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CONTINUITY OF THE ASYMPTOTIC SHAPE OF THE

SUPERCRITICAL CONTACT PROCESS

OLIVIER GARET, RÉGINE MARCHAND, AND MARIE THÉRET

Abstract. We prove the continuity of the shape governing the asymptotic
growth of the supercritical contact process in Zd, with respect to the infection
parameter. The proof is valid in any dimension d ≥ 1.

1. Introduction

The contact process is a famous interacting particle system modelling the spread
of an infection on the sites of Z

d. The evolution depends on a fixed parameter
λ ∈ (0, +∞) and is as follows: at each moment, an infected site becomes healthy at
rate 1 while a healthy site becomes infected at a rate equal to λ times the number of
its infected neighbors. There exists a critical value λc(Zd) such that the infection,
starting from the origin, infinitely expands with positive probability if and only if
λ > λc(Zd).

Durrett and Griffeath [4] proved that when the contact process on Z
d starting

from the origin survives, the set of sites occupied before time t satisfies an asymp-
totic shape theorem, as in first-passage percolation. In [6], two of us extended this
result to the case of the contact process in a random environment. The shape the-
orem can be stated as follows: provided that λ > λc(Zd), there exists a norm µλ

on R
d such that the set Ht of points already infected before time t satisfies:

Pλ

(

∃T > 0 : t ≥ T =⇒ (1 − ε)tS(λ) ⊂ H̃t ⊂ (1 + ε)tS(λ)
)

= 1,

where H̃t = Ht +[0, 1]d, S(λ) is the unit ball for µλ and Pλ is the law of the contact
process with parameter λ, starting from the origin and conditioned to survive. The
growth of the contact process is thus asymptotically linear in time, and governed
by the shape S(λ).

The aim of this note is to prove the continuity of the map λ 7→ S(λ). More
precisely, we prove the following result:

Theorem 1. For every λ > λc(Zd), lim
λ′→λ

sup
x∈Sd−1

|µλ′(x) − µλ(x)| = 0,

where S
d−1 =

{

x = (xi)1≤i≤d ∈ R
d : ‖x‖1 =

d
∑

i=1

|xi| = 1

}

.

It is then easy to deduce the following continuity for the asymptotic shape.
Denote by dH the Hausdorff distance between non-empty compact sets in R

d. For
every λ > λc(Zd),

lim
λ′→λ

dH(S(λ′), S(λ)) = 0.
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Continuity properties for asymptotic shapes in random growth models have al-
ready been investigated. In first passage percolation, perhaps the most famous
random growth model, Cox and Kesten [1, 2, 10] proved that the time constant is
continuous with respect to the distribution of the passage-time of an edge. In a
forthcoming paper, Garet, Marchand, Procaccia and Théret [8] extend their result
to the case of possibly infinite passage times by renormalization techniques.

In these two cases, thanks to a good subadditivity property, the quantity whose
continuity is studied appears as an infimum of a decreasing sequence of continuous
functions, which gives quite easily one half of the continuity.

Because of the possibility of extinction of the contact process, the subadditivity
properties are not so obvious and we thus use the essential hitting time presented
in Garet–Marchand [6].

Note that the one-dimensional case is simpler because the growth of the super-
critical contact process in dimension 1 is characterized by the right-edge velocity:
its continuity is proved in Liggett [11], Theorem 3.36. See also Durrett [3] for an
analogous result about 2D oriented percolation.

In Section 2, we introduce the notation, build contact processes with distinct
infection parameters on the same space thanks to the Harris construction and recall
the definition and properties of the essential hitting time introduced in [6]. Section 3
is devoted to the proof of the left-continuity, while in Section 4 we prove the right-
continuity.

2. Notation and known results

We work on the grid Z
d, with d ≥ 1, and we put an edge between any pair of

sites at distance 1 for ‖.‖1. We denote by E
d the set of these edges.

