Virgile Robbe 
  
Small eigenvalues of the low temperature linear relaxation Boltzmann equation with a confining potential

Keywords: Boltzmann equation, hypocoercivity, quasimode, non-selfadjoint operator. Mathematics Subject Classification 2010: 35P20, 35Q20, 47A10, 47D06

We study the linear relaxation Boltzmann equation, a simple semiclassical kinetic model. We provide a resolvent estimate for an associated nonselfadjoint operator as well as an estimate on the return to equilibrium. This is done using a scaling argument and non-semiclassical hypocoercive estimate.

Introduction

The spectral study of inhomogeneous kinetic equations and the trend to the equilibrium of the related system of particles are natural subjects of interest and some progress has been made in the past decade in the spirit of the socalled 'hypocoercivity'. In this article we are interested in the study at low temperature of a simple (from the kinetic point of view) but difficult (from the spectral analysis point of view) linear model where collisions between particles are not of diffusion type, but of (non-local) relaxation type. This system as already been studied by Hérau in [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF] with improvements by Dolbeault et al. in [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF], but at fixed temperature. The final purpose is to study the existence of metastable states and a possible tunnel effect for the system, which implies very long relaxation time to the equilibrium. Here we provide first spectral results for the low-lying eigenvalues and the return to the equilibrium at low temperature for the following simple linear relaxation Boltzmann model:

∂ t f + v.∂ x f -1 m ∂ x V.∂ v f = Q(f ) f |t=0 = f 0 ,
where the unknown f (t, x, v) is the density of probability of the system of particles at time t ∈ R + , position x ∈ R d and velocity v ∈ R d . We will assume that, for all t ≥ 0, f (t, • , • ) belongs to L 2 . Here the collision kernel Q models interactions between particles in the gas and is given by

Q(f ) = γ R d v f (t, x, v) dv m β -f , where m β (v) = e -mβv 2 2 ( 2π mβ ) d/2 is the L 1 (R d v )
-normalized Maxwellian in the velocity direction with β = 1/kT where k is the Boltzmann constant, T the temperature of the system, and γ is the friction coefficient. The potential V ∈ C ∞ (R d , R) only depends on the position x. We are interested in the low temperature regime of the system and develop for this a semiclassical framework. We put h = kT = 1/β, we set m = 1, γ = 1, and pose

µ h = m 1/h = 1 (2πh) d/2 e -v 2 2h .
We also introduce the spatial Maxwellian and the global Maxwellian given by

ρ h (x) = e -V (x) h R d x e -V (x) h . M h (x, v) = ρ h (x)µ h (v).
It is immediate to check that M h is the only distributional steady state of the system up to renormalization (see [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF]). This equation describes a system of large number of particles submitted to an external force coming from the potential V and interacting according to the collision kernel Q, whose effect is a simple relaxation toward the local Maxwellian

R d v ′ f (t, x, v ′ ) dv ′ µ h (v)
. We multiply our equation by h which becomes

h∂ t f + v.h∂ x f -∂ x V.h∂ v f = hQ(f ), f |t=0 = f 0 .
The semiclassical limit h → 0 + corresponds to the low temperature regime of the system.

Hypothesis 1.1. The potential V is a Morse function with n 0 local minima and with derivatives of order 2 or more bounded. Moreover e

-V h ∈ L 1 for all h ∈ [0, h 0 [ and there exists C > 0 such that |∇V (x)| ≥ 1 C for |x| > C.
A standard Hilbert space for the study of the time independent equation is the weighted space

H = f ∈ D ′ | f M 1/2 h ∈ L 2
and we see from the Cauchy-Schwarz inequality an Hypothesis 1.

