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Intensive use of Laser Guide Star (LGS) with the new generation of Extremely Large 

Telescopes and Hypertelescopes will requires the use of more efficient lasers to surmount 

the novel limitations and aberrations. The Pulsed Frequency Shifted Feedback (FSF) laser 

we have developed overcomes the saturation of sodium atoms and solves new problems. 

This work presents a highly efficient solution for operating pulsed FSF lasers. For the first 

time, an intra-cavity preamplifier achieves a gain of 10
4
 and more than 40 μJ per pulse, 

with a near diffraction limited beam and without Amplified Spontaneous Emission. 

Endurance tests have shown that good performance is maintained over several hundred 

hours. 

          OCIS codes: 140.3538, 140.3518. 

1. Introduction 

Progress in laser technology is crucial for the production of Laser Guide Stars (LGS). 

LGSs, which greatly increase the sky coverage for adaptive optics, are now implemented on 
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most large telescopes and are expected to play a major role for Extremely Large Telescopes 

(ELT, TMT …) [1, 2] and hypertelescopes [3]. Yet the nature of the mesospheric sodium layer 

(thickness about 10% of the Earth-LGS distance, spatial inhomogeneities and temporal 

fluctuations in the sodium density ...) poses serious problems for ELT [4]. New aberrations, such 

as spot elongation, focus and tip/tilt errors [5], etc., become dominant. To solve these problems, 

astronomers have devised highly original solutions [6] that rely on the formation of 

constellations of several LGSs (up to 22 LGSs for the TMT [7]) launched on the periphery of the 

primary or secondary mirror and by sodium layer tracking methods. Some of them, however, 

rely on pulsed lasers operating at repetition rates of the order of kHz. While it is relatively easy 

to obtain high power pulsed lasers, they are limited by saturation of the sodium atom D2 

transition. To avoid saturation, several alternatives have been considered, such as CW lasers [8], 

very high repetition rates (~ 80 MHz), mode locked lasers [9] or modeless lasers [10, 11]. A 

modeless laser can increase the LGS intensity by a factor of 5 with respect to that obtained with a 

single-mode laser, and by a factor of 2.5 compared to a single-mode laser followed by phase 

modulation [10]. The work presented here relies on the modeless laser solution. Originally it was 

supposed that the emission was modeless [12-14] but later investigations showed that a comb of 

chirped modes exists [15, 16]. The interferometry experiments that have been carried out until 

now do not, however, prove the existence of a single chirped comb. It is quite possible that many 

chirped combs coexist with no phase relationship between them, since all spontaneous photons 

can be amplified, unlike conventional lasers. For LGS, in all cases, the main result is that 

modeless lasers can excite all the velocity classes of the sodium atoms, thus leading to de-

saturation of a given class [10]. The modeless laser is now more commonly referred to as the 

Frequency Shifted Feedback (FSF) laser. 
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FSF lasers described in the literature usually operate in continuous wave (CW) mode. It 

has been shown that a pulsed pumped preamplifier can be introduced into a CW dye laser cavity. 

3μJ per pulse has been demonstrated [17]. Our experiments have shown that this energy is 

insufficient for injecting into an amplifier to produce a laser power compatible with LGS 

characteristics. In this work we report solutions for enhancing the energy of an intra-cavity 

pulsed pumped preamplifier to nearly 40 μJ with a TM00 spatial mode and a single spectral line 

that is adjusted to the excitation of the D2 line of sodium atom. Section 2 describes the FSF laser 

cavity with its intra-cavity pulsed preamplifier. Section 3 provides a unified code that takes into 

account the CW and pulsed gain media, as well as spectral and temporal evolution. This code has 

been of great help in achieving this technological advance. In section 4 we discuss the 

experimental and theoretical results. This work corresponds to the first stage of the all-optical 

FSF laser channel that we are developing for CFHT-Lsp_On-sky Experiment (CLOE) project 

[18]. It will be followed by a single amplifier stage. 

 

2. FSF oscillator-preamplifier set-up 

The pulsed FSF laser diagram with its intra-cavity preamplifier (ICPA) is depicted in 

Figure 1. The diagram is similar to Figure 2 of reference [10]. But in reference [10] we have not 

studied, experimentally or theoretically, the pulsed intra-cavity preamplifier, only the CW 

pumping was studied and described. This is what we do primarily in the present article. 