To define the contact process, we use the Harris construction [9]. It allows to
couple contact processes starting from distinct initial configurations and distinct
parameters λ ∈ (0, λmax], where λmax > 0 is fixed and finite, by building them from
a single collection of Poisson measures on R+.

2.1. Construction of the Poisson measures. We endow R+ with the Borel σ-
algebra B(R+), and we denote by M the set of locally finite counting measures

m =
∑+∞

i=0 δti
. We endow this set with the σ-algebra M generated by the maps

m 7→ m(B), where B describes the set of Borel sets in R+.
As the continuity is a local property, it will be sufficient in the sequel to build

a coupling for contact processes with parameters in (0, λmax], for a fixed and well
chosen λmax > 0. We define the measurable space (Ω, F) by setting

Ω = ME
d × MZ

d × ([0, λmax]N)E
d

and F = M⊗E
d ⊗ M⊗Z

d ⊗ ([0, λmax]⊗N)⊗E
d

.

On this space, we consider the probability measure defined by

P = P⊗E
d

λmax
⊗ P⊗Z

d

1 ⊗ (U([0, λmax])⊗N)⊗E
d

,

where, for every λ ∈ R+, Pλ is the law of a Poisson point process on R+ with
intensity λ and U([a, b]) is the uniform law on the compact set [a, b].

Fix an edge e. Denoting by (Se
i )i≥1 the atoms of ωe, we build the classical

coupling between the Poisson measures of the infection processes with different
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parameters λ ∈ (0, λmax]. Define

me
λ = mλ(ωe, (Ue

i )i≥1) =

+∞
∑

i=1

11{Ue

i
≤ λ

λmax
}δSe

i
.

Under P, the random variable mλ is a Poisson point process with parameter λ. We
then define, for λ ≤ λmax, the application

Ψλ : Ω −→ ME
d × MZ

d

((ωe)e∈Ed , (ωz)z∈Zd , (U i
e)e∈Ed,i≥1) 7−→ ((mλ(ωe, (Ue

i )i≥1))e∈Ed , (ωz)z∈Zd).

The law of Ψλ under P is then

Pλ = P⊗E
d

λ ⊗ P⊗Z
d

1 .

We thus recover infection processes, indexed by E
d, with parameter λ and recovering

processes, indexed by Z
d, with parameter 1. Note that the Poisson measures for

recoverings, (ωz)z∈Zd , do not depend on λ. The following lemma will be useful to
compare the evolution of two contact processes with different parameters.

Lemma 2. Let t > 0 and let S be a finite subset of Ed. Assume 0 < λ′ ≤ λ ≤ λmax

and note

Idem(S, t, λ, λ′) = ∩
e∈S

{

me
λ [0,t] = me

λ′ [0,t]

}

.

For each ε > 0, there exists δ = δ(S, t, ε) > 0 such that

∀λ, λ′ ∈ (0, λmax] |λ′ − λ| ≤ δ ⇒ P(Idem(S, t, λ, λ′)) ≥ 1 − ε.

Proof. Let λ, λ′ ∈ (0, λmax], and assume without loss of generality that λ ≤ λ′.
For each e ∈ E

d and t > 0, set

De
t =

+∞
∑

i=1

11{ λ′

λmax
<Ue

i
≤ λ

λmax
}11{Se

i
≤t},

then E(De
t ) =

λ − λ′

λmax
E(ωe([0, t])) =

λ − λ′

λmax
λmaxt = (λ′ − λ)t.