1 that H is a subset of L 1 (R d x × R d v , dxdv)
. This is then more convenient to work with the rescaled function

u(t, x, v) = M -1/2 h f (t, x, v) ∈ C(R + , L 2 )
(the continuity will be a consequence of an associated semigroup property) and the new equation reads

h∂ t u + v.h∂ x u -∂ x V.h∂ v u + h(Id -Π h )u = 0 u |t=0 = u 0 ,
where Π h is the orthogonal projection in H (with t as a parameter) on the space

E h = ρµ 1/2 h , ρ ∈ L 2 (R d x ) of local equilibria (note that E h is closed). In deed, we have Q(M 1/2 h ) = M 1/2 (u -u, µ h L 2 (R d v ) µ h ) and ρ h (x) -1/2 v.∂ x ρ 1/2 h (x) -µ h (v) -1/2 ∂ x V.∂ v µ 1/2 h (v) = 0
The time independent operator is now

P h = v.h∂ x -∂ x V.h∂ v + h(Id -Π h ) = X h 0 + h(Id -Π h ),
and the aim of this paper is to prove the following theorem:

Theorem 1.2. Suppose that V satisfies hypothesis 2.2. Then P h has 0 as simple eigenvalue and there exists h 0 > 0, and δ > 0 such that i) for all h ∈]0, h 0 ], Spec P h ∩ B(0, δh) consists of exactly n 0 (counted for multiplicity) real eigenvalues which are exponentially small with respect to 1 h , ii) for all δ 1 ∈]0, δ], there exists C > 0 such that, for all h ∈]0, h 0 ], if δ 1 h ≤ |z| ≤ δh then

(P h -z) -1 ≤ C h .
This work is a first step towards getting semiclassical expansions of the smallest eigenvalues of our operator in the spirit of Helffer et al. in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF] for the Witten Laplacian and by Hérau et al. in [START_REF] Hérau | Semiclassical analysis for the kramers-fokker-planck equation[END_REF][START_REF] Hérau | Tunnel effect for kramersfokker-planck type operators[END_REF][START_REF] Hérau | Tunnel effect for kramersfokker-planck type operators: return to equilibrium and applications[END_REF][START_REF] Hérau | Tunnel effect and symmetries for kramers-fokker-planck type operators[END_REF] for the Kramers-Fokker-Planck operator. In those four last papers, the authors obtained asymptotic expansions for low-lying eigenvalues of the operator using pseudodifferential technics. Here, one of the major problem is that the projection Π h in P h does not obey good symbol estimates uniformly in h. To overcome this problem, we use a scaling S h defined below in (2.1) and h-free hypocoercive estimates in the spirit of [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF][START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF] for the linear relaxation Boltzmann equation or [START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the fokker-planck equation with a high-degree potential[END_REF] for the Fokker-Planck equation. Since we work in a non-selfadjoint case, some particular tools have to be used. We first need to get resolvent estimates allowing control of the norm of the spectral projection onto the generalized eigenspace associated with all the eigenvalues with modulus smaller than δh. We also need the notion of a PT-like symmetry (cf. [START_REF] Hérau | Tunnel effect and symmetries for kramers-fokker-planck type operators[END_REF]) which is a powerful tool that we use like in [START_REF] Hérau | Tunnel effect and symmetries for kramers-fokker-planck type operators[END_REF] in order to show that there are no Jordan blocks in the action of the operator on the generalized eigenspaces associated with the low-lying eigenvalues.

The plan of the paper is the following: in the second section we prove a hypocoercive estimate from which we deduce a resolvent estimate. In the third section we finish proving the main result using the PT symmetry property. The last part is dedicated, in the spirit of Boltzmann H-theorem, to getting a convergence result of the solution of the linear relaxation Boltzmann equation on the generalized eigenspace associated with the low-lying eigenvalues.

Notation: For any multi-index α ∈ N d , we write

∂ α = ∂ α1 x1 ...∂ α d
x d (and similarly for v). We also denote u = O(e -α h ) for u ∈ L 2 when there exist C, N > 0 such that u ≤ h -N e -α h 2 Hilbertian hypocoercivity Hilbertian hypocoercivity (cf. [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF]14]) refers to way to get coercive estimates by using a slight modification of the scalar product or the operator. We shall first discuss the maximal accretivity of our operator, so that we can apply our spectral results to describe the properties of the semigroup. As P h is the sum of a non-negative selfadjoint operator (an orthogonal projection) and a skewadjoint operator, so P h is accretive. Let equip P h with the domain

D = u ∈ L 2 | X h 0 u ∈ L 2
, we then get a maximal accretive operator. Indeed X h 0 is maximal accretive on D and Id -Π h is a bounded operator on L 2 . So