Moreover, in this article, the preamplifier is not a dye-jet but a dye-cell.  

The wavelength of the sodium D2 line and the particular operation of the laser at present 

require the use of dyes. The laser cavity consists of two dye amplifier media. One dye (J) is 

pumped by a CW frequency doubled VANADATE laser (VERDI/Coherent) and the other (C) is 
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pumped by a pulsed frequency doubled YAG laser operating at a repetition rate of 10 kHz with 

pulse duration 65 ns (Navigator II/Spectra Physics). The first amplifier medium is a high-

precision dye jet (Radiant Dye Laser) and the second is a specially designed quartz dye cell 

(Hellma). The jet and the cell are positioned at the Brewster angle and are respectively 0.1 mm 

and 2 mm thick. They are quasi-longitudinally pumped. 

It is well known that the gain spectra of dyes are frequency shifted when they are pumped 

continuously or pulsed. To work optimally at 589 nm, we used Rhodamine 6G (R6G, Exciton) 

for the jet and Pyrromethene 597 (PM597, Exciton) for the cell, dissolved respectively in 

ethylene glycol (1.3 mM) and ethanol (0.1 mM). R6G is known to be one of the best dyes with a 

very long lifetime. The performance of PM597 is excellent, but its lifetime, which did not exceed 

10 hours, is insufficient for our purpose. The oxygen triplet 
3
O2, dissolved in ethanol, reacts with 

PM597 molecules, which are brought by the intersystem crossing interaction in the triplet state to 

form singlet oxygen 
1
O2. The highly reactive

 1
O2 molecule destroys the ground state PM597 

molecules [19]. To address this problem, we added an anti-oxidant (DABCO, 10 mM), which 

quenches 
1
O2 very efficiently without affecting the gain of PM597. This increases the lifetime of 

the ethanol-PM597 solution by an order of magnitude. The result is that by using the maximum 

pump energy available to us (~ 450 μJ), the output power performance is maintained for several 

hundred hours. 

The laser cavity is similar to that described in references [10, 17]. It consists of the 

mirrors M1, M2 and M3, the radii of curvature of which are respectively 10 cm, 7.5 cm and 

infinity. The acousto-optic shifter (AO) operates at an acoustic frequency of 35 MHz and an 

intra-cavity efficiency of 97%. The cavity is closed on the first diffraction order of the AO. The 

reflectance of the output mirror M3 was adjusted to 83% in order to optimize the pulsed intensity. 
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A three-quartz-plate Lyot-filter (Lyot) and an etalon (E, CVI Melles Griot) are the only 

selective elements of the cavity. The AO also acts as a broadband filter through the acoustic 

grazing that is generated. For optimum spectral narrowing, the etalon was placed next to the 

output mirror M3 in the Rayleigh range. The etalon has a free spectral range of 400 GHz and a 

reflection coefficient of 40% on each side. This arrangement yields a single line. This is 

important because spurious spectral lines of very low intensity will be over-amplified by the last 

amplifier stage, leading to a multi-line spectrum.  

The cell and its pumping system are dominant factors for the efficiency of the ICPA. A 

cell of cross-section 2×10 mm and a dye circulator was specially designed to yield a high flux 

(imposed by the high repetition rate of 10 kHz) while remaining laminar. The resulting renewal 

factor of the dye is 2.5 for an intra-cavity beam diameter of 500 µm. For better reliability, the 

cell position is adjustable whereas the beam direction remains fixed. To homogenize the 

longitudinal gain in the cell, the pump beam is split into two beams in order to pump the cell at 

both ends. This quasi-longitudinal gain pumping in X shape has proven to be highly efficient. 

The temperature of the dye is stabilized at about 15 °C. This arrangement does not degrade the 

well known L shape cavity spatial mode, which remains close to TM00. We have measured a M
2
 

of about 1.1.  

  

3. FSF oscillator-preamplifier Model 

The emission characteristics of the FSF laser change considerably from that of 

conventional lasers. A FSF laser intra-cavity optical wave 0 is shifted to 0+2AO after a round 

trip through the AO shifter, where AO denotes the frequency of the corresponding acoustic 
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wave. This continuous change in frequency disturbs constructive interference of the fixed modes 

in a conventional laser.  