Now,

P(Idem(S, t, λ, λ′)c) ≤
∑

e∈S

P(me
λ [0,t] 6= me

λ′ [0,t])

≤
∑

e∈S

P(De
t ≥ 1) ≤

∑

e∈S

E(De
t ) ≤ |S|t(λ′ − λ),

so we can take δ = 1/(t|S|ε). �

2.2. Graphical construction of the contact process. This construction is ex-
posed in all details in Harris [9]; we just give here an informal description. Suppose
that λ ∈ (0, λmax] is fixed. Let ω = ((ωe)e∈Ed , (ωz)z∈Zd , (U i

e)e∈Ed,i≥1) ∈ Ω. Above

each site z ∈ Z
d, we draw a time line R+, and we put a cross at the times given

by ωz, corresponding to potential recoverings at site z. Above each edge e ∈ E
d,

we draw at the times given by mλ((ωe)e∈Ed , (U i
e)e∈Ed,i≥1) an horizontal segment

between the extremities of the edge, corresponding to a potential infection through
edge e (remember we fix the infection rate λ).

An open path follows the time lines above sites – but crossing a cross is forbidden
– and uses horizontal segments to jump from a time line to a neighboring time line:
in this description, the evolution of the contact process looks like a percolation
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process, oriented in time but not in space. For x, y ∈ Z
d and t ≥ 0, we say that

ξλ,x
t (y) = 1 if and only if there exists an open path from (x, 0) to (y, t), then we

define:

ξλ,x
t = {y ∈ Z

d : ξλ,x
t (y) = 1},

∀A ∈ P(Zd) ξλ,A
t =

⋃

x∈A

ξλ,x
t .(1)

For instance, we obtain

(A ⊂ B, λ ≤ λ′) ⇒ (∀t ≥ 0 ξλ,A
t ⊂ ξλ′,B

t ).

Harris proved that under P, or under Pλ, the process (ξλ,A
t )t≥0 is the contact

process with infection rate λ, starting from initial configuration A.

2.3. Translations. For t ≥ 0, we define the translation operator θt on a locally
finite counting measure m =

∑+∞
i=1 δti

on R+ by setting

θtm =
+∞
∑

i=1

11{ti≥t}δti−t.

The translation θt induces an operator on Ω, still denoted by θt:
for every ω = ((ωe)e∈Ed , (ωz)z∈Zd , (U i

e)e∈Ed,i≥1) ∈ Ω, we set

θt(ω) = ((θtωe)e∈Ed , (θtωz)z∈Zd , (U i+ωe([0,t])
e )e∈Ed,i≥1).

Since the Poisson point processes are translation invariant and ωe([0, t]) is indepen-
dent from the (U i

e)’s, P and Pλ are invariant under θt.
There is also a natural action of Zd on Ω, which preserves P and Pλ, and which

consists in changing the observer’s point of view: for x ∈ Z
d, we define the trans-

lation operator Tx by setting:

∀ω ∈ Ω Tx(ω) = ((ωx+e)e∈Ed , (ωx+z)z∈Zd , (U i
x+e)e∈Ed;i≥1),

where x + e the edge e translated by vector x.

2.4. Notation and classical estimates for the contact process. For a set
A ⊂ Z

d, we define the life time τA
λ of the process starting from A by

τA
λ = inf{t ≥ 0 : ξλ,A

t = ∅}.

If y ∈ Z
d, we write τy

λ instead of τ
{y}
λ and we simply write τλ for τ0

λ . We also note

{τλ = +∞} = {0
λ↔ ∞}.

The critical parameter for the contact process in Z
d is then

λc(Zd) = inf{λ > 0 : Pλ(τλ = +∞) > 0} ∈ (0, +∞).

Define, for λ > λc(Zd), the following conditional probability

Pλ(.) = Pλ(.|τλ = +∞) =
P( . ∩ {0

λ↔ ∞})

P(0
λ↔ ∞)

.

For A ⊂ Z
d and x ∈ Z

d, we also define the first infection time tA
λ (x) of site x

from set A by

tA
λ (x) = inf{t ≥ 0 : x ∈ ξλ,A

t }.
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If y ∈ Z
d, we write ty

λ(x) instead of t
{y}
λ (x) and we simply write tλ(x) for t0

λ(x).
The set of points infected before time t is then

Hλ
t = {x ∈ Z

d : tλ(x) ≤ t} and H̃λ
t = Ht + [0, 1]d.

