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Evidential matrix metrics as distances between

meta-data dependent bodies of evidence

Mehena Loudahi, John Klein, Jean-Marc Vannobel and Olivier Colot ∗†

Abstract

As part of the theory of belief functions, we address the problem of ap-

praising the similarity between bodies of evidence in a relevant way using

metrics. Such metrics are called evidential distances and must be com-

puted from mathematical objects depicting the information inside bodies

of evidence. Specialization matrices are such objects and, therefore, an

evidential distance can be obtained by computing the norm of the differ-

ence of these matrices. Any matrix norm can be thus used to define a full

metric.

In this article, we show that other matrices can be used to obtain new

evidential distances. These are the α-specialization and α-generalization

matrices and are closely related to the α-junctive combination rules. We

prove that any L
1 norm-based distance thus defined is consistent with

its corresponding α-junction. If α > 0, these distances have in addition

relevant variations induced by the poset structure of the belief function

domain. Furthermore, α-junctions are meta-data dependent combination

rules. The meta-data involved in α-junctions deals with the truthfulness

of information sources. Consequently, the behavior of such evidential

distances is analyzed in situations involving uncertain or partial meta-

knowledge about information source truthfulness.

Index terms— Theory of belief functions, evidence theory, distance, com-
bination rules, information source meta-data.keywords

1 Introduction

The theory of belief functions [9, 26] is a framework for reasoning under un-
certainty and imprecision. It encompasses probability theory, possibility theory
and Cantor’s set theory. Approaches relying on the theory of belief functions
are often called evidential because collected data are seen as pieces of evidence
allowing the definition of some set functions describing the state of knowledge
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of a given information source concerning the problem at stake. The pieces of
evidence collected by each source individually are called bodies of evidence.
In particular, in case of multiple information sources, it is sometimes necessary
to determine if the contents of different bodies of evidence are similar or not.
A distance between bodies of evidence can achieve this goal and such distances
are called evidential distances.
Defining a meaningful evidential distance is a challenging task as dissimilarity
has its roots in two main aspects: uncertainty and imprecision. For instance,
the statement John is 30 years old is different in terms of uncertainty from
the statement John is 30 years old with probability 0.6. The statement John is
30 years old is different in terms of imprecision from the statement John is in
his thirties. It is obvious that a positive distance value is justified in both of
these comparisons but it is far less obvious to determine if one of them should
prevail or not. When introducing evidential distances, authors do not always
justify their approach with respect to uncertainty or imprecision although their
influences are latent. To some extent, defining evidential distances is thus an
over-constrained problem with many possible heterogeneous solutions depend-
ing on a targeted purpose. Such purposes can be mathematical properties or
applications. This accounts for the vast literature dealing with evidential dis-
tances.
The most popular evidential distance is Jousselme distance [16]. Belief functions
are set functions and their domain has a poset structure. Jousselme distance is a
full metric and takes explicitly into account this poset structure. Prior to Jous-
selme et al. approach, people used to resort to pseudo-metrics [30, 22, 34, 32, 12]
and [1]. One full metric [15, 19] was introduced before Jousselme distance and
used inside an optimization algorithm. Discussing its relevance for assessing
belief function closeness was not in the scope of that paper. More recently, Diaz
et al. introduced in [10] several metrics in the same vein as Jousselme distance
but with different appraisals of structural aspects.
Most of the time, evidential distances are application-driven. For instance,
Zouhal and Denœux [34] use a nearest neighbor classifier where neighbor testi-
monies are seen as bodies of evidence. The parameters involved in their eviden-
tial approach are optimized by minimizing a dissimilarity between these bodies.
Fixen and Mahler [12] introduce a pseudo-metric to evaluate the performances
of their classifier whose outputs are bodies of evidence. In [11] and [31], sensor
data are represented as bodies of evidence and the reliability of the sensor is
assessed using distances. A common issue when working in the framework of
belief functions consists in approximating a body of evidence in order to obtain
another one with desired properties or in order to reduce computation load. A
convenient way to perform such approximations is to resort to distance mini-
mization as proposed in [15, 1, 33],[32, 5, 7] or [8].
past decade.
Jousselme and Maupin [17] analyzed and surveyed the evidential distance liter-
ature and clarified the advantages and limitations of evidential distances. Based
on their comments, we formalized in [21] a number of desirable mathematical
properties for evidential distances and proposed specific distances possessing
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these properties. These distances are obtained using the norm of the difference
between matrices encoding bodies of evidence. In particular, one of these new
distances has similar properties as Jousselme distance while exhibiting a consis-
tent behavior with respect to the conjunctive rule of combination. In this article,
we continue our effort toward the definition of meaningful evidential distances
by investigating the properties of distances derived using other matrices than
those considered in [21].

After providing the necessary definitions and background related to the the-
ory of belief functions in section 2, extended families of matrix-based evidential
distances are presented in section 3. These families are infinite and are defined
using evidential matrices that are linked with combination rules known as α-
junctions. In section 4, the consistency of the proposed distances with respect to
α-junctions is investigated. Let B0, B1 and B2 denote three bodies of evidence.
In this paper, we say that an evidential distance is consistent with a combination
rule if the distance between B1 and B2 is greater or equal to the distance between
{B1 combined with B0} and {B2 combined with B0}. In section 5, we discuss the
ability of the proposed distances to take the poset structure of belief functions
domain into account. The importance of this aspect is stressed in [17]. Finally,
in section 6, evidential distances are also studied under a new perspective: the
influence of meta-information. Meta-information is made of contextual data on
the information sources. Various scenarios on the truthfulness of sources are
considered.

2 Belief function framework: notations and def-

initions

In this section, some mathematical notations for classical belief function con-
cepts are given. The reader is expected to be familiar with belief function basics
and consequently some definitions are not detailed. More material on belief
functions basics is found for instance in [3]. Special care is given to a reminder
on α-junctions and matrix calculus as part of the theory of belief functions.

2.1 Belief function basics

Suppose Ω = {ωi}
n
i=1 is the finite domain of a given parameter θ, i.e. the set of

possible and unknown values ωi of θ. Suppose also Si is a source of information
that collected a body of evidence Bi regarding the actual value of θ. The set
function representing all pieces of evidence in Bi is called a mass function

and is denoted by mi. The power set 2Ω is the set of all subsets of Ω and it
is the domain of mass functions. For any A ∈ 2Ω, the cardinality of this set
is denoted by |A| and we thus have |Ω| = n. The cardinality of 2Ω is denoted
by N = 2n. Mass functions have [0, 1] as co-domain and they sum to one:
∑

A∈2Ω mi (A) = 1. A focal element of a mass function mi is a set A ⊆ Ω
such that mi(A) > 0, meaning that Bi contains evidence supporting the event
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{θ ∈ A}. A mass function having only one focal element A is called a cate-

gorical mass function and is denoted by mA. The categorical mass function
mΩ is called the vacuous mass function because it carries no information.
As explained in [6], a simple mass function is the convex combination of mΩ

with a categorical mass function mA with A 6= Ω.
In the theory of belief functions, several alternative set functions are commonly
used for evidence representation. In this paper, only the plausibility function
pli will be used. This set function is the conjugate of the inverse Möbius of the
mass function mi. The plausibility function pli is in one-to-one correspondence
with the mass function mi as it can be seen from the following formula :

pli (A) =
∑

X⊆Ω
X∩A 6=∅

mi (X) , ∀A ∈ 2Ω. (1)

Another useful concept is the negation (or complement) mi of a mass func-
tion mi. The function mi is such that ∀A ⊆ Ω, mi(A) = mi(A) with A = Ω\A.