P h = X h 0 + h(Id -Π h
) is maximal accretive. As announced in the introduction, the proof of our estimate relies on a scaling argument. If we conjugate P h with the dilatation operator,

S h : L 2 (R d x × R d v ) → L 2 (R d x × R d v ) u → h -d/2 u( . √ h , . √ h ) , (2.1) 
then S -1 h P h S h = hP where P is the operator

P = v.∂ x -∂ x V h (x).∂ v + (Id -Π 1 ) = X 0 + (Id -Π 1 ), where V h (x) = 1 h V ( √ hx).
Notice that P depend on h because the potentials V h depend on h. Nevertheless we chose a h-less notation, since we will have estimates for P that are uniform w.r.t. h. More precisely, these estimates will only depend on the L ∞ norm of second order or higher order derivatives of V h . Using that derivatives of order two or more of V are bounded, we have

(if h ≤ 1) for k ≥ 2 and α ∈ N d with |α| = k, ∂ α x V h ∞ = h (k-2)/2 ∂ α x V ∞ ≤ ∂ α x V ∞ .
Thus we get uniformity w.r.t h on the L ∞ norm of second order or higher order derivatives of V h .

We now will follow [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF] to get a hypocoercive estimate on P . We introduce the two following differential operators:

a j = (∂ xj + ∂ xj V h /2), b j = (∂ vj + v j /2) ,
and their formal adjoints

a * j = (-∂ xj + ∂ xj V h /2), b * j = (-∂ vj + v j /2) . We put a =    a 1 . . . a d    b =    b 1 . . . b d    ,
and

Λ 2 = a * a + b * b + 1. Notice that a * a = -∆ x + |∂ x V h (x)| 2 /4 -∆V h (x)/2 is nothing but the Witten Laplacian (in position) and b * b = -∆ v + v 2 /4 -d/2
the harmonic oscillator (in velocity). Under our hypotheses (see [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF]), S (R 2d ) is a core for Λ 2 and Λ r which is well-defined for all r ∈ R and the operators a, b, and Λ 2 are continuous on S and S ′ . We have the following relation between a, b, and P :

P = b * a -a * b + (Id -Π 1 )
We also introduce the semiclassical scaling operator acting on functions only depending on x (to be related to (2.1)), that is

T h : L 2 (R d x ) → L 2 (R d x ) u → h -d/4 u( . √ h )
.

Notice that W h = hT h a * aT -1
h is then the semiclassical Witten Laplacian:

W h = -h 2 ∆ x + |∂ x V (x)| 2 /4 -h∆V (x)/2.
Under our hypotheses 1.1 on V and from [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF], this Witten Laplacian W h has n 0 exponentially small real eigenvalues and there exists 0 < τ ≤ 1 fixed from now on such that the remaining part of the spectrum is included in [τ h, +∞[ for h ∈]0, 1]. We recall from [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF] that there exist well-chosen cut-off functions

χ j ∈ C ∞ 0 , 1 ≤ j ≤ n 0 each localizing to a neighborhood of j th minimum of V , for which e j (x) = χ j (x)e -V (x) 2h (2.2) 
serves as a quasimode for W h in the sense that, for some c > 0,

W h e j = O(e -c h e j ).
We defined the associated non-semiclassical quasimodes

f j (x) = T -1 h e j (x), g j (x, v) = f j (x)µ 1/2
1 (v), (that still depend on h) and introduce the associated vector spaces

F = Vect {f j , j ∈ 1...n 0 } ⊂ L 2 (R d x ), G = Vect {g j , j ∈ 1...n 0 } ⊂ L 2 (R d x × R d v )
. We also put for all j g h j = S h g j (2.3)

We have the following lemma:

Lemma 2.1. The family (g h j ) j is almost orthogonal and consists of exponentially small quasimodes for P h (respectively P * h ), meaning that there exists α > 0 such that for all j, k ∈ 1...n 0 , j = k,