In addition a CW and a pulsed field coexist in the laser cavity described above. To model 

this system, a simple assumption would be that the CW field, which lasts almost 100 µs, prepares 

the spectrum and then is amplified without modification during the gain in the cell. The first CW 

phase could be determined using the stationary model developed in reference [10]. The second 

pulsed phase could then be described by the well-known temporal rate equations of an amplifier 

using as initial conditions the final photon density of the preceding CW phase, as was done in 

Reference [17]. However, the pulse duration of the preamplifier is long enough for dozens of 

round trips during the second pulsed phase. Strictly speaking, therefore, we cannot consider the 

temporal and spectral variables to be separated during the amplification phase. For this reason 

we preferred to develop a new single model that takes into consideration both amplifying media. 

We use the algorithm of Spellpflug [20], which includes time and spectral variables. 

This algorithm consists in dividing the spectral range of integration  into K bins and, 

for each spectral bin, propagating the well-known rate equations during the round trip i. For the 

following i+1th pass, all frequencies are then shifted by the quantity  and the integration is 

reiterated using the initial conditions of the preceding passage i. Compared to the Spellpflug 

algorithm, we add the missing closure conditions (which were not necessary in their case) and 

we introduce both the CW and pulsed pumped amplifying media, R6G and PM597 respectively. 

The computation time is much longer and requires more memory than the method described in 

the previous paragraph, but poses no particular problem. At each round trip K+4 differential 

equations must be integrated. The integration range depends on the characteristics of selective 

elements of the cavity. It is, in principle, equal to the pulse period (typically 100 µs) but can be 
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reduced if a steady state is reached before the arrival of the pulse, and if it covers both pulsed and 

CW regimes. In the case of dyes, the integration step must be short enough (~ 300ps) for the 

transients to be calculated correctly. Unfortunately, this algorithm does not allow the use of an 

adaptive step that would accelerate the calculations. 

The differential equations for the jet and the cell populations N (subscripts j and c 

respectively for jet and cell, subscripts 1 and 2 for ground and excited levels), taking into account 

absorption, spontaneous emission, stimulated emission and gain saturation, are 
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p
j
 and p

c
 are the absorption cross sections of R6G and PM597 at the pump laser wavelengths 

p
j
 and p

c
, l

j
, l

c
 are the laser emission cross sections, j and c the radiative lifetimes of excited 

levels, wj and wc the pump waists and RT the round trip time of the cavity. PCW and Pp are the 
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CW and pulsed pump powers absorbed in the jet and the cell respectively. PCW is independent of 

time and Pp is assumed to be Gaussian with a width tp: 
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where Ep is the pump pulse energy. 

The spectral range of integration  is divided into K bins of frequency. The K 

differential equations of the intra-cavity photon density n(,t) are  

 

)()(

))()()((
),(),(

2222

2222

tN
w

tN
w

tN
w

tN
w

tn

t

tn

c

c

c

lj

j

j

l

c

c

c

lj

j

j

l

RT






























 (6) 

 is the sum of the transmission losses of all intra-cavity elements consisting of output mirror, 

AO, Lyot filter, etalon and various parasitic losses (imperfections, scattering ...) [10]. 
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T is the output mirror transmission, AO and Lyot the spectral bandwidths of the AO and Lyot 

filter, FSR the free spectral range of the etalon and D additional losses. 

The numerical integration of differential equations was performed on the LIPhy Airelle-

cluster (84 cpus, 184 GB RAM). The integration time step t is considered as constant and taken 

to be a submultiple of the exact cavity round trip time tmRT   . The value of m must satisfy the 

convergence criterion of the differential system. 
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The results presented below were obtained with the parameters (ICPA, output mirror, 

etalon ...) listed in Table 1. All other parameters (jet, selective elements ...) are taken from 

reference [10]. 

 

Parameter Value 

AO 35 MHz 

wc 250 µm 

PM597 concentration 0.1 mM 

R6G concentration 1.3 mM 

c 3.7 ns 

T 17% 

R 45% 

FSR 400 GHz 

tp 65 ns 

Table 1. Parameters used in the model. 