Besides, a mass function can be viewed as special kind of interval-valued
probability distribution [9]. As part of the Transferable Belief Model, Smets [29]
introduced the pignistic transform which is one way to retrieve a probabil-
ity distribution with values inside the intervals specified by a mass function.
This distribution is called the pignistic probability distribution betpi and it is
obtained from mi as follows : ∀ω ∈ Ω,

betpi(ω) =
∑

A⊆Ω,ω∈A

1

|A|

mi(A)

1−mi(∅)
. (2)

2.2 Mass function combination using α-junctions

In this subsection, a brief presentation of α-junctions [27] is proposed. Suppose
two sources of information S1 and S2 have gathered pieces of evidence allowing
them to define two mass functions m1 and m2 respectively. Evidential combina-
tion rules address the problem of aggregating these two functions into a single
one synthesizing both of the initial evidence bodies. Let f be a combination
operator for mass functions, i.e. m12 = f(m1,m2) with m12 a mass function de-
pending only on m1 and m2. Such an operator is an α-junction if it possesses
the following properties:

• Linearity1: ∀λ ∈ [0, 1] , f (m,λm1 + (1− λ)m2) = λf (m,m1)+(1− λ) f (m,m2),

• Commutativity: f (m1,m2) = f (m2,m1),

• Associativity: for any additional mass function m3, f (f (m1,m2) ,m3) =
f (m1, f (m2,m3)),

• Neutral element: ∃me | ∀m, f (m,me) = m,

1The operator is linear on the vector space spanned by categorical mass functions but the
output of the operator remains a mass function only in case of convex combination.
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• Anonymity: for any mapping σ : 2Ω −→ 2Ω such that its restriction
on Ω is a permutation and σ (X) =

⋃

x∈X

σ (x) when |X | > 1, we have

f (m1 ◦ σ,m2 ◦ σ) = m12 ◦ σ,

• Context preservation: pl1 (X) = 0 and pl2 (X) = 0 =⇒ pl12 (X) = 0.

In short, α-junctions are thus linear combination rules that do not depend on
the order in which pieces of evidence are processed. The justification behind
these properties are detailed in [27]. In the same article, Smets proves that the
neutral element me can only be either m∅ or mΩ. Depending on this, two sub-
families arise: the α-disjunctive rules denoted by ∪©α and the α-conjunctive rules
denoted by ∩©α. For both of these families, Pichon and Denœux [24] provided
the following computation formulae: ∀X ⊆ Ω, ∀α ∈ [0, 1]

m1∩α2 (X) =
∑

(A∩B)∪(A∩B∩C)=X

m1 (A)m2 (B)α|C|α|C|, (3)

m1∪α2 (X) =
∑

(A∆B)∪(A∩B∩C)=X

m1 (A)m2 (B)α|C|α|C|, (4)

with α = 1 − α and ∆ the set symmetric difference. It is noteworthy that, if
α = 1, the classical conjunctive and disjunctive rules are retrieved. We denote
these rules by ∩© = ∩©1 and ∪© = ∪©1. In addition, using ∩© with a given function
m1 and a given categorical function mB is tantamount to conditioning m1 on
B. The following notations will be used when combining mB with a function
m1:

• m1|B := m1 ∩©mB, this mass function is sometimes referred to as m1 given
B,

• m1∩αB := m1 ∩©αmB,

• m1∪αB := m1 ∪©αmB,

• m1|αB stands for the combination ofm1 and mB using an α-junction when
distinguishing conjunctive and disjunctive cases is unnecessary.

2.3 Meta-information and α-junctions

The interpretation of α-junctions is related to information items concerning the
truthfulness of the sources S1 and S2. In an information fusion context, such
items are known as meta-information and truthfulness is a special kind of
meta-information. Actually, several forms of truthfulnesses can be observed in
practice but regarding α-junctions the following definition is retained: Si is un-
truthful if it supports the opposite of what it knows to be true.
Depending on the truthfulness of sources, very different decisions can be made
in the end, which accounts for the importance of taking meta-information into
account in information fusion problems. In general, our knowledge about the
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truthfulness of each source is imprecise and uncertain and it is therefore ex-
pressed as a mass function on a meta-domain Ti. In [23], Pichon explains that
an element tiC ∈ Ti is understood as the fact that Si is truthful when it supports
{θ ∈ C} and it is untruthful when it supports

{

θ ∈ C
}

. Let us provide a simple
example when everything is deterministic:

Example 1. Suppose that |Ω| = 4 and the meta-data concerning Si is that t
i
C

has probability 1 with C = {ω1, ω2}. If the source of information Si delivers only
one certain piece of evidence θ ∈ A = {ω2, ω3}, then four different situations
are encountered:

• The source gives support to ω2 and can be trusted about ω2. We conclude
that ω2 is a possible value for θ.

• The source gives no support to ω1 and can be trusted about ω1. We
conclude that ω1 is a not possible value for θ.

• The source gives support to ω3 but cannot be trusted about ω3. We
conclude that ω3 is not a possible value for θ.

• The source gives no support to ω4 but cannot be trusted about ω4. We
conclude that ω4 is a possible value for θ.

All in all, the testimony of the source is θ ∈ A but given the meta-data, the
actual testimony is θ ∈ A∆C.

When considering a pair of sources (S1;S2), meta-events belong to T1 × T2.
Pichon also proves that:

• for α-conjunctions, the underlying meta-information is that each meta-
event {either both sources are fully truthful or they both lie about C} =
{(

t1Ω; t
2
Ω

)

;
(

t1C ; t
2
C

)}

has probability α|C|α|C|.

• for α-disjunctions, the underlying meta-information is that each meta-
event {one source is fully truthful while the other one lies at least about

C} =
⋃

X⊆C

{(

t1Ω; t
2
X

)

;
(

t1X ; t2Ω
)}

has probability α|C|α|C|.

In particular, when α = 1, the above probabilities are null whenever C 6= Ω in
the conjunctive case and whenever C 6= ∅ in the disjunctive case. The meta-
information thus reduces to:

• for the conjunctive rule, the event {both sources are fully truthful} has
probability 1.

• for the disjunctive rule, the event {at least one of the sources is fully
truthful} has probability 1.

Note that α-junctions are a particular case of a combination process introduced
in [25] where a general framework for reasoning under various meta-information
is formalized.
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2.4 Belief functions and matrix calculus

Mass functions can be viewed as vectors belonging to the vector space RN with
categorical mass functions as base vectors. Since mass functions sum to one,
the set of mass functions is the simplex S in that vector space whose vertices
are the base vectors {mA}A⊆Ω. This simplex is also called mass space [6]. In
this paper, the following notations and conventions are used :

• Vectors are column vectors and are written in bold small letters. The
operator vec maps a set function or a distribution to its vector form.
For instance, mi = vec (mi) is the mass vector corresponding to a mass
function mi. The length of mass vectors is N . The jA

th element of a mass
vector mi is such that mi (jA) = mi(A) with jA the integer index of the
set A according to the binary order. The binary order [28] is a common
way to index elements of 2Ω without supposing any order on Ω.

• Matrices are written in bold capital letters. They are square and their
size is N × N . A matrix can be represented by X = [X (iA, jB)], or
alternatively by the notation X = [X(A,B)], ∀A,B ∈ Ω. The row and
column indexes iA and jB are those corresponding to the subsets A and
B using the binary order.

• I is the identity matrix.

• 1 is the all-ones matrix.

• J is the matrix with null components except those on the anti-diagonal
which are equal to 1. J is a permutation matrix reversing lines in case of
right-handed product and reversing columns in case of left-handed prod-
uct.

Matrix calculus as part of the theory of belief functions is especially interesting
when it comes to mass function α-junctive combination. In [28] and [27], Smets
shows that equation (3) and (4) can be written as a product between a matrix
and a mass function vector. Let K∩

1,α be a matrix such that K∩
1,α(A,B) =

m1∩αB (A) and K∪
1,α a matrix such that K∪

1,α(A,B) = m1∪αB (A). One has:

m1∩α2 = K∩
1,α m2, (5)

m1∪α2 = K∪
1,α m2. (6)

These matrices are also in one-to-one correspondence with the mass functionm1.
We call K∩

1,α and K∪
1,α the α-specialization and α-generalization matrices

corresponding to m1. In general, all such matrices will be called evidential

matrices. When it is not necessary to stress the dependency of evidential ma-
trices on α and on the conjunctive/disjunctive cases, an evidential matrix is
denoted by K1 for the sake of equation concision.