(g h j , g h k ) = O(e -α h g h j g h k )
. and for all j ∈ 1...n 0 ,

P h g h j = O(e -α h g h j )
(respectively

P * h g h j = O(e -α h g h j )).
Proof. According to the expression of the quasimodes in (2.2), we have

g h j (x, v) = e j (x)µ 1/2 h (v) = χ j (x)e -V (x) 2h e -v 2 4h .
We immediately deduce the relation of almost orthogonality of the family (g h j ) j from the one of (e j ) j (see Proposition (6.1) in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF]). From the expression of g h j , we deduce that P h g h j = X h 0 g h j = v.∇χ j e -V (x) 2h e -v 2 4h . From the estimates on χ j (see proof of Proposition (6.1) in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF]), we get that X h 0 g h j = O(e -α h ) which shows the assertion for P h Since P * h = -X h 0 + h(1 -Π h ), we get the same result for P * h . The following proposition is the core of the hilbertian hypocoercivity and expresses a coercivity property of the operator P using a small bounded perturbation involving the fundamental auxiliary operator

L = Λ -2 a * b. Proposition 2.2. There exist ε, A, h 0 > 0 such that for all h ≤ h 0 and u ∈ S ∩ G ⊥ Re (P u, (Id + ε(L + L * ))u) ≥ 1 A u 2 ,
where A can be chosen to depend explicitly on the second and third derivatives of V and εL ≤ 1.

Remark 2.3. In [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF], the case of one dimensional G is treated. Here V h satisfy similar hypotheses, but the spectral gap is dramatically (exponentially) small due to the fact that the minima of V h are at a distance of order 1 √ h from one another. Using G ⊥ allows us to get a bound in proposition 2.2 which is uniform with respect to h sufficiently small.

Proof :

We follow partially [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF] and take care of the uniform dependence with respect to h. Let u ∈ L 2 and ε > 0. We have

Re (P u, (Id + ε(L + L * ))u) = Re ((Id -Π 1 )u, (Id + ε(L + L * ))u) + Re(X 0 u, (Id + ε(L + L * ))u) = (Id -Π 1 )u 2 + εRe ((Id -Π 1 )u, (L + L * )u) + εRe (X 0 u, (L + L * )u) = I + II + III,
where we used that X 0 is skewadjoint for the last term. We first get a rough lower bound for the two first terms with the Cauchy-Schwarz inequality:

I + II ≥ 1 2 (Id -Π 1 )u 2 - 1 2 ε 2 (L + L * )u 2 ≥ 1 2 (Id -Π 1 )u 2 -ε 2 L 2 u 2 .
Let now study the last term more carefully:

III = εRe (X 0 u, (L + L * )u) = εRe ([L, X 0 ]u, u),
since X 0 is skewadjoint. Using the definition of L = Λ -2 a * b and the commutation relations between a, b, Λ 2 , and X 0 (cf. [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF]), we get

[L, X 0 ] = [Λ -2 a * b, X 0 ] = [Λ -2 , X 0 ]a * b + Λ -2 [a * , X 0 ]b + Λ -2 a * [b, X 0 ] = -Λ -2 [Λ 2 , X 0 ]Λ -2 a * b -Λ -2 b * Hess V h b + Λ -2 a * a.

We used the algebraic relation [A, B

-1 ] = -B -1 [A, B]B -1 . We put A = -Λ -2 [Λ 2 , X 0 ]Λ -2 a * b -Λ -2 b * Hess V b.
We are now going to prove to two intermediate lemmas.

Lemma 2.4. The operators A and L are bounded on L 2 (uniformly in h).

Moreover their norm can be explicitly bounded in terms of the second and third order derivatives of V .

Remark 2.5. In fact these bounds are with respect to the second and third order derivatives of V h , but this bounds are uniform in h, because the second and third order derivatives of V h are uniformly bounded with respect to h.