The following estimates are classical for the supercritical contact process; they
are stated here with some extra uniformity in the parameter λ (this uniformity is
mainly obtained by stochastic comparison):

Proposition 3 (Proposition 5 in Garet–Marchand [6]). Let λmin, λmax with λc(Zd) <
λmin ≤ λmax. There exist A, B, C, c, ρ > 0 such that for every λ ∈ [λmin, λmax], for

every x ∈ Z
d, for every t ≥ 0,

P(τλ = +∞) ≥ ρ,(2)

P(Hλ
t 6⊂ [−Ct, Ct]d) ≤ A exp(−Bt),(3)

P(t < τλ < +∞) ≤ A exp(−Bt),(4)

P

(

tλ(x) ≥ ‖x‖
c

+ t, τλ = +∞
)

≤ A exp(−Bt).(5)

2.5. Essential hitting times and shape theorem. We now recall the defini-
tion of the essential hitting time σλ(x). It was introduced in [6] to prove an
asymptotic shape result for the supercritical contact process in random environ-
ment. See also Garet–Marchand [7] and Garet–Gouéré–Marchand [5] for further
uses. The essential hitting time σλ(x) is a time when the site x is infected from
the origin 0 and also has an infinite life time. It is defined through a family
of stopping times as follows: we set u0(x) = v0(x) = 0 and we define recur-
sively two increasing sequences of stopping times (un(x))n≥0 and (vn(x))n≥0 with
u0(x) = v0(x) ≤ u1(x) ≤ v1(x) ≤ u2(x) . . . :

• Assume that vk(x) is defined. We set uk+1(x) = inf{t ≥ vk(x) : x ∈ ξλ,0
t }.

• Assume that uk(x) is defined, with k ≥ 1. We set vk(x) = uk(x)+τx
λ ◦θuk(x).

We then set

(6) Kλ(x) = min{n ≥ 0 : vn(x) = +∞ or un+1(x) = +∞}.

This quantity represents the number of steps before we stop: either we stop because
we have just found an infinite vn(x), which corresponds to a time un(x) when x is
occupied and has infinite progeny, or we stop because we have just found an infinite
un+1(x), which says that after vn(x), site x is never infected anymore. When the
contact process survives, the second case does almost surely not occur.

In [6], using (4) and (5), it is proved that Kλ(x) is almost surely finite, which
allows to define the essential hitting time σλ(x) by setting

σλ(x) = uKλ(x).

It is of course larger than the hitting time tλ(x) and can been seen as a regeneration
time. At the same time, we define the operator Θ̃λ

x on Ω by:

Θ̃λ
x =

{

Tx ◦ θσλ(x) if σλ(x) < +∞,

Tx otherwise.

The advantage of the essential hitting time σλ(x) is that it enjoys, unlike tλ(x),
some good invariance and integrability properties when conditioned to survive.
We now recall the main results of [6] we will need here. In the following, we fix
λmin, λmax > 0 such that λc(Zd) < λmin ≤ λmax.
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Proposition 4 (Garet–Marchand [6], Theorems 1 and 3, Corollary 21, Theorem 22
and Lemma 29).

• For each λ > λc(Zd), for every x ∈ Z
d,

(7) the probability measure Pλ is invariant under the map Θ̃λ
x.

• There exist constants (Cp)p≥1 such that for every λ ∈ [λmin, λmax], for every

x ∈ Z
d, for every p ≥ 1,

(8) Eλ[σλ(x)p] ≤ Cp(1 + ‖x‖)p.

• For each λ > λc(Zd), for every x ∈ Z
d, there exists a deterministic µλ(x)

such that

(9) lim
n→+∞

tλ(nx)

n
= lim

n→+∞

σλ(nx)

n
= µλ(x).

The convergence holds Pλ almost surely, and also in L1(Pλ).
• The function x 7→ µλ(x) can be extended to a norm on R

d. Let

(10) S(λ) = {x ∈ R
d : µλ(x) ≤ 1}.