Each element of K1 represents the mass assigned to a set A after learning
that {θ ∈ B}: K1(A,B) = m1|αB (A). In other words, K1 does not only repre-
sent the current state of belief depicted by m1 but also all reachable states from
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m1 through an α-junctive conditioning. From a geometric point of view [4],
each column of an evidential matrix K1 corresponds to the vertex of a polytope
P1, called the conditional subspace of m1. Example 2 illustrates this latter
remark.

Example 2. Let |Ω| = 2 and m1 = λm{ω1}+λmΩ with λ ∈ [0; 1] and λ = 1−λ.
In the conjunctive case, we have :

K∩
1,α =









λα+ λ 0 λ 0

0 λα+ λ 0 λ

λα 0 λ 0

0 λα 0 λ









.

The four column vectors of K∩
1,α are (from left to right) : m1∩α∅, m1∩α{ω1},

m1∩α{ω2}, and m1. By definition the polytope P1 is the following subset of S:







m ∈ S | m =
∑

A⊆Ω

λAm1∩αA,
∑

A⊆Ω

λA = 1, λA ∈ [0; 1]







.

Any mass function m ∈ P1 is the result of the combination of m1 with
another mass function using a given α-junction. Evidential matrices are conse-
quently relevant candidates for assessing dissimilarities between bodies of evi-
dence in compliance with α-junctions.
Most importantly, if K1 and K2 are two evidential matrices and if K12 denotes
the matrix corresponding to the α-junction of m1 with m2, then one has:

K12 = K1 K2. (7)

Moreover, the transpose of any evidential matrixK is a stochastic matrix, mean-
ing that all lines sum to one: tK 1 = 1, with tK the transpose matrix of K.
Finally, KA will denote the evidential matrix corresponding to the categorical
mass function mA.

3 Distances in evidence theory

In this section, we will first recall the definitions of some existing distances
in the theory of belief functions. We will focus on various kinds of evidential
dissimilarities without aiming at providing an exhaustive review. Afterward,
new matrix-based evidential distances will be introduced in connection with
α-junctions.

3.1 Vector-based evidential distances

A distance, or metric, provides a positive real value assessing the discrepancies
between two elements. Let us first give a general definition of such an application
when the compared vectors are mass functions:
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Definition 1. Given a domain Ω and its related mass space S, a mapping
d : S × S −→ [0, a] with a ∈ R+ is a distance between two mass functions m1

and m2 defined on Ω if the following properties hold:

• Symmetry : d(m1,m2) = d(m2,m1),

• Definiteness : d(m1,m2) = 0 ⇔ m1 = m2,

• Triangle inequality : d(m1,m2) ≤ d(m1,m3) + d(m3,m2).

If the mapping fails to possess some of the above properties, then it degrades
into unnormalized distance, dissimilarity or pseudo-distance. Only full metrics
are able to provide a positive finite value that matches the intuitive notion of
gap2 between elements of a given space.
If a 6= +∞, then the distance is bounded and if in addition a = 1, the distance
is normalized. Provided that an evidential distance d is bounded, this dis-
tance can be normalized by dividing it with ρ = maxm1,m2∈S d (m1,m2). By
definition, ρ is the diameter of S. A result in convex geometry states that the
diameter of a simplex is actually the length of its largest edge. Consequently,
the following lemma holds:

Lemma 1. Let d be a bounded evidential distance. Let d̃ be the evidential
distance defined by d̃ (m1,m2) = d(m1,m2)

ρ with ρ = maxA,B∈2Ω d (mA,mB).

Then, d̃ is a normalized evidential distance.

In evidence theory, two main families of mass function dissimilarities have
been introduced, namely: direct and indirect dissimilarities. Direct measures
are those defined on the product space S ×S and thus complying with the geo-
metrical interpretation of belief functions [6]. Concerning direct dissimilarities,
the most widely used is Jousselme distance [16]. It is based on an inner product
relying on a similarity matrix. This distance is given by:

dJ (m1,m2) =

√

1

2
t(m1 −m2)D (m1 −m2), (8)

with D the Jaccard similarity matrix between focal elements. Its components
are:

D(A,B) =

{

1 if A = B = ∅
|A∩B|
|A∪B| otherwise

. (9)

The success of Jousselme distance is explained by the fact that, thanks to the
matrix D, the dependencies between the base vectors of S are taken in account.
Consequently, the poset structure of 2Ω has an impact on distance values, al-
lowing a better match with the user’s expectations.
Many other evidential distances are defined similarly by substituting matrix D

2This term was used by Frechet [13] in his early works on metric spaces, i.e. spaces endowed
with a distance.
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with another matrix evaluating the similarity between base vectors in different
ways [10, 6]. Experimental material in [16] shows that these distances are highly
correlated to dJ .

As for indirect dissimilarities, each mass function is first transformed into
a vector belonging to a new space of representation X ⊂ RM related to an-
other uncertainty theory. Afterwards, a distance measure is computed in this
new representation space. When these transforms are lossy (M < N), indirect
dissimilarities are not definite, hence none of them is a full metric. The most
frequently used transform for indirect dissimilarities is the pignistic transform as
proposed by Tessem [32] or Liu [20]. Tessem dissimilarity is defined as follows:

dT (m1,m2) = ‖betp1 − betp2‖∞ , (10)

with betpi = vec (betpi) the vector corresponding to the pignistic probability
distribution obtained from mi.
In the same vein, Zouhal and Denœux [34] also define a dissimilarity measure
based on the pignistic transform but they use the euclidean L2 norm instead of
the L∞ norm:

dZD(m1,m2) = ‖betp1 − betp2‖2. (11)

Other indirect dissimilarities [14] can be obtained in a space spanned by fuzzy
set distributions. The vector-based distances cited in this subsection constitute
a small sample of those found in the literature. However, this is a representa-
tive sample with respect to the diversity of evidential dissimilarities. They are
therefore relevant candidates for a comparison with the new distances that will
be introduced in the next subsection.

3.2 Matrix-based evidential distances

Since evidential matrices and mass functions are in one-to-one correspondence,
assessing the distance between bodies of evidence can also be performed using
distances between evidential matrices. The set of N ×N matrices is denoted by
MN and has the algebraic properties of a vector space as well. Consequently,
matrix distances are not much different from vector distances. In this paper, we
focus on matrix distances induced by matrix norms. A matrix norm is defined
as follows:

Definition 2. A matrix norm ‖.‖ is a mapping defined on Mn −→ R+

satisfying the following conditions: ∀,A and B ∈ MN

1. ‖A‖ = 0 ⇔ A = 0,

2. ‖λA‖ = |λ|. ‖A‖, for all λ ∈ R+,

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖,

A matrix norm is sub-multiplicative, if in addition one has:

‖AB‖ ≤ ‖A‖ ‖B‖ .
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Any norm induces a distance defined as the norm of the difference between a pair
of elements. Alleging that a matrix norm is bounded for evidential matrices, we
thus introduce the following families of normalized evidential distances:

Definition 3. An α-specialization distance d is a mapping such that there
exists a bounded matrix norm ‖.‖ and an α-conjunction ∩©α with:

d : S × S → [0, 1] ,

m1 ×m2 →
1

ρ

∥

∥K∩
1,α −K∩

2,α

∥

∥ . (12)

K∩
i,α is the α-specialization matrix corresponding tomi and ρ = maxA,B∈2Ω

∥

∥K∩
A,α −K∩

B,α

∥

∥

is a normalization factor.

Definition 4. An α-generalization distance d is a mapping such that there
exists a bounded matrix norm ‖.‖ and an α-disjunction ∪©α with:

d : S × S → [0, 1] ,

m1 ×m2 →
1

ρ

∥

∥K∪
1,α −K∪

2,α

∥

∥ . (13)

K∪
i,α is the α-generalizationmatrix corresponding tomi and ρ = maxA,B∈2Ω

∥

∥K∪
A,α −K∪

B,α

∥

∥

is a normalization factor.