Proof :

We recall some ideas of the proof from [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF]. Using that L = Λ -2 a * b, we compute the commutator

[Λ 2 , X 0 ] = -b * (Hess V h -Id)a -a * (Hess V h -Id)b, which gives A = Λ -2 b * (Hess V h -Id)aΛ -2 a * b + Λ -2 a * (Hess V h -Id)bΛ -2 b * a -Λ -2 b * Hess V h b.
We see that it is sufficient to prove that for any real d × d matrix M (x) which depends only on x and which is bounded with its first derivative bounded, the operators

Λ -2 b * M (x)a, Λ -2 b * M (x)b, Λ -2 a * M (x)b
are bounded on L 2 . We only prove boundedness for the first operator, since the proofs for the other two operators are similar and easier. It is sufficient to show boundedness for the adjoint a * M (x)bΛ -2 . For u ∈ S, we write

a * M (x)bΛ -2 u ≤ j,k a * j M j,k (x)b k Λ -2 u ≤ j,k M j,k (x)a * j b k Λ -2 u + j,k (∂ j M j,k (x))b k Λ -2 u ≤ ( M L ∞ + ∇M L ∞ ) × j,k ( a * j b k Λ -2 u + b k Λ -2 u ), where we used that [a * j , M j,k ] = -∂ j M j,k . As b * b ≤ Λ 2 and 1 ≤ Λ 2 , we easily check that b k Λ -2 u ≤ u . For the term a * j b k Λ -2 u , we write a * j b k Λ -2 u 2 = (a j a * j b k Λ -2 u, b k Λ -2 u) ≤ (a * j a j b k Λ -2 u, b k Λ -2 u) + ((∂ 2 j V h )b k Λ -2 u, b k Λ -2 u) ≤ (Λ 2 b k Λ -2 u, b k Λ -2 u) + Hess V h L ∞ (b k Λ -2 u, b k Λ -2 u).
We now use that [Λ 2 , b k ] = -b k and continue to derive our series of inequalities:

(Λ 2 b k Λ -2 u, b k Λ -2 u) + Hess V h L ∞ (b k Λ -2 u, b k Λ -2 u) ≤ (b k u, b k Λ -2 u) + ( Hess V h L ∞ + 1)(b k Λ -2 u, b k Λ -2 u) ≤ ( Hess V h L ∞ + 2) u 2 , because b * k b k ≤ Λ 2 and 1 ≤ Λ 2 .
And this ends the proof of the lemma thanks to the previous remark.

Let us go back to the proof of proposition 2.2. We have E 1 ⊂ ker b because b is the annihilation operator in velocity. Because b appears on the right of every term in the definition of A, we therefore get

E 1 ⊂ ker A.
So we can write A = A(Id -Π 1 ) and we have for u ∈ G ⊥ ∩ S

III = εRe (A(Id -Π 1 )u, u) + εRe (Λ -2 a * au, u) ≥ -1 4 (Id -Π 1 )u 2 -ε 2 A 2 u 2 + εRe (Λ -2 a * au, u).
It is clear that Λ 2 , a * a, and Π 1 commute and we can write

εRe (Λ -2 a * au, u) = εRe (Λ -2 a * aΠ 1 u, u) + εRe (Λ -2 a * a(Id -Π 1 )u, u) = εRe (Λ -2 a * aΠ 1 u, Π 1 u) +εRe (Λ -2 a * a(Id -Π 1 )u, (Id -Π 1 )u) ≥ εRe (Λ -2 a * aΠ 1 u, Π 1 u) -ε (Id -Π 1 )u 2 ,
(2.4) where we used that a * a ≤ Λ 2 . Here we slightly diverge from [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation boltzmann equation[END_REF]: we are going to work with the quasimodes of the Witten Laplacian instead of the first eigenvector of Λ 2 and this will give us exponentially small remainder terms in our estimates. We now need an intermediate lemma.

Lemma 2.6. For all u ∈ G ⊥ ∩ S then, Re (Λ -2 a * aΠ 1 u, Π 1 u) ≥ τ 4 Π 1 u 2 .