4. Results and discussion 

To our knowledge, pulsed preamplifiers have not previously been inserted into the FSF 

laser cavity. The suddenness of the introduction of the pulsed regime could profoundly disturb 

the operation of the FSF laser. This made it necessary to undertake a detailed experimental study, 

the results of which can be compared to the model. More particularly, in order to optimize the 

LGS flux, it is important to ensure that the pulse maintains the same spectral properties as 

defined in the initial goal. 
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A. Temporal dynamics  

Figure 2(a) shows the change with time of the output intensity measured, with a fast 

photodiode (PD). The average pump powers pP  and PCW are set to 5.3 W and 3.45 W 

respectively. Before the ICPA pump pulse, the output intensity is constant on average. The 

output pulse then arrives with a delay of 20-25 ns with respect to the pump pulse. This delay 

corresponds to the build-up of the ICPA. The output pulse length is therefore shorter than that of 

the pump (~ 65 ns). In the case shown in Fig. 2(b) it is approximately 40 ns. Then, immediately 

after extinction of the pump pulse, lasing switches off for about 1.5 µs. The continuous phase 

resumes after this hole and stabilizes after relaxation oscillations, the period of which, 

surprisingly, is about 1.4 microseconds. We discuss these relaxation oscillations below. The hole 

corresponds to dye bleaching. At the first round trip of the pulse into the jet, where the waist is 

only 20 microns, the power density is huge and the bleaching effect dramatically decreases the 

R6G jet gain below unity. The CW field builds up again after renewal of dye molecules. The 

intensity then oscillates for almost 5 microseconds and is re-stabilized, typically about 10 

microseconds after the pump pulse. It is clear therefore that this particular dynamics limits the 

repetition rate of the intra-cavity preamplifier to about 100 kHz. However the renewal rate of the 

dye molecules between two pulses is a more restrictive limitation. In our experience, a repetition 

rate below 30 kHz is a good compromise. Figures 2(c) and 2(d) show the results of the 

calculation. The whole of the dynamics, including relaxation oscillations, is well described by 

the model described above. Only the renewal time of the dye molecules is not included in the 

model. 

Figure 3 shows the calculated and experimental output power Pout when the laser operates 

only in CW (Pcw=3.45 W and pP =0) and when the RF power of the AO is gated. The regime of 
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relaxation oscillations we observed, of the order of a few microseconds, which is standard for 

solid state amplifying media of class B (upper-state lifetime greater than cavity damping time), is 

unusual for a conventional dye laser, which is generally of class A, with a fast exponential 

relaxation to the steady state.  

In the case of a single-mode laser, the relaxation frequency is written as: 
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where r is the so-called pump parameter, which is the ratio of pump power PCW to threshold 

pump power th

cwP . g is the upper-state lifetime of the gain medium. With the parameters used 

above (~25%, PCW=3.45 W, th

cwP ~2 W, RT=3.5 ns), g is about 3 microseconds, which is indeed 

too long for a dye amplifying medium. Strictly speaking, Eq. (7) does not apply to FSF lasers. In 

particular, the value of the equivalent pump parameter r is very different from that calculated by 

putting all the power into a single mode and using the threshold of a conventional laser. In the 

case of the FSF laser, this threshold is difficult to define because the curve of the output power 

versus pump power exhibits a second order rather than a first order transition [10]. This is the 

modeless aspect, which explains the phenomenon of microsecond relaxation oscillations, and 

which is very well described by the photon density model developed earlier (see Fig. 3). 

 B. Efficiency 

Pulse energies Eout of almost 40 μJ with pulse duration out of 40 ns have been obtained, 

for the first time, using an intracavity preamplifier. Figure 4(c) shows the dependence of Eout on 

the pump energy Ep absorbed into the cell. To eliminate the CW intensity, the output energy is 

measured using a boxcar that gates the pulse energy and which is calibrated appropriately. The 

pump power PCW is set at 3.45 W and the pump energy Ep varies from 0 to 450 μJ. The pumping 
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threshold is about 100 μJ. This relatively high threshold, mainly due to the first order AO loss, is 

compensated by a good slope efficiency of 12.3%. The measured amplification gain, defined as 

the ratio of the output energy Eout to the CW energy just prior to amplification for the same 

period out, was about 10
4
. This high gain is usually difficult to obtain with an extra-cavity 

preamplifier. Moreover the output beam of ICPA has many other benefits, namely the absence of 

ASE (Amplified Spontaneous Emission), the diffraction limited TM00 mode of the cavity, and 

self-alignment. 