The family of α-specialization distances is an extension of the family intro-
duced in [21] which corresponds to the α = 1 case. Among existing matrix
norms, we focus in this article on the most frequently used ones, namely: Lk

norms and operator norms.
Lk matrix norms are also known as entry-wise norms. Since matrices are ele-
ments of the vector spaceMN , the definition of Lk matrix norms is the following:

‖A‖k =





∑

1≤j≤n

∑

1≤i≤n

|Aij |
k





1
k

. (14)

Both Lk vector norms and Lk matrix norms are denoted by ‖.‖k. They are
easily distinguished since vectors are in small letters and matrices are in capital
letters.
The k-operator norm ‖.‖opk, also known as induced norm, is defined for any
matrix A ∈ MN as follows:

‖A‖opk = max
x∈RN ,x 6=0

‖Ax‖k
‖x‖k

= max
x∈RN ,‖x‖k=1

‖Ax‖k . (15)

with ‖.‖k the classical Lk vector norm. In particular, the 1-operator norm writes
as:

‖A‖op1 = max
1≤j≤n

∑

1≤i≤n

|Aij |. (16)
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It can be noted that any evidential matrix K is such that ‖K‖op1 = 1. In the
sequel, dk denotes the α-specialization or α-generalization distance relying on
the Lk matrix norm. The notation dopk is used when the distance relies on
the k-operator norm. In the same fashion as for evidential matrices, the value
of α and the conjunctive or disjunctive nature of these distances are given in
exponent when necessary.

A first result concerning the newly introduced distances is that there is a
duality between α-specialization distances and α-generalization distances that
has its roots in the De Morgan relations proved in [28]. The following proposition
formalizes this duality.

Proposition 1. Suppose α ∈ [0, 1]. Let d∩ be an α-specialization distance with
respect to the α-conjunctive rule ∩©α and relying on an operator or Lk matrix
norm. Let d∪ be an α-generalization distance with respect to the α-disjunctive
rule ∪©α and relying on the same norm. For any mass functions m1 and m2 on
a domain Ω, one has:

d∩ (m1,m2) = d∪ (m1,m2) . (17)

Proof. Let K∩
i and K∪

i be the α-specialization matrix and the α-generalization

matrix of mi with i ∈ {1; 2}. Let K
∩
i and K

∪
i be the α-specialization matrix

and the α-generalization matrix of mi with i ∈ {1; 2}. According to theorem

12.1 in [28], we have K∩
i = JK

∪
i J with J the binary anti-diagonal matrix. It

follows that:

d∩ (m1,m2) =
1

ρ
‖K∩

1 −K∩
2 ‖ ,

=
1

ρ

∥

∥

∥JK
∪
1 J− JK

∪
2 J

∥

∥

∥ ,

=
1

ρ

∥

∥

∥J
(

K
∪
1 −K

∪
2

)

J

∥

∥

∥ .

Since J is a permutation matrix and that any Lk matrix norm or operator norm

computation is invariant to column or line relabeling, one has
∥

∥

∥J
(

K
∪
1 −K

∪
2

)

J

∥

∥

∥ =
∥

∥

∥K
∪
1 −K

∪
2

∥

∥

∥ = ρd∪ (m1,m2).

Proposition 1 sheds light on ties between α-specialization distances and α-
generalization distances. When α ∈ {0; 1}, it appears that these ties are stronger
as illustrated by Lemma 2:

Lemma 2. Let d∩,α be an α-specialization distance with respect to the α-
conjunctive rule ∩©α and relying on an operator or Lk matrix norm. Let d∪,α

be an α-generalization distance with respect to the α-disjunctive rule ∪©α and
relying on the same norm. For any mass functions m1 and m2 on a domain Ω,
one has:

d∩,0 = d∪,0, (18)

d∩,1 = d∪,1. (19)

12



The proof of Lemma 2 is given in appendix A. This result shows that, for
extreme values of α, α-specialization distances and α-generalization distances
are identical. Consequently, the underlying meta-information is treated in the
same way in these special cases. The following example shows that this is not
true when α ∈ ]0, 1[:

Example 3. Suppose Ω is a domain and X a subset of Ω. Let m be a mass
function such that:

m = 0.3mX + 0.5mX + 0.2mΩ.

Figure 1 shows α-specialization and α-generalization distances relying on the
L1 matrix norm between m and mX when |Ω| = 3 and |X | = 2.

0.6

0.62

0.64

0.66

0.68

0.7

0 0.2 0.4 0.6 0.8 1
α

Distance d1 w.r.t. α and to the conjunctive / disjunctive case

α-specialization distance d1
α-generalization distance d1

Figure 1: Different α-specialization and α-generalization distances relying on
the L1 matrix norm. These distances are computed between two given mass
functions m1 and m2 such that m1 = mX and m2 = 0.3mX + 0.5mX + 0.2mΩ,
with |Ω| = 3 and |X | = 2.

Besides, proposition 1 allows us to anticipate the fact that if an α-specialization
distance satisfies a given property then so does its α-generalization counterpart.
Concerning evidential distance properties, we argued in [21] that, on top of met-
ric properties, two other properties are especially interesting. The definitions
and justifications of each of them are given respectively in section 4 and 5. We
will also examine what α-specialization distances and α-generalization distances
may satisfy these properties.

4 Consistency with α-junctions

One way to formalize the consistency of an evidential distance with a combina-
tion rule is given by the following definition:

Definition 5. Let ⊙ be a combination rule and d an evidential distance. d is
said to be consistent with respect to ⊙ if for any mass functions m1,m2 and
m3 on Ω:

d (m1 ⊙m3,m2 ⊙m3) ≤ d (m1,m2) . (20)

13



Suppose each mass function m can be decomposed into elementary pieces
of evidence such that their aggregation using a combination rule gives m. For
instance, Shafer [26] introduced the canonical decomposition under Dempster’s
rule of a particular class of mass functions into simple mass function sets. Us-
ing a consistent evidential distance, mass functions are all the closer as their
decompositions involve identical elementary pieces of evidence.

4.1 Results on the consistency of matrix-based evidential

distances

We provide several results concerning the consistency of α-specialization dis-
tances and α-generalization distances. The first one deals with these distances
when the 1-operator norm is used:

Proposition 2. Any α-specialization or α-generalization distance dop1 defined
using the 1-operator norm is consistent with its corresponding α-junctive com-
bination rule.

Proof. Suppose m1, m2 and m3 are three mass functions defined on Ω. K1, K2

andK3 are their respective evidential matrices with respect to a given α-junction
denoted by ⊙α. The 1-operator-norm has the sub-multiplicative property, i.e.
for all matrices A and B, one has:

‖AB‖op1 ≤ ‖A‖op1 . ‖B‖op1

One can thus write:

‖(K1 −K2)K3‖op1 ≤ ‖K1 −K2‖op1 . ‖K3‖op1 ,

Given that ‖K3‖op1 = 1, we have:

‖(K1 −K2)K3‖op1 ≤ ‖K1 −K2‖op1 ,

⇔ dop1 (m1 ⊙
α m3,m2 ⊙

α m3) ≤ dop1 (m1,m2) .

By definition, this latter inequality means that distance dop1 is consistent with
rule ⊙α.