• For every ε > 0, Pλ − a.s., for every t large enough,

(11) (1 − ε)S(λ) ⊂ H̃λ
t

t
⊂ (1 + ε)S(λ).

It has also been noted in [6] (see proof of Lemma 25 there) that there exists
M1 > 0 such that, for each λ ∈ [λmin, λmax] and each x ∈ Z

d\{0}, the sequence
(Eλσλ(nx) + M1)n≥1 is subadditive. Thus, with (9), we can represent µλ(x) as the
following infimum:

(12) ∀λ ∈ [λmin, λmax] ∀x ∈ Z
d µλ(x) = inf

n≥1

M1 + Eλ(σλ(nx))

n
.

As a corollary of (9), we obtain the following monotonicity property:

Corollary 5. For each x ∈ Z
d, λ 7→ µλ(x) is non-increasing on (λc(Zd), +∞).

Proof. Suppose λc(Zd) < λ′ < λ < +∞. Choose λmin, λmax with λc(Zd) < λmin <
λ′ < λ ≤ λmax. Use the construction of Subsection 2.2 to build the two contact

processes with respective parameters λ and λ′. On the event {0
λ′

↔ ∞}, which has

positive probability, we have that for each n ≥ 1, tλ(nx)
n ≤ t

λ′ (nx)
n . Letting n go to

infinity, we get µλ′(x) ≤ µλ(x). �

3. Left-Continuity

We prove here the left-continuity of µλ. More precisely, we prove that for each
λ0 > λc(Zd), for every ε > 0, there exists δ > 0 such that

(13) ∀λ ∈ [λ0 − δ, λ0] ∀x ∈ S
d−1 |µλ0

(x) − µλ(x)| ≤ ε.

When proving continuity theorems for the time constant in first passage perco-
lation (see Cox and Kesten [1, 2, 10]), the left-continuity is usually considered as
the easy part, due to the fact that the time constant is an infimum. In the case
of the contact process, there are extra difficulties, because contact processes with
different intensities can not be coupled in such a way that they die simultaneously.
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Lemma 6. Let λ > λc(Zd). For each x ∈ Z
d, lim

λ′→λ−

Eλ′(σλ′ (x)) ≤ Eλ(σλ(x)).

Proof. Fix λ > λc(Zd). Choose λmin such that λc(Zd) < λmin < λ and set λmax = λ.
Fix x ∈ Z

d. Use the construction of Subsection 2.2.
In this proof, for λ′ ∈ [λmin, λ], we note σλ′ = σλ′(x). Suppose that for every

λ′ ∈ [λmin, λ], we have managed to construct a “good” event G(λ′) such that
σλ′ = σλ on G(λ′). Then, for λ′ ∈ [λmin, λ],

E

(

σλ′ , 0
λ′

↔ ∞
)

= E

(

σλ′ , 0
λ′

↔ ∞, G(λ′)
)

+ E

(

σλ′ , 0
λ′

↔ ∞, G(λ′)c
)

≤ E

(

σλ, 0
λ′

↔ ∞
)

+

√

E

(

σ2
λ′ , 0

λ′

↔ ∞
)

√

P(0
λ′

↔ ∞, G(λ′)c).

Now, using the fact that {0
λ′

↔ +∞} ⊂ {0
λ↔ +∞} and the control (8) on the

moments of σλ′ , we get

Eλ′(σλ′ ) =
E

(

σλ′ , 0
λ′

↔ ∞
)

P(0
λ′

↔ ∞)

≤ P(0
λ↔ +∞)

P(0
λ′

↔ +∞)
Eλ(σλ) +

√

Eλ′ (σ2
λ′)

√

√

√

√

P(0
λ↔ +∞)

P(0
λ′

↔ +∞)

√

Pλ(G(λ′)c)

≤ P(0
λ↔ +∞)