Proof :

Let P h denote the spectral projection onto the eigenspaces associated with the n 0 smallest eigenvalues of the semiclassical Witten laplacian W h = hT h a * aT -1 h (which are the same as the eigenvalues of ha * a). According to [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach[END_REF] and [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF], we have for all w ∈ S(R d x )

(hT h a * aT -1 h (1 -P h )T h w, (1 -P h )T h w) ≥ τ h (1 -P h )T h w 2
We then put P = T -1 h P h T h the (orthogonal) projection on the spectral subspace associated with the n 0 smallest eigenvalues of the Witten laplacian a * a, so the previous inequality becomes (since T h is unitary) (a * a(1 -P)w, (1 -P)w) ≥ τ (1 -P)w 2 Moreover, we have

(a * aw, w) = (a * a[1 -P + P]w, [1 -P + P]w) = (a * a(1 -P)w, (1 -P)w) + (a * aPw, Pw) +(a * a(1 -P)w, Pw) + (a * aPw, (1 -P)w) = (a * a(1 -P)w, (1 -P)w) + (a * aPw, Pw),
because the ranges of 1 -P and P are stable under a * a. By definition of P, we get that there exists α > 0 such that for all j

(a * aPw, Pw) = O(e -α h ) w 2 .
Now, if we take w ∈ F ⊥ , we have (1

-P)w 2 = w 2 + O(e -α h ) w 2 . We therefore get (a * aw, w) ≥ τ w 2 + O(e -α h ) w 2 .
Since (a * a + 1) -1/2 w ∈ F ⊥ , we get by the max-min principle (since a * a is selfadjoint)

(a * a(a * a + 1) -1/2 w, (a * a + 1) -1/2 w) ≥ τ 1 + τ w 2 + O(e -α h ) w 2 .
Moreover we clearly have

1 ≥ τ 1 + τ ≥ τ 2 ,
because τ ≤ 1. We get the result by taking as w the function defined for almost every v by x → Π 1 u(x, v) and h small enough, since Π

1 u ∈ E 1 and Π 1 u( • , v) ∈ F ⊥ .
End of proof of proposition 2.2: We can now put the result of Lemma 2.6 in inequality (2.4) and we get

εRe (Λ -2 a * au, u) ≥ ε τ 4 Π 1 u 2 -ε (Id -Π 1 )u 2 .
We then get

III ≥ - 1 4 (Id -Π 1 )u 2 -ε 2 A 2 u 2 + ε τ 4 Π 1 u 2 -ε (Id -Π 1 )u 2 .
Bringing together our estimates for I + II and III, this yields to

Re (P u, (Id + ε(L + L * ))u) ≥ 1 2 (Id -Π 1 )u 2 -ε 2 L 2 u 2 -1 4 (Id -Π 1 )u 2 -ε 2 A 2 u 2 + ε τ 4 Π 1 u 2 -ε (Id -Π 1 )u 2 ≥ 1 8 (Id -Π 1 )u 2 + ε τ 4 Π 1 u 2 -ε 2 ( A 2 + L 2 ) u 2
. by taking ε ≤ 1/8. Using that Π 1 is an orthogonal projection and that ε ≤ 1/8 we get

Re (P u, (Id + ε(L + L * ))u) ≥ ε τ 4 -ε 2 ( A 2 + L 2 ) u 2 .
Taking ε/τ small enough, we get for a constant A sufficiently large (uniform in h)

Re (P u, (Id + ε(L + L * ))u) ≥ τ 2 A u 2 .
This ends the proof of the proposition.

Corollary 2.7. There exists c > 0 and h 0 > 0 sufficiently small, such that for

all h ∈ [0, h 0 [, for all z ∈ C with Re z ≤ ch and v ∈ S ∩ (S h G) ⊥ (P h -z)v ≥ ch v . (2.5) 
Proof : We just proved that for all u ∈ S ∩ G ⊥ Re (P u,

(Id + ε(L + L * ))u) ≥ τ 2 A u 2 .
We then get by multiplying the inequality by h and putting v = S h u

Re (P h v, S h (Id + ε(L + L * ))u) ≥ τ 2 h A u 2 .
For all z ∈ C, we can write

Re ((P h -z)v, S h (Id + ε(L + L * ))u) ≥ τ 2 h A u 2 -Re (z(v, S h (Id + ε(L + L * ))u)).
First notice that if we choose ε < 1 2 L

, we then have (v, S h (Id+ε(L+L * ))u) ≥ 0. So by the Cauchy-Schwarz inequality, we get