Another result holds when α-specialization or α-generalization distances are
defined using the L1 matrix norm. To prove this result, it is first necessary to
introduce the following lemma:

Lemma 3. Suppose m1 and m2 are two mass functions defined on Ω and A
and B are two subsets such that A ⊆ B ⊆ Ω. Then, the following properties
hold for any α-conjunctive rule ∩©α and any α-disjunctive rule ∪©α

‖m1∩αA −m2∩αA‖1 ≤ ‖m1∩αB −m2∩αB‖1 , (21)

‖m1∪αA −m2∪αA‖1 ≥ ‖m1∪αB −m2∪αB‖1 . (22)

14



The proof of Lemma 3 is given in appendix B. From this lemma, we deduce
the following corollary:

Corollary 1. Suppose m1 and m2 are two mass functions defined on Ω. Let dop1
be an α-specialization or α-generalization distance defined using the 1-operator
norm. We have:

dop1 (m1,m2) =
1

ρ
‖m1 −m2‖1 . (23)

This means that the 1-operator distance dop1 is the L
1 distance between mass

vectors for any α. The proof of corollary 1 is given in appendix C. This corollary
also implies that ρ = 2 for dop1. Equipped with these preliminary results, we
are now able to provide the following proposition regarding the consistency of
distances defined using the L1 norm:

Proposition 3. Any α-specialization or α-generalization distance d1 defined
using the L1 matrix norm is consistent with its corresponding α-junctive com-
bination rule.

Proof. Suppose m1, m2 and m3 are three mass functions defined on Ω. Suppose
K1, K2 and K3 are their respective evidential matrices with respect to an α-
junction denoted by ⊙α. The L1 norm of a matrix is the sum over all columns
of the L1 norms of its column vectors:

‖(K1 −K2)K3‖1 =
∑

A⊆Ω

∥

∥m13|αA −m23|αA

∥

∥

1
, (24)

with mi3|αA = mi ⊙α mA ⊙α m3. Besides, according to proposition 2, dop1 is
consistent with ⊙α. Inequality (20) thus applies, and after multiplying both
sides of this inequality by ρ, we have that for any A ⊆ Ω:

∥

∥

(

K1|αA −K2|αA

)

K3

∥

∥

op1
≤

∥

∥K1|αA −K2|αA

∥

∥

op1
,

with Ki|αA the evidential matrix corresponding to mi|αA with respect to ⊙α.
Now applying corollary 1 on each side of the above inequality gives:

∥

∥m13|αA −m23|αA

∥

∥

1
≤

∥

∥m1|αA −m2|αA

∥

∥

1
. (25)

Let us now use this inequality in equation (24):

‖(K1 −K2)K3‖1 ≤
∑

A⊆Ω

∥

∥m1|αA −m2|αA

∥

∥

1
,

‖(K1 −K2)K3‖1 ≤ ‖(K1 −K2)‖1 .

Finally, dividing both sides of the above inequality by ρ gives:

d1 (m1 ⊙
α m3,m2 ⊙

α m3) ≤ d1 (m1,m2) .

By definition, this latter inequality means that distance d1 is consistent with
rule ⊙α.
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One last result is available for α-specialization or α-generalization distances
defined using the L∞ matrix norm:

Proposition 4. Any α-specialization or α-generalization distance d∞ defined
using the L∞ matrix norm is consistent with its corresponding α-junctive com-
bination rule.

Proof. Suppose m1, m2 and m3 are three mass functions defined on Ω. K1, K2

and K3 are their respective evidential matrices with respect to an α-junction
⊙α. The L∞ norm of a matrix is the max of the L∞ norms of its column vectors.
Since a column vector of Ki writes as mi|αB with B ⊆ Ω, there exists a subset
X such that :

‖(K1 −K2)K3‖∞ =
∥

∥(K1 −K2)m3|αX

∥

∥

∞
,

=

∥

∥

∥

∥

∥

∥

(K1 −K2)
∑

Y⊆Ω

m3|αX (Y )mY

∥

∥

∥

∥

∥

∥

∞

,

≤
∑

Y⊆Ω

m3|αX (Y ) ‖(K1 −K2)mY ‖∞ .

Again, the L∞ norm ofK1−K2 is the max of the L∞ norms of its colums vectors
: maxY⊆Ω ‖(K1 −K2)mY ‖∞ = ‖(K1 −K2)‖∞. Each term in the previous
inequation is maximized by ‖(K1 −K2)‖∞ which gives:

‖(K1 −K2)K3‖∞ ≤
∑

Y⊆Ω

m3|αX (Y ) ‖(K1 −K2)‖∞ ,

≤ ‖(K1 −K2)‖∞ .

After normalization, the above inequation gives d∞ (m1 ⊙α m3,m2 ⊙α m3) ≤
d∞ (m1,m2).

The following subsection investigates the inconsistency of distances dJ , d2,
dop2 and dop∞ with respect to α-junctions through a numerical experiment.

4.2 Experiments on consistency

This section contains experiments illustrating the (in)consistency of several ev-
idential distances with respect to α-conjunctive and α-disjunctive rules. For
each distance and each value of α, one iteration of this experiment consists in
picking three random mass functions and check if inequality (20) is verified. The
number of times that the property is verified over the number of iterations gives
the consistency rate of the distance for a given α.
In order to provide such rates, it is necessary to generate mass functions ran-
domly. It is sufficient to draw simple mass functions because cases of inconsis-
tency are more frequent with such functions. Random simple mass functions
are drawn uniformly using an algorithm presented in [2] and applied to simple
mass function sub-simplices.
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In figure 2, consistency rates for α-conjunctive rules and several evidential
distances are shown. For this experiment, 1e4 iterations were used. Figure 3
shows the same results for α-disjunctive rules.
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Figure 2: Consistency rates of several evidential distances with α-conjunctive
rules with respect to parameter α.

As expected, the rates of dop1, d1 and d∞ are 100% in both the conjunctive
and disjunctive cases. A rate under 100% is sufficient to prove the inconsistency
of a distance. We can therefore conclude that d2, dop2 and dop∞ are inconsistent
when α 6= 0. It can be conjectured that they are consistent when α = 0. The
experiment also proves the inconsistency of dJ , dT and dZ with any α-junction
except for the disjunctive case when α = 0. Their consistency in this latter case
may also be conjectured.

5 Poset structure and evidential matrix-based

metrics

In [17], Jousselme and Maupin shed light on the fact that evidential distances
should not process mass functions as if they were any vectors living in the mass
space S. Indeed, the power set 2Ω endowed with the inclusion partial order ⊆
is a poset, therefore, A ⊆ B should induce a similar relation between the base
vectors mA and mB with consequences on distance values.
In [21], we formalized this intuitive principle into the structure property charac-
terizing the existence of an order-isomorphism between an evidential distance
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Figure 3: Consistency rates of several evidential distances with α-disjunctive
rules with respect to parameter α.

between categorical mass function and a relevant set distance3. Experiments
in [21] show that this property is sufficient but not necessary to guarantee that
the poset structure is correctly taken into account. In this article, we thus
introduce a new property called ⊆-compatibility property:

Definition 6. An evidential distance d is said to be ⊆-compatible if its re-
striction to categorical mass functions is not the trivial4 set distance dtriv and
if ∀A B,C ⊆ Ω such that A ⊆ B ⊆ C, one has:

d (mA,mB) ≤ d (mA,mC) . (26)

This property ensures that evidential distances between categorical mass
functions have similar dynamics as relevant set distances like the Jaccard dis-
tance or the Hamming set distance.

5.1 Results on the compatibility of matrix-based eviden-

tial distances with the inclusion partial order

Among α-specialization or α-generalization distances, let us first focus on dop1
and d∞:

3A set distance is a metric on
(

2Ω,⊆
)

.
4For any sets A and B, the trivial metric equals 1 whenever A 6= B.
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Proposition 5. Let Ω be a domain and A,B ⊆ Ω. Any α-specialization or
α-generalization distance dop1 or d∞ defined respectively using the 1-operator
or the L∞ matrix norm is ⊆-incompatible. Moreover, for any categorical mass
functions mA and mB, we have:

dop1 (mA,mB) = d∞ (mA,mB) = dtriv (A,B) . (27)

Proof. Since dop1 and d∞ are metrics, we have dop1 (mA,mB) = d∞ (mA,mB) =
0 when A = B.
Let us now focus on the A 6= B case. From corollary 1, we know that dop1 (mA,mB) =
1
ρ ‖mA −mB‖1. Distances dop1 and d∞ share the same normalization constant:

ρ = 2. If A 6= B, then ‖mA −mB‖1 = 2 and thus dop1 (mA,mB) = 1. In ad-
dition, for categorical mass functions, we have ‖mA −mB‖1 = ‖mA −mB‖∞,
hence:

dop1 (mA,mB) =
1

2
‖mA −mB‖∞ ,

⇒ dop1 (mA,mB) ≤
1

2
‖KA −KB‖∞ ,

⇔ dop1 (mA,mB) ≤ d∞ (mA,mB) . (28)

Since d∞ is normalized, we deduce that d∞ (mA,mB) = 1.