The energy per pulse Eout is calculated from the formula: 
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T denotes the output mirror transmission and wm the output beam waist. The integration is 

restricted to the duration of the pulse where the contribution of the CW energy is negligible. The 

theoretical dependence of Eout on Ep (Fig. 4(a)) is in very good agreement with experiment. 

Figure 4(b) and 4(d) show the dependence on Ep of the theoretical and experimental output line-

width out. As can be seen, out reaches an asymptotic value above a pump energy ~200 µJ.  

Figure 4(a) demonstrates that we can attain even greater pulse energies. The density of 

pump power applied to the cell is, however, limited by a marking phenomenon that occurs at the 

internal liquid-glass interface. Although the dye flow is laminar and the velocity at the center of 

the cell is large enough, the velocity of the dye solution vanishes at the interface. On the inner 

faces, multi-photon phenomena are then expected to dissociate the PM597 molecules when the 

energy density exceeds a value that we have experimentally estimated to be about 0.1 J/cm
2
. The 

use of a jet may cure this problem, but a millimeter-sized jet of good quality has not yet been 

constructed.  
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The output mirror reflectance is optimized to yield the highest pulsed energy. The best 

result was obtained for a reflectance of 83% at 589 nm. This optimization is made at the expense 

of the CW field, which is characterized by a higher threshold (~ 2W) and relaxation oscillations. 

To maximize the pulse energy, the pump power PCW can also be adjusted. The shapes of 

experimental and theoretical curves of figure 5 show good agreement. As noted above, however, 

the theoretical maximum is higher than that measured experimentally.  

C. Spectral properties 

Regarding the ICPA of our pulsed FSF laser, the first fundamental question that arises is 

whether the line-width is conserved during the pulsed amplification. The laser line is analyzed 

with a home-made scanning plane-plane Fabry-Perrot (FP) with a 33.4 GHz free spectral range 

and quality factor 200. A boxcar is used to measure the line-width during the pulse. Figure 6 

plots the experimental and theoretical line-width out (FWHM) versus the pump energy Ep 

using the intra-cavity etalon of 400 GHz free spectral range and a reflection coefficient of 40% at 

589 nm. 

The model shows no dependence of the line-width on the pump energy, with a value that 

is close to the experimental measurement. Given the hyperfine structure of 1.77 GHz and the 

Doppler effect of the sodium atom in the mesosphere, simulations have shown [21] that an ideal 

line-width is 2.8 GHz. Within the model introduced above we calculate that an etalon of 

equivalent free spectral range, but with a reflection coefficient of 70% on both sides, should be 

perfectly appropriate for LGS application. 

Another fundamental question is whether the "modeless" or "chirped mode” character is 

preserved during the pulse. A widely used picture [22] is to consider that a FSF laser spectrum 

consists of a comb of modes that chirp linearly with time. The chirp speed of our FSF laser is 
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very fast (about 20 MHz per nanosecond). Such a laser beam injected into a Michelson 

interferometer exhibits RF beat frequencies at the output of the interferometer: 

 )
4

(0 z
c

m AOm
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
   (9) 

z is the optical path difference of the two arms of the Michelson interferometer (~ 80 cm in this 

case), m is an integer and 0=1/RT the free spectral range of the laser cavity. These frequencies 

are found easily through the Fourier transform of the output intensity of the interferometer. 

Figure 7 demonstrates these RF frequencies during the pulse of the ICPA. The 

attenuation above 300 MHz corresponds to the bandwidth of the oscilloscope. Note the 

recurrence of the free spectral range 0 of the laser cavity surrounded by two satellites separated 

by a well-defined frequency difference MHz
c

z

RT

AO 1064 


 . The existence of these 

satellites provides a means for ranging measurements with high accuracy [22]. The RF beats are, 

of course, also observed during time intervals where the laser functions in CW. They are, 

however, less marked in the area where the initial relaxation oscillations are observed (see Fig. 

3). The laser pulse generated by ICPA has therefore a chirped spectrum, which is not surprising, 

but deserved to be verified. 

V Conclusion 

In order to produce usable LGSs for new generation ELTs and hypertelescopes, lasers 

must be more efficient to overcome the new limitations and aberrations. We believe that the high 

power pulsed FSF laser we are developing in the framework of CLOE project will solve a 



 15 

number of these constraints. In this work we show the first step: a large energy per pulse is 

produced on the oscillator-preamplifier part of the laser channel. 