P(0
λ′

↔ +∞)

(

Eλ(σλ) +
√

C2(1 + ‖x‖2)

√

Pλ(G(λ′)c)

)

.(14)

Thus if we prove that P(0
λ

↔+∞)

P(0
λ′

↔+∞)
and Pλ(G(λ′)) are close to 1 when λ′ is close to λ,

we can complete the proof.
We now build the “good” event G(λ′) such that σλ′ = σλ on G(λ′) and such that

Pλ(G(λ′)) goes to 1 as λ′ goes to λ. Since σλ is Pλ-a.s. finite and Hλ
σλ

is Pλ-a.s. a
finite set, we can first choose M > 0 such that

(15) Pλ(AM ) ≥ 1 − ε

3
, where AM = {Hλ

σλ
⊂ [−M, M ]d} ∩ {σλ ≤ M}.

Then, estimates (3) and (4) let us choose L > 0 such that for each λ′ ∈ [λmin, λ]
(16)

Pλ(BL(λ′)) ≥ 1 − ε

3
, where BL(λ′) = {Hλ′

L ⊂ [−CL, CL]d} ∩ {L < τλ′ < ∞}c.

Set S = [−(M + CL), (M + CL)]d ∩ Z
d and t = M + L. With Lemma 2, we can

choose δ > 0 such that

(17) ∀λ′ ∈ [λ − δ, λ] Pλ(Idem(S, t, λ, λ′)) ≥ 1 − ε/3.

Finally, we consider, for every λ′ ∈ [λ − δ, λ], the event

G(λ′) = AM ∩ Θ̃−1
x,λ(BL(λ′)) ∩ Idem(S, t, λ, λ′).

The choices (15), (16) and (17) we respectively made for M, L and δ, and the
invariance property (7) ensure that

Pλ(G(λ′)) ≥ 1 − ε.
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The event AM says that, apart from the fact that (x, σλ)
λ↔ ∞, the time σλ is

determinated by the configuration of the Poisson processes in the space-time box
[−M, M ]d × [0, M ]. The event Θ̃−1

x,λ(BL(λ′)) says that, if (x, σλ) has a progeny for

parameter λ′ still alive at time σλ+L, then (x, σλ)
λ↔ ∞. The event Idem(S, t, λ, λ′)

says that the infection at rate λ′ in the box S×[0, t] behaves exactly like the infection
at rate λ in the same box.

Now, on the event G(λ′)∩{0
λ↔ ∞}, the point (x, σλ) has a progeny for parameter

λ that is still alive at time σλ + L. But the infections with rate λ and λ′ coincide
in the box S × [0, t], so the point (x, σλ) has a progeny for parameter λ′ that is

also still alive at times σλ + L. Then (x, σλ)
λ′

↔ ∞, and it is now easy to see that
σλ′ = σλ. Note also that G(λ′) ∩ {τλ = +∞} ⊂ {τλ′ = +∞}. This gives

P(0
λ↔ +∞)

P(0
λ′

↔ +∞)
=

1

Pλ(0
λ′

↔ +∞)
≤ 1

Pλ(G(λ′))
≤ 1

1 − ε

and, coming back to (14), we see that

∀λ′ ∈ [λ − δ, λ] Eλ′(σλ′ ) ≤ 1

1 − ε

(

Eλ(σλ) +
√

C2(1 + ‖x‖2)
√

ε
)

.

This completes the proof. �

Lemma 7. For each x ∈ Z
d, λ 7→ µλ(x) is left-continuous on (λc(Zd), +∞).

Proof. Fix x ∈ Z
d. Since, from Corollary 5, the application λ 7→ µλ(x) is non-

increasing on (λc(Zd), +∞), we can define

L = lim
λ′→λ−

µλ′(x).