The above result shows that the definition of the ⊆-compatibility property
makes sense because dop1 is actually equivalent to a vector distance which does
not grasp the poset structure of 2Ω at all.
The following lemma shows that the restriction of d1 to the set of categorical
mass functions is not the trivial distance:

Lemma 4. Suppose mA and mB are two categorical mass functions on A and
B, two subsets of Ω. Let d1 be an L1 based distance with respect to a given
α-junction. ∀α ∈ [0, 1], the following result for d1 holds :

d1 (mA,mB) =
2N

ρ

(

1−
αmax{|A\B|;|B\A|}

2|A∆B|

)

. (29)

The proof of this lemma is found in appendix D. This proof also shows that
ρ = 2 (N − αn) for d1. Equipped with this lemma, one is now able to prove the
following proposition:

Proposition 6. Any α-specialization or α-generalization distance d1 defined
using the L1 matrix norm is ⊆-compatible provided that α 6= 0.

Proof. Under the α = 0 case, we have d1 (mA;mB) = dtriv (A,B) and d1 is
⊆-incompatible.
Let us now suppose that α > 0. For any sets A,B ⊆ Ω such that A ⊆ B,
we have max {|A \B|; |B \A|} = |B \ A| and |A∆B| = |B \ A|, which implies

d1 (mA,mB) = 2N
ρ

(

1−
(

α
2

)|B\A|
)

. Now if C is such that A ⊆ B ⊆ C, then

|B \A| ≤ |C \A| which is equivalent to d1 (mA,mB) ≤ d1 (mA,mC).
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The next subsection gives more details on the compatibility of other eviden-
tial distances with the inclusion partial order thanks to a numerical experiment.

5.2 Experiments on compatibility with the inclusion par-

tial order

The experiments contained in this section are meant to determine what ev-
idential distances are compliant with inequation (26) when categorical mass
functions are compared. To that end, let us study the following toy-example:

Example 4. This example is inspired from an example presented in [16] and
re-used in [14, 21]. Let mX and mAi

be two categorical mass functions defined
on the domain Ω = {ωi}

n
i=1, with X = {ω1, ω2, ω3} and n = |Ω| = 7. The subset

Ai varies by successive inclusions of a singleton at each step starting from ∅ and
reaching Ω at the last computation step:

i: computation step focal element Ai

0 ∅
1 {ω1}
2 {ω1, ω2}
3 {ω1, ω2 ω3} = X
4 {ω1, ..., ω4}
... ...
7 Ω

The values of several evidential distances are shown in figure 4 for each
step i. Note that it is unnecessary to include α-generalization distances in this
experiment because we know from proposition 1 that they behave similarly as
α-specialization distances when comparing categorical mass functions.
A ⊆-compatible distance must be decreasing when i ∈ {0; ...; 3} and increasing
when i ∈ {3; ...; 7}. To this regard, d2 (when α = 0.25), dop2 (when α = 0.5)
and dop∞ (when α = 0.25) are ⊆-incompatible. It can be conjectured that any
matrix-based evidential distance between categorical mass function is the trivial
distance when α = 0.
As for vector distances, dZ is also ⊆-incompatible while it can be proved that
dT and dJ are both ⊆-compatible.

6 Meta-information influence on distances

This section highlights the behavior of α-specialization and α-generalization dis-
tances in the context of a meta-information dependent information fusion prob-
lem. We limit ourselves to meta-information items pertaining to α-junctions as
described in subsection 2.3, i.e. source states.
When the source states are completely unknown, the behavior-based correc-
tion introduced by Pichon et al. [25] gives that mass functions delivered by the
sources should be replaced with vacuous ones. Any evidential distance is thus
null in such a case. Given that the sources are equally poorly informative, this
result makes sense.
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Figure 4: Evidential distances and dissimilarities between two categorical mass
functions: mX and mAi

defined on Ω, with |Ω| = 7 and |X | = 3. The set Ai

varies by successive inclusions from ∅ to Ω and A3 = X . The matrix-based
evidential distances involved in this experiment are α-specialization distances
and five values of α are considered:

{

0; 1
4 ;

1
2 ;

3
4 ; 1
}

.
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Let us now examine the opposite situation where meta-information is certain
and precise, i.e. the meta-events {source S1 is in state t1C} and {source S2 is
in state t2D} are sure. In this case, the same correction mechanism can be used
on each mass function to make them deliver only righteous pieces of evidence.
Indeed, back to example 1, we came to the conclusion that a categorical mass
function mA delivered by a source in state tiC should be replaced with the func-
tion mA∆C . Now, more generally, if m1|t1

C
denotes the mass function that S1

should have delivered, then we deduce:

m1|t1
C
(Y ) =

∑

X⊆Ω

Y =C∆X

m1 (X) = m1

(

C∆Y
)

, (30)

because X = C∆Y ⇔ Y = C∆X.
Using this mechanism, one can compute distances between corrected mass func-
tions without minding meta-information. Although this mechanism is simple
and easy to implement, it is however unlikely that such steady meta-information
is available in practice.
A more realistic situation is when both sources lie in the same way but one does
not known which lie is committed. For instance, many real-world systems pos-
sess redundant sensors which may be malfunctioning in the same way because
they undergo the same experimental conditions. In this particular situation,
a relevant mass function comparison is delivered by some α-specialization and
α-generalization distances in spite of the meta-information imprecision. Indeed,
we have the following result:

Proposition 7. Let m1 and m2 be two mass functions on a domain Ω delivered
by two sources S1 and S2 that are in states t1C and t2C . If d is a specialization
distance relying on an Lk matrix norm or on the 1-operator norm, then we have:

d (m1,m2) = d
(

m1|t1
C
,m2|t2

C

)

, (31)

with m1|t1
C

and m2|t2
C

the mass functions that would have been delivered by S1

and S2 if they were both fully truthful.

Proof. Let Ω be a domain and B,C ⊆ Ω. Let σB denote a mapping such that:

σB : 2B → 2B,

X → C∆X ∩B.

This mapping is idempotent: σ−1
B (Y ) = σB (Y ). Indeed, for any X ⊆ B, we
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have:

σB (σB (X)) =
(

X∆C ∩B
)

∆C ∩B,

=
((

X∆C ∩B ∩ C
)

∪
(

X∆C ∩B ∩ C
))

∩B,

=
(

X∆C ∩B ∩ C
)

∪
(

(X∆C) ∪B
)

∩ C ∩B,

= (X ∩C ∩B ∩C) ∪
(

X ∩ C ∩B ∩ C
)

∪

(X∆C) ∩ C ∩B,

= (X ∩C) ∪
(

X ∩ C ∪ X ∩ C
)

∩C ∩B,

= (X ∩C) ∪
(

X ∩ C
)

,

= X.

σB is thus a permutation on 2B.
From equation (30), a corrected mass function mi|ti

C
is obviously equal to

mi ◦ σΩ. This is sufficient to conclude for the 1-operator norm because this
norm is actually a vector norm whose computation is invariant with respect
to component permutations. For Lk matrix norms, one must first remark that
∀A,B,X ⊆ Ω,

X ∩B = A ∩B ⇔ σΩ (X) ∩B = σΩ (A) ∩B.

It follows that mi|B (A ∩B) = mi|ti
C
,B (σB (A)), with mi|ti

C
,B = mi|tC ∩©mB.