(P h -z)v S h (Id + ε(L + L * ))u ≥ τ 2 h A u 2 -min(0, Re z) v S h (Id + ε(L + L * ))u .
Since S h is unitary and L is bounded, we get for all v ∈ S ∩ (S h G)

⊥ (P h -z)v (1 + 2ε L ) v ≥ τ 2 h A v 2 -min(0, Re z)(1 + 2ε L ) v 2 .
Therefore, taking Re z ≤ ch = τ 2 h 2(1 + 2ε L )A leads to

(P h -z)v ≥ ch v .
Since we are working with a non-selfadjoint operator, we have to be careful in order to get a resolvent estimate on the whole space. Thanks to lemma 2.1, we see that S h G = Vect g h j vanishes under P h up to a O(e -α h ) and that (S h G) ⊥ is stable under P h up to a O(e -α h ), meaning that there exists α > 0 such that for all u ∈ S h G and v ∈ (S h G) ⊥ ,

P h u = O(e -α h u ),
and there exists v ′ ∈ L 2 with v ′ = O(e -α h v ) such that

P h v -v ′ ∈ (S h G) ⊥ .
Denoting by Π the orthogonal projection on S h G, the two previous relations and Pythagoras' theorem allow us to write that for all u ∈ L 2

(P h -z)(Id -Π)u + (P h -z)Πu 2 = (P h -z)(Id -Π)u 2 + (P h -z)Πu 2 + O(e -2α h ) u 2 .
We then have for all u ∈ L 2

(P h -z)u 2 = (P h -z)(Id -Π)u + (P h -z)Πu 2 = (P h -z)(Id -Π)u 2 + (P h -z)Πu 2 +O(e -2α h ) u 2 ≥ c 2 h 2 2 (1 -Π)u 2 + (P h -z)Πu 2 + O(e -2α h ) u 2 ,
where we used the estimate (2.5) and choose z smaller than c √ 2 . Thanks to the triangle inequality and the fact that P h Πu = O(e -α h ) u by definition of Π, we get

(P h -z)u 2 ≥ c 2 h 2 2 (1 -Π)u 2 + |z| 2 Πu 2 + O(e -2α h ) u 2 ≥ min( c 2 h 2 2 , |z| 2 )( (1 -Π)u 2 + |z| 2 Πu 2 ),
Therefore, for all δ 1 < c 2 , if we take δ 1 h ≤ |z| ≤ c 2 h and h small enough we get

(P h -z)u ≥ δ 1 2 u
We conclude that there exists δ > 0 such that for all 0 < δ 1 ≤ δ, if δ 1 h ≤ |z| ≤ δh, we have the resolvent estimate

(P h -z) -1 ≤ C δ1 h .
This completes the proof of part ii) of Theorem 1.2.

PT-symmetry

Let H be the generalised eigenspace associated with the eigenvalues of modulus smaller than δh, where δ is sufficiently small as in Theorem 1.2, that is the range of the spectral projection Π 0 = 1 2iπ |z|=δh (z -P h ) -1 dz. We can write the proposition Proposition 3.1. We have dim H = n 0 , where n 0 is the number of local minima of the potential V .

Proof : From proposition 2.2, the coercive estimate on the orthogonal of a n 0 dimensional subspace gives us that dim H ≤ n 0 . Moreover we saw that (z -P h )g h j = zg h j + O(e -α h ); for z with |z| = δh, we therefore get (z -P h ) -1 g h j = 1 z g h j + O(e -α h ). By integrating along the circle centered in 0 and with radius δh, we finally get Π 0 g h j = g h j + O(e -α 2h )

Since the g h j are almost orthogonal, they are linearly independent. We deduce that dim H ≥ n 0 , so dim H = n 0 .

It remains to show that H contains no Jordan blocks for P h which we do by using an extra symmetry of our operator that is PT-symmetry: P referring to parity (that is velocity reversal) and T to time reversal. Let κ : R 2d → R 2d be given by κ(x, v) = (x, -v). We then put U κ u = u • κ, u ∈ L 2 , so that U κ is unitary and selfadjoint. We also introduce the non-definite Hermitian form

(u, v) κ = (U κ u, v), u, v ∈ L 2

Note that

P * h = U -1 κ P h U κ , so P h is formally selfadjoint with respect to the Hermitian form (., .) κ . Proposition 3.2. For h small enough, the restriction of (., .) κ to H × H is positive definite uniformly with respect to h.