Obviously L ≥ µλ(x) and we must prove L ≤ µλ(x). Note λn = λ − 1/n. Using
the representation (12) of µλ(x) as an infimum, we have

L = inf
n≥1

µλn
(x) = inf

n≥1
inf
k≥1

Eλn
(σλn

(kx)) + M1

k

= inf
k≥1

inf
n≥1

Eλn
(σλn

(kx)) + M1

k

= inf
k≥1

(

M1

k
+ inf

n≥1

Eλn
(σλn

(kx))

k

)

By Lemma 6, for each k, inf
n≥1

Eλn
(σλn

(kx)) ≤ Eλ(σλ(kx)), so

L ≤ inf
k≥1

(

M1

k
+

Eλ(σλ(kx))

k

)

= µλ(x),

which completes the proof. �

The difference between (13) and Lemma 7 is the uniformity of the control. For all
λ > 0, since µλ is a norm and by symmetry of the model, we have for all x, y ∈ R

d,

µλ(x) − µλ(y) ≤ µλ(x − y) ≤ ‖x − y‖1µλ(e1) ,
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where e1 = (1, 0, . . . , 0). We obtain that |µλ(x) − µλ(y)| ≤ ‖x − y‖1µλ(e1). Fix
λ0 ∈ (λc, +∞) and ε > 0. By Lemma 7 we know that limλ→λ−

0

µλ(e1) = µλ0
(e1),

thus there exists δ > 0 such that for all λ ∈ [λ0 − δ, λ0], for all x, y ∈ R
d, we have

|µλ(x) − µλ(y)| ≤ 2‖x − y‖1µλ0
(e1). We obtain the existence of η > 0 such that for

all x, y ∈ R
d satisfying ‖x − y‖1 ≤ η, we have

sup
λ∈[λ0−δ,λ0]

{|µλ(x) − µλ(y)|} ≤ ε .

There exists a finite set of points y1, . . . , ym in R
d such that

S
d−1 ⊂

m
⋃

i=1

{x ∈ R
d : ‖x − yi‖1 ≤ η} ,

thus for all λ ∈ [λ0 − δ, λ0] we obtain

sup
x∈Sd−1

|µλ(x) − µλ0
(x)| ≤ 2ε + max

i=1,...,m
|µλ(yi) − µλ0

(yi)| .

By homogeneity of µλ, the result of Lemma 7 also holds for all y ∈ R
d, in particular

for yi, i ∈ {1, . . . , m}. This concludes the proof of (13).
We can notice that the previous argument also applies to the study of the right-

continuity of µλ. However, as we will see in the next section, we do not need it
since we perform directly the study of the right-continuity of µλ uniformly in all
directions.

4. Right-continuity

We prove here the right-continuity of µλ. More precisely, we prove that for each
λ0 > λc(Zd), for every ε > 0, there exists δ > 0 such that

(18) ∀λ ∈ [λ0, λ0 + δ] ∀x ∈ S
d−1 |µλ0

(x) − µλ(x)| ≤ ε.

As we will see, the right-continuity of the asymptotic shape of the contact process
can be obtained by a slight modification of a part of the proof of the large deviations
inequality for the contact process established by Garet and Marchand in [7].

Let λ0 > λc(Zd) be fixed. Fix λmin, λmax with λc(Zd) < λmin ≤ λ0 < λmax.
Let α, ε > 0 and L, N be positive integers. Consider λ ≥ λ0 and close to λ0.

We define the following event, relative to the space-time box BN = BN (0, 0) =
([−N, N ]d ∩ Z

d) × [0, 2N ]:

Aα,L,N,ε
λ,λ0

=
{

∀(x0, t0) ∈ BN ξx0,λ
αLN−t0

◦ θt0
⊂ x0 + (1 + ε)(αLN − t0)S(λ0)

}

∩
{

∀(x0, t0) ∈ BN ∪
0≤s≤αLN−t0

ξx0,λ
s ◦ θt0

⊂] − LN, LN [d
}

.