Let Si and Si|ti
C
be the specialization matrices corresponding to mi and mi|ti

C

respectively. Remembering that mi|B and mi|ti
C
,B are the jthB (in the binary

order sense) column vectors of Si and Si|ti
C
, it appears that each column of Si|ti

C

is obtained by permuting non-null elements of the same column in Si. Since Lk

matrix norm computation is invariant to matrix component permutations, one
has :

∥

∥

∥
S1|t1

C
− S2|t2

C

∥

∥

∥

k
= ‖S1 − S2‖k ,

⇔ dk (m1,m2) = dk

(

m1|t1
C
,m2|t2

C

)

.

Proposition 7 is interesting in the sense that, when sources are corrupted in
same way, the same distance value is obtained as if they were delivering truthful
pieces of evidence. This property is illustrated in the following example:

Example 5. The same mass functions as in example 3 are used: m1 = mX and
m2 = 0.3mX + 0.5mX + 0.2mΩ. However, we chose here |Ω| = 7 and |X | = 3.
Suppose Ci is a subset varying by successive inclusions from ∅ to Ω and C3 = X .
Figure 5 displays distances between m1|t1

Ci

and m2|t2
Ci

.
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Figure 5: Different evidential distances between same-state-sources. These dis-
tances are computed between two given mass functions m1|t1

Ci

and m2|t2
Ci

such

that m1 = mX and m2 = 0.3mX + 0.5mX + 0.2mΩ, with |Ω| = 7 and |X | = 3.
The state set Ci varies by successive inclusions from ∅ to Ω and A3 = X .

Significant discrepancies are observed for vector distances as well as for dop2
and dop∞ showing that their distance values are irrelevant if meta-knowledge
cannot be filtered.

7 Conclusion

In the theory of belief functions, evidence is summarized through a mass func-
tion. Since mass functions are in one-to-one correspondence with several ma-
trices, two bodies of evidence can be compared by computing the norm of the
difference between such matrices. By investigating several matrix norms, infi-
nite families of evidential distances are introduced in this article. These families
generalize the specialization distances presented in [21].
In addition, we prove that some of these distance families are consistent with
α-junctions in the sense that two mass functions are closer after performing
an α-junction with the same evidence on both of them. This result is mainly
explained by the fact that the definition of matrices used in our evidential dis-
tances is closely related to α-junctions.
Besides, mass functions are set functions and their domain has a poset structure.
It is proved that the sub-family relying on the L1 matrix norm is compatible
with the inclusion partial order if α > 0.
Finally, a new aspect of evidential distances is also investigated: the influence
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of meta-information on information source truthfulness. The main conclusion
to draw is that when two sources lie in the same way, distances relying on Lk

matrix norms or on the 1-operator norm are invariant to mass permutations
pertaining to the lie if α = 1.
There are several perspectives for future works. Concerning theoretical aspects,
other polytope metrics in other evidential spaces will be investigated along with
their potential new properties. In particular, metrics defined in the Belief space5

are likely to be naturally compatible with the inclusion partial order. Concern-
ing practical aspects, we plan to use the distances introduced in this paper
for several mass function approximation problems. Indeed, optimization algo-
rithms are highly dependent on the properties of the metrics on which they
rely. Finally, it is also intended to study a system containing redundant sen-
sors. As redundant sensors are supposed to lie in the same way, a distance cited
in proposition 7 is a relevant candidate to detect a failure among such sensors.

A Proof of Lemma 2

Proof. Let K∩
i,0 and K∪

i,0 be the 0-specialization matrix and the 0-generalization
matrix of mi with i ∈ {1; 2}. If α = 0, equation (3) reduces to:

m1∩0B (A) =
∑

X∆B=A

m1 (X) ,

=
∑

X∆B=A

m1 (X) ,

= m1∪0B

(

A
)

. (32)

This is equivalent to JK∩
i,0 = K∪

i,0. A similar reasoning as in the proof of

proposition 1 gives d∩,0 = d∪,0.
Let K∩

i and K∪
i be the specialization matrix and the generalization matrix of

mi with i ∈ {1; 2}. For any A and B ⊆ Ω we have:

m1∪1B

(

A ∪B
)

=
∑

X∪B=A∪B

m1 (X) ,

=
∑

X∩B=A∩B

m1 (X) . (33)

Let us observe that B is the disjoint union of B \X with B \X as well as the
disjoint union of B\A with B\A. Consequently, B\X = B\A ⇔ B\X = B\A,
which gives:

m1∪1B

(

A ∪B
)

=
∑

X∩B=A∩B

m1 (X) ,

= m1∩1B (A ∪B) . (34)

5The Belief space is the subset of RN in which belief functions live. Mass functions are in
bijective correspondence with belief functions via the Möbius transform.
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In other words, matrices K∩
i and K∪

i contain the same elements but their po-
sitions are different. Again, a similar reasoning as in the proof of proposition 1
gives d∩,1 = d∪,1.

B Proof of Lemma 3

Proof. Let KA denote the evidential matrix of any categorical mass function
mA with respect to an α-junction. If A = B, the properties are trivially proved.
If A ( B, ∃x ∈ B such that x /∈ A. Let us now separate the α-conjunctive case
and the α-disjunctive case:

• α-conjunction case: Theorem 13 in [27] gives KA =
∏

x′ /∈A K{x′}. This

allows us to write:
‖m1∩αA −m2∩αA‖1

= ‖KA m1 −KA m2‖1 ,

= ‖KA (m1 −m2)‖1 ,

=
∥

∥

∥K{x} KA∪{x} (m1 −m2)
∥

∥

∥

1
. (35)

The very definition of the 1-operator norm for matrix K
{x}

writes as

follows:

∥

∥

∥K{x}

∥

∥

∥

op1
= max

u∈RN

∥

∥

∥K{x}u

∥

∥

∥

1

‖u‖1
.

As KA∪{x} (m1 −m2) is a particular vector belonging to RN and given

that
∥

∥

∥K{x}

∥

∥

∥

op1
= 1, we have :

1 ≥

∥

∥

∥K{x} KA∪{x} (m1 −m2)
∥

∥

∥

1
∥

∥KA∪{x} (m1 −m2)
∥

∥

1

. (36)

Using the above inequality in equation (35) gives:

‖m1∩αA −m2∩αA‖1 ≤
∥

∥m1∩(A∪{x}) −m2∩(A∪{x})

∥

∥

1
.

The same result can be used by successive inclusions of any other element
x′ belonging to B while not belonging to A, hence:

‖m1∩αA −m2∩αA‖1 ≤ ‖m1∩αB −m2∩αB‖1 .

• α-disjunctive case: Theorem 11 in [27] gives KA∪{x} =
∏

x′∈A∪{x}K{x′}.
This allows us to write:
∥

∥m1∪α(A∪{x}) −m2∪α(A∪{x})

∥

∥

1

=
∥

∥KA∪{x} m1 −KA∪{x} m2

∥

∥

1
,

=
∥

∥KA∪{x} (m1 −m2)
∥

∥

1
,

=
∥

∥K{x} KA (m1 −m2)
∥

∥

1
. (37)
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The very definition of the 1-operator norm for matrix K{x} writes as
follows:

∥

∥K{x}

∥

∥

op1
= max

u∈RN

∥

∥K{x}u
∥

∥

1

‖u‖1
.

As KA (m1 −m2) is a particular vector belonging to RN and given that
∥

∥K{x}

∥

∥

op1
= 1, one has :

1 ≥

∥

∥K{x} KA (m1 −m2)
∥

∥

1

‖KA (m1 −m2)‖1
. (38)

Using the above inequality in equation (37) gives:

∥

∥m1∪α(A∪{x}) −m2∪α(A∪{x})

∥

∥

1
≤ ‖m1∪αA −m2∪αA‖1 .

The same result can be used by successive inclusions of any other element
x′ belonging to B while not belonging to A, hence:

‖m1∪αA −m2∪αA‖1 ≥ ‖m1∪αB −m2∪αB‖1 .