Proof :

Let us recall that g

h j (x, v) = χ j (x)M 1/2 h (x, v) and that Π 0 g h j = g h j + O(e -α 2h 
) . So g h j • κ = g h j and the family (g h j ) 1≤j≤n0 is almost orthonormal for the Hermitian form (., .) κ Then there exists a basis (g 0,j ) 1≤j≤n0 of H such that (g 0,j , g 0,j ) κ = 1 + O(e -α h ), (g 0,j , g 0,j ′ ) κ = O(e -α h ) pour j = j ′ .

Then for

H ∋ u = n0 k=1 u k g 0,k , we get (u, u) κ = n0 k=1 (1 + O(e -α h ))|u k | 2 ≥ u 2 /C.
This ends the proof.

Thanks to the formal selfadjointness of P h with respect to (., .) κ , we get the following proposition. Proposition 3.3. For h small enough, the restriction of P h : H → H is selfadjoint with respect to the scalar product (., .) κ on H. Moreover P h has exactly n 0 real eigenvalues counted for multiplicity smaller than δh and they are O(e -α h ). This implies in particular point i) of Theorem 1.2.

Return to equilibrium

To conclude, we translate our spectral estimates into estimates for the semigroup decay. Let us recall that Corollary 2.7 gives us that for all u ∈ S ∩ (S h G) ⊥ and Re z ≤ ch (P h -z)u ≥ ch u .

Let us rewrite the previous resolvent estimate as an estimate on (Id -Π 0 )L 2 for Π 0 the spectral projection associated with the n 0 smallest eigenvalues. We first note that (g h j ) j are quasimodes for both P h and P * h . We then have for all j Π 0 g h j = Π * 0 g h j = g h j + O(e -α h ).

So if we take u ∈ L 2 , we get for all j (g h j , (Id -Π 0 )u) = ((Id -Π * 0 )g h j , (Id -Π 0 )u) = O(e -α h ) (Id -Π 0 )u

We conclude that one can write for all u ∈ L 2

(Id -Π 0 )u = v + j a j g h j with v ∈ G ⊥ , v = (Id -Π 0 )u + O(e -α h ) (Id -Π 0 )u and for all j, |a j | = O(e -α h ) (Id -Π 0 )u . We then have with Re z ≤ ch, thanks to our previous resolvent estimate,

(P h -z)(Id -Π 0 )u ≥ ch v -O(e -α h ) (Id -Π 0 )u
We therefore get for h small enough and a new c the resolvent estimate on (Id -Π 0 )L 2 with Re z ≤ ch (P h|(Id-Π0)L 2 -z) -1 ≤ 1 ch .

Therefore we have obtained an uniform resolvent estimate on the left half-plane {Re z ≤ ch}. As Π 0 L 2 and (Id -Π 0 )L 2 are stable under P h (by definition of Π 0 ), the Gearhart-Prüss theorem (cf. [START_REF] Helffer | Spectral Theory and its Applications[END_REF]) for P h |(Id-Π0)L 2 allows us to write that for all t > 0 e -tP h = e -tP h Π 0 + O(e -cht ).

Despite the fact that the projection is not orthogonal, since we have Π 0 = 1 2iπ C(0,δh) (z -P h ) -1 dz, our resolvent estimate gives us Π 0 = O(1). Now if we denote by (µ j ) j=1...n0 the exponentially small eigenvalues (counted with multiplicity) and Π j the associated spectral projections, we have that Π j = O(1). Indeed, we saw that the restriction P h |H is selfadjoint with respect to (., .) κ , which is equivalent (on H) to the ambient scalar product, so the projections are bounded. Thus, we can sum up all of this into the following Proposition. 

Proposition 4 . 1 .

 41 There exists δ 1 > 0 and α > 0 such that for all , t ≥ 0 and h small enoughe -tP h = n0 j=1 e -tµj Π j + O(e -δ1ht ),with Π j = O(1) and µ j = O(e -α h ).
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