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In this paper, we show that two numerical methods, speci¯cally the ¯nite di®erence method and
the ¯nite element method applied to continuous beam dynamics problems, can be asymptoti-

cally investigated by some kind of enriched continuum approach (gradient elasticity or nonlocal

elasticity). The analysis is restricted to the vibrations of elastic beams, and more speci¯cally the
computation of the natural frequencies for each numerical method. The analogy between the

¯nite numerical approaches and the equivalent enriched continuum is demonstrated, using a

continualization procedure, which converts the discrete numerical problem into a continuous

one. It is shown that the ¯nite element problem can be transformed into a system of ¯nite
di®erence equations. The convergence rate of the ¯nite numerical approaches is quanti¯ed by an
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equivalent Rayleigh's quotient. We also present some exact analytical solutions for a ¯rst-order

¯nite di®erence method, a higher-order ¯nite di®erence method or a cubic Hermitian ¯nite

element, valid for arbitrary number of nodes or segments. The comparison between the exact

numerical solution and the approximated nonlocal approaches shows the e±ciency of the
continualization methodology. These analogies between enriched continuum and ¯nite

numerical schemes provide a new attractive framework for potential applications of enriched

continua in computational mechanics.

Keywords: Eigenvalue problems; computational mechanics; nonlocal elasticity; gradient elas-

ticity; ¯nite di®erence methods; ¯nite element methods; vibrations; beam mechanics; cubic
Hermitian functions.

1. Introduction

In this paper, the vibration behavior of elastic beams will be investigated from a

numerical point of view. It is known that numerical approaches such as the ¯nite

di®erence or the ¯nite element methods convert a continuous vibrations problem

into a discrete one. In fact, the discretization methods lead to the resolution of an

algebraic problem for an initial continuous eigenvalue problem. The possibility to

solve automatically the algebraic problem using a computer makes the discretization

approach advantageous as compared to the initial continuous one. However, the

reduction process inherent to the discretization may incur the loss of some funda-

mental mathematical properties of the initial continuous system. There appears to be

a need to better explore the e±ciency of the numerical schemes with respect to the

continuous problem.

A possible way to handle these numerical discrete problems is to de¯ne a kind

of an equivalent continuum that is a representative of the discrete problem. The

de¯nition of an equivalent continuum from a discrete one may be labeled as a con-

tinualization procedure. Continualization procedures are based on various approx-

imations of the discrete operators by some continuous ones via Taylor expansion or

Pad�e approximants.1–7 The so-called enriched continuum equivalent to the discrete

one is sometimes called a quasi-continuum.2 It is generally dependent on the trun-

cated terms in the asymptotic expansion of the di®erence operators. This method

was pioneered by Kruskal and Zabusky1 and initially applied to discrete wave

equations, with applications to the Fermi–Pasta–Ulam model,8 an axial lattice with

nonlinear interaction (see also the analysis of Zabusky and Kruskal within the dy-

namics of solitons9). The reader can refer to Rosenau,3 Palais10 and Maugin11 for an

historical perspective on the link between the Fermi–Pasta–Ulam lattice model and

the continualized wave propagation equation. Kruskal and Zabusky1 used a Taylor

expansion of the second-order ¯nite di®erence operator arising in the discrete lattice

up to the fourth-order spatial derivative. Collins2 proposed to use the inverse of

the second-order ¯nite di®erence operator, thereby avoiding the use of fourth-order

spatial operators. Pad�e approximants of the ¯nite di®erence operators were intro-

duced by Rosenau3 and are shown to be e±cient for capturing the wave propagation

in the dynamics of axial lattice.3–7 It is worth noting that some continualization
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processes have been already applied to ¯nite di®erence structural problems by Cyrus

and Fulton,12,13 or to ¯nite element problems by Walz et al.14 In this paper, a similar

continualization reasoning will be followed for approximating some ¯nite numerical

schemes (¯rst-order and higher-order ¯nite di®erence methods and ¯nite element

methods) in beam problems by some equivalent enriched continua. We show that the

rate of convergence is strongly dependent on the order of the ¯nite discrete scheme:

higher-order ¯nite schemes lead to higher-order enriched constitutive laws with a

higher convergence rate.

The comparison of discrete methods with the equivalent continuum is not new. In

fact, it was conducted by Livesley,15 Greenwood,16 Leckie and Lindberg17 for beam

vibration problems using ¯nite di®erence methodology for instance. Livesley15 or

Leckie and Lindberg17 gave exact solutions of the vibration frequencies for the ¯nite

di®erence beam vibration problems. The results have been recently generalized by

Zhang et al.18 for general boundary conditions. In fact, already Lagrange19 and

Rayleigh20 had determined the exact vibration frequencies of a string with a ¯nite

number of concentrated masses and compared the solution with the continuous

system that was asymptotically obtained as a limit (see also Refs. 15 or 21 on this

topic). It can be shown that the discrete string problem is equivalent to the ¯nite

di®erence formulation of the continuous string problem. The same analogy is also

valid for elastic beams. As already discussed by Silverman,22 Hencky's bar chain23 —

which is the bending discrete system (or microstructured beam model) — is in fact

equivalent to the central ¯nite di®erence formulation of a continuous problem, i.e.,

the Euler–Bernoulli continuous beam problem. Therefore, the ¯rst-order central

¯nite di®erence formulation of an Euler–Bernoulli continuous beam problem is

strictly equivalent to the Hencky's microstructured chain. The performance of Finite

Di®erence Method for solving buckling or vibration eigenvalue problems has already

been evaluated in the literature (see early studies in Refs. 12, 13, 15–17, 24–31), but

generally without resorting to any nonlocal mechanics perspective (except in recent

papers — see Ref. 32). Furthermore, the nonlocal equivalence will be extended here

for higher-order ¯nite di®erence schemes. A consequence of the nonlocal equivalency

principle for the modeling of discrete systems is that the ¯nite di®erence system can

be e±ciently approached by nonlocal continuum mechanics tools. As it is known in

the case of nonlocal mechanics behaviors, this result con¯rms the lower bound so-

lution of such approximate Finite Di®erence Methods, at least for homogeneous

structures (with respect to both convergence and rate of convergence arguments).

We extend such a result for approximate Finite Element Methods using gradient

elasticity constitutive law, which shows the upper bound solution of Finite Element

results based on the work-energy formulation. Excellent monographs are available

for the computation of eigenfrequencies of structural members using Finite Element

Methods (see for instance Refs. 33–37). Exact solutions of the Finite Element for-

mulation of the dynamics of