C Proof of corollary 1

Proof. K1 and K2 are the evidential matrices corresponding to m1 and m2

with respect to a given α-junction. Let us use the following definition of the
1-operator matrix norm for matrix K1 −K2:

‖K1 −K2‖op1 = max
B⊂Ω

∑

A⊂Ω

|K1(A,B)−K2(A,B)|. (39)

Let us now separate the α-conjunctive case and the α-disjunctive case:

• In case of an α-conjunction, equation (39) also writes:

‖K1 −K2‖op1 = max
B⊂Ω

‖m1∩αB −m2∩αB‖1 .

Using Lemma 3, it is clear that the maximum norm is obtained for the
largest set B, i.e. when B = Ω, hence:

‖K1 −K2‖op1 = ‖m1∩αΩ −m2∩αΩ‖1 ,

= ‖m1 −m2‖1 .

• In case of an α-disjunction, equation (39) writes:

‖K1 −K2‖op1 = max
B⊂Ω

‖m1∪αB −m2∪αB‖1 .
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Using Lemma 3, it is clear that the maximum norm is obtained for the
smallest set B, i.e. when B = ∅, hence:

‖K1 −K2‖op1 = ‖m1∪α∅ −m2∪α∅‖1 ,

= ‖m1 −m2‖1 .

D Proof of Lemma 4

Proof. Let us first consider that d1 is defined with respect to an α-conjunctive
rule. Let KA and KB be the evidential matrices corresponding to mA and
mB with respect to the rule ∩©α and let ρ be a normalization coefficient. By
definition of distance d1, one can write:

d1 (mA,mB) =
1

ρ
‖KA −KB‖1 ,

=
1

ρ

∑

X,Y

|KA (X,Y )−KB (X,Y ) |.

Given results in [18], it is known that the element KA (X,Y ) of matrix KA is
non-null if and only if A ∩ Y ⊆ X ⊆ A∆Y . Consequently, matrix elements are
actually subtracted if A ∩ Y ⊆ X ⊆ A∆Y and B ∩ Y ⊆ X ⊆ B∆Y . Let us
analyze this situation:

• If X is a superset of both A ∩ Y and B ∩ Y , then X is a superset of
(A ∪B) ∩ Y = (A ∩ Y ) ∪ (B ∩ Y ).

• If X is a subset of both A∆Y and B∆Y , then it is a subset of A ∪B ∪ Y ∪
(A ∩B ∩ Y ) = A∆Y ∩B∆Y .

Let I = A ∩B ∩ Y and U = A ∪B ∪ Y . One can write:

‖KA −KB‖1 =
∑

X,Y

(A∪B)∩Y ⊆X⊆U∪I

|KA (X,Y )−KB (X,Y ) |

+
∑

X,Y

A∩Y ⊆X⊆A∆Y

B∩Y *X or X*B∆Y

KA (X,Y ) +
∑

X,Y

B∩Y ⊆X⊆B∆Y

A∩Y *X or X*A∆Y

KB (X,Y ) ,

= ‖KA‖1 + ‖KB‖1 +
∑

X,Y

(A∪B)∩Y ⊆X

X⊆U∪I

G (X,Y ) ,

withG a matrix whose elements are such thatG (X,Y ) = |KA (X,Y )−KB (X,Y ) |−
KA (X,Y )−KB (X,Y ). Given that the L1 norm of any evidential matrix is N
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and that evidential matrices are positive, we can also write:

‖KA −KB‖1 = 2N − 2
∑

X,Y

(A∪B)∩Y ⊆X

X⊆U∪I

KA∧B (X,Y ) ,

with KA∧B the entry-wise minimum of matrices KA and KB. It can be proved
that (A ∪B) ∩ Y ⊆ U ∪ I ⇔ Y ⊆ A∆B, which gives:

‖KA −KB‖1 = 2N − 2
∑

Y

Y ⊆A∆B

∑

X

(A∪B)∩Y ⊆X

X⊆U∪I

KA∧B (X,Y ) .

Given that Y ⊆ A∆B, we have (A ∪B) ∩ Y = A ∩ B ∩ Y . Consequently, it
appears that all subsets X are the union of I with a given subset of U . The
second sum can thus be re-indexed as follows:

‖KA −KB‖1 = 2N − 2
∑

Y
Y ⊆A∆B

∑

X
X⊆U

KA∧B (X ∪ I, Y ) .

From proposition 1 in [18], we have that for any set C such that C ∩X = ∅:
KA∧B (X ∪ C, Y )

= min

{

α|A∆Y |

α|A∩Y |

(

α

α

)|X∪C|

;
α|B∆Y |

α|B∩Y |

(

α

α

)|X∪C|
}

,

= min

{

α|A∆Y |

α|A∩Y |
;
α|B∆Y |

α|B∩Y |

}

(

α

α

)|X∪C|

,

= min

{

α|A∆Y |

α|A∩Y |
;
α|B∆Y |

α|B∩Y |

}

(

α

α

)|X|+|C|

.

The sum over subsets X can thus be explicitly computed:
∑

X
X⊆U

KA∧B (X ∪ I, Y )

= min

{

α|A∆Y |

α|A∩Y |
;
α|B∆Y |

α|B∩Y |

}

(

α

α

)|I|
∑

X

X⊆U

(

α

α

)|X|

,

= min

{

α|A∆Y |

α|A∩Y |
;
α|B∆Y |

α|B∩Y |

}

(

α

α

)|I| |U|
∑

i=1

(

|U|

i

)(

α

α

)i

,

= min

{

α|A∆Y |

α|A∩Y |
;
α|B∆Y |

α|B∩Y |

}

(

α

α

)|I|(
α

α
+ 1

)|U|

,

= min

{

α|A∆Y |

α|A∩Y |
;
α|B∆Y |

α|B∩Y |

}

(

α

α

)|I|

α−|U|.
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Besides, since Y ⊆ A∆B, Y is the union of two disjoint subsets W ⊆ A∩B
and Z ⊆ A ∪B. In particular, we have:

• |A∆Y | = |A∆(W ∪ Z)| = |(A ∪ Z) \W | = n−|A|−|Z|+|W | and likewise
|B∆Y | = n− |B| − |Z|+ |W |,

• |A ∩ Y | = |A ∩ (W ∪ Z) | = |W | and likewise |B ∩ Y | = |W |,

• |I| = |W |,

• |U | = |A ∪B ∪ Z| = n− |A ∪B|+ |Z|.

This decomposition of Y allows us to write:

min
{

α|A∆Y |

α|A∩Y | ;
α|B∆Y |

α|B∩Y |

}

= min

{

αn−|A|−|Z|+|W |

α|W |
;
αn−|B|−|Z|+|W |

α|W |

}

,

= min
{

α−|A|;α−|B|
} αn−|Z|+|W |

α|W |
,

=
αn−|Z|+|W |−min{|A|;|B|}

α|W |
.

Going back to the computation of ‖KA −KB‖1, simplifications for the terms
at the power of |W | and |Z| are observed, which gives:
‖KA −KB‖1

= 2N − 2
∑

W
W⊆A∩B

∑

Z
Z⊆A∪B

α|A∪B|−min{|A|;|B|},

= 2N − 2α|A∪B|−min{|A|;|B|}2|A∩B|2|A∪B|,

= 2N
(

1− α|A∪B|−min{|A|;|B|}2|A∩B|−|A∪B|
)

,

= 2N

(

1−
αmax{|A\B|;|B\A|}

2|A∆B|

)

.

Let us now investigate the α-disjunctive case. For the remainder of this proof,
we thus distinguish d1,∩ and d1,∪. From proposition 1, one can write:

d1,∪ (mA,mB) = d1,∩ (mA,mB) ,

= d1,∩ (mA,mB) ,

=
2N

ρ

(

1−
αmax{|A\B|;|B\A|}

2|A∆B|

)

,

=
2N

ρ

(

1−
αmax{|B\A|;|A\B|}

2|A∆B|

)

,

= d1,∩ (mA,mB) .
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