FE> < o0,
e>0 \L?*(wx(0,1))

(if) System (5.1) is IT;-approximately controllable if and only if y.(7T") — 0,
E—

where y. is the solution to System (5.1) for the control ..

System (5.1) with T = 0.005, €2 := (0,27), w := (0,7) and yo := 100sin(x) has been considered.
We take the two expressions below for the coupling coefficient « that correspond respectively to Cases
(1)-(2) and (3) in Theorem 1.3:

(a) a(z) =1,
(b) afz) = Z>:0 p%cos(lf)px).

Systems (5.1) and (5.38)-(5.39) are discretized with backward Euler time-marching scheme (time step
dt = 1/400) and piecewise linear Lagrange finite elements on a uniform mesh of size h successively
equal to 27/50, 27/100, 27/200 and 27/300. We follow the methodology of F. Boyer (see [7]) that
introduces a penalty parameter ¢ = ¢(h) := h*. We denote by Ej,, U, and L%,(0,T;U},) the fully-
discretized spaces associated to L?(Q), L?(w) and L?(gr). F/! is the discretization of F. and
(y?"”, z?"st, ug"gt) the solution to the corresponding fully-discrete problem of minimisation. For more
details on the fully-discretization of System (5.1) and Gramiam A (used to the minimisation of F.),

we refer to Section 3 in [7] and in [15, p. 37] respectively. The results are depicted Figure 1 and 2.
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5.3 Numerical illustration

v |y (T)||5, (slope=2.23)

€

a—a w1z 010, (slope=—0.08)

oo infi p2 o, Fi () (slope=—0.13)

10 T

10°

Figure 1: Distance to the target [|y*"(T)| s,, norm of the control [[uf*||12 (o r.v,) and minimal

value of the functional inf,n.seer2 (0,1.0,) F&% (u°) in Case (a).

v |y (D], (slope=0.31)

= |[u |12 o1y, (slope=—0.71)

o—e inf i 2 (U,T;UA)F:”‘& (u"%)  (slope =—3.26)

h.,5t

2T || g, , norm of the control ||u?"5t||L§t(0,T;Uh) and minimal

Figure 2: Distance to the target ||y
value of the functional inf,n.secr2 (0. 7.0,) Fhot (419 in Case (b).
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As mentioned in the introduction of the present article (see Theorem 1.3), in both situations (a)
and (b), System (5.1) is II;-approximately controllable and we observe indeed in Figure 1 and 2 that
the norm of the numerical solution to System (5.1) at time T' (—V—) is decreasing when reducing the
penality parameter ¢ = h?.

In Figure 1, the minimal value of the functional F"°" (—e —) as well as the L?-norm of the
control u/%* (—A—) remain roughly constant whatever is the value of h (and ¢ = h*). This appears
in agreement with the results (1)-(2) of Theorem 1.3, that state the IT;-null controllability of System
(5.1) in Case (a) of a constant coupling coefficient «v (see Remark 1 (i)). Furthermore the convergence
to the null target is approximately of order 2 (slope of 2.23). This is in agreement with the convergence
rate established in [7, Proposition 2.2], which should be h? for ¢ = h* (this result should be in fact
slightly adapted to consider II;-null controllability).

At the opposite, in Figure 2, the minimal value of the functional Fsh"” as well as the L?-norm
of the control u/t are strongly increasing whenever h (and €) become smaller. This coincides with
point (3) of Theorem 1.3: for the chosen value of the coupling coefficient « in Case (b), no II;-null
controllability of System (5.1) is expected. Moreover, convergence to the null target is quite slow,
with a slope of approximately 0.31.

Acknowledgements. The authors thank Assia Benabdallah for her interesting comments, sug-
gestions and Franck Boyer for his computer program.
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