 The initial advantage of our FSF laser was to solve the problem of saturation of the D2 

transition of atomic sodium. The advances outlined in this paper were greatly facilitated by the 

code we developed, which is in very good agreement with experimental results. We have shown 

that the use of an intra-cavity preamplifier with a simple assembly provides more than 40 μJ per 

pulse. A single intra-cavity etalon enables the laser line-width to be matched to the Doppler-

Hyperfine sodium line. A precise mechanical mount, fixed to the Invar rod that maintains the 

stability of the cavity, can be adjusted precisely to the sodium line. In an air-conditioned room, 

this passive adjustment remains stable for several days. We have also shown that the use of an 

anti-oxidant in the solution of PM597 allows the power performance to be maintained over 

several hundred hours. 

Moreover, our all-optical laser has no active electronic feedback, in particular with 

respect to the wavelength. This provides greater reliability. Furthermore, the regenerative process 

in the cavity eliminates any ASE, which is broadband and constitutes a major problem with 

extra-cavity preamplifiers. We could not measure the ASE since it was too low. Note also that 

the proper use of quasi-longitudinal pumping in the ICPA preserves the mode of the cavity 

which is close to TM00. The figure of merit of an LGS is the ratio of the return flux to the area of 

the fluorescence spot. Then, it is clear that a laser beam at the diffraction limit, correctly 

projected into the mesosphere, will achieve an even better figure of merit [23]. 

We are currently developing the final amplifier stage in order to raise the energy to 2-3 

mJ per pulse with a repetition rate of about 10 kHz while maintaining the optical quality of the 

beam and compactness. 
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Table captions 

1. Table 1. Parameters used in the model. 
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Figure captions 

1. Fig. 1. Pulsed Frequency Shifted Feedback Laser set-up. J, R6G jet; C, PM597 cell; M1, M2, 

M3, cavity mirrors; AO, acousto-optic frequency shifter; Lyot, Lyot filter; E, etalon; VERDI, 

CW 532 nm pump; NAVIGATOR, pulsed 532 nm pump; PD, high speed photodiode; FP, 

Fabry-Perot analyzer; Na, sodium oven; W-meter, wave meter. For characteristics see text. 

2. Fig. 2. Time evolution of the output power of the FSF laser with its intra-cavity pulsed 

preamplifier. (a) and (b) experiment. (c) and (d) theory. Time zooms (b) and (d) show pulse-

widths of about 40 ns. For the relaxation oscillations in (a) and (c) see Fig. 3 and text. Note 

the ~1.5 µs bleaching time hole of experiment (a), which is not included in the model (c). 

3. Fig. 3. (Color online) Build-up of the CW laser power just after the AO-RF power is turned 

on. (a) experiment, (b) theory and (c) RF power gate. Relaxation oscillations of ~2 µs are 

well described by the FSF model. 

4. Fig. 4. (Color online) ICPA output pulse energy and output pulse-width versus pump energy. 

(a) and (b) theory, (c) and (d) experiment. The pump threshold is ~100 µJ and the slope 

efficiency 12.3%. Above pump energy ~200 µJ, the output energy increases linearly and the 

pulse-width is approximately constant. 

5. Fig. 5. (Color online) Output pulse energy versus jet CW pump power. (a) theory and (b) 

experiment. See text. 

6. Fig. 6. (Color online) Line-width versus ICPA pump energy. (a) theory and (b) experiment, 

in good agreement, show no dependence of the line-width on pump energy. 

7. Fig.7. The RF spectrum of the Michelson interferometer output signal for the distance z ~ 80 

cm. 0 is the free spectral range of the laser cavity. The beat frequency  is about 106 MHz. 

 



 22 

 
 

Fig. 1 



 23 

 
Fig. 2 

 



 24 

 
Fig. 3 

 



 25 

35

40

45

50

55

60

35

40

45

50

0 100 200 300 400 500

0

10

20

30

40

50

Experiment

(c)  E
p

E
o

u
t (


J
)

E
p
 (J)

0 100 200 300 400 500 600

0

10

20

30

40

50 Theory

(a)  E
p
 

E
o

u
t (


J
)

(d)  
out


 o

u
t (

n
s
)

(b)  
out

 


 o

u
t (

n
s
)

 
Fig. 4 

 



 26 

 
Fig. 5 
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Fig. 6 
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Fig. 7 