Consider first Aα,L,N,ε
λ0,λ0

. The first part of the event ensures that the descendants, at

time αLN , of any point (x0, t0) in the box BN are included in x0+(1+ε)(αLN)S(λ):
it is a sharp control, requiring the asymptotic shape Theorem for parameter λ0.
The second part ensures that the descendants, at all times in [0, αLN ], of the whole
box BN are included in ] − LN, LN [d: the bound is rough, only based on the (at
most) linear growth of the process with parameter λ0. Thus, the "good growth"

event Aα,L,N,ε
λ0,λ0

is typical, and it has been proved that
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Lemma 8 ([7]). Fix λ0 > λc(Zd). There exists α = α(λ0) ∈ (0, 1) such that for

every ε ∈ (0, 1), every L0 > 0, there exists an integer L > L0 such that

lim
N→+∞

P(Aα,L,N,ε
λ0,λ0

) = 1.

Garet and Marchand used Lemma 8 to prove the upper large deviations for the
contact process: for every λ0 ∈ [λmin, λmax], provided that α = α(λ0) is fixed as in
Lemma 8, then for L greater than some L0 = L > L0(ε, λ0), they prove that there
exists p1 = p1(λ0, ε, L) > 0 such that

P(A
α,L,N,ε/3
λ0,λ0

) > p1 =⇒ ∃A, B ∀t > 0 P(ξ0,λ0

t 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt).

The idea of the proof is as follows: a too fast infection from (0, 0) to Z
d × {n}

uses a too fast path, along which we should find a number of order θn of "bad

growth" events, i.e. translated versions of (A
α,L,N,ε/3
λ0,λ0

)c. The proof ends with a

Peierls argument: the event (A
α,L,N,ε/3
λ0,λ0

)c is local, thus its translated events are
only locally dependent. If their probability is small enough, we can control the
probability that there exists a path from (0, 0) to Z

d × {n} with at least θn "bad
growth" events.

Let’s come back to the right-continuity. Fix λ0 > λc(Zd) and ε > 0. Take α
given by Lemma 8, L large enough, and p1(λ0, ε, L) > 0 as before. A look at the
proof of the Peierl argument in [7] should convince the reader that for each λ ≥ λ0,
we have

P(A
α,L,N,ε/3
λ,λ0

) > p1 =⇒ ∃A, B ∀t > 0 P(ξ0,λ
t 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt).

Remember that the event A
α,L,N,ε/3
λ,λ0

is local. Thus, applying Lemma 2 with S =

[−N, N ]d ∩ Z
d and t = αLN , we obtain the existence of λ1 ∈ (λ0, λmax] such that

∀λ ∈ [λ0, λ1] P(A
α,L,N,ε/3
λ,λ0

) > p1.

Then, it follows that

∀λ ∈ [λ0, λ1] ∃A, B ∀t > 0 P(ξ0,λ
t 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt).

Now, we can deduce from (2) and (3) that

∀λ ∈ [λ0, λ1] ∃A, B ∀t > 0 Pλ(H0,λ
t 6⊂ (1 + ε)tS(λ0)) ≤ A exp(−Bt).

A detailed proof is provided in [7] when deducing (62) from (61). Fix λ ∈ [λ0, λ1],
η > 0 and, using the asymptotic shape result (11), choose t large enough to have

A exp(−Bt) < 1/2 and Pλ((1 − η)tS(λ) 6⊂ H0,λ
t ) < 1/2. This implies that the

event {(1 − η)tS(λ) ⊂ H0,λ
t ⊂ (1 + ε)tS(λ0)} has positive probability; particularly,

(1 − η)S(λ) ⊂ (1 + ε)S(λ0), and, letting η tend to 0, we have

∀λ ∈ [λ0, λ1] S(λ) ⊂ (1 + ε)S(λ0),

or equivalently

∀λ ∈ [λ0, λ1] ∀x ∈ R
d µλ0

(x) ≤ (1 + ε)µλ(x).

This completes the proof of (18).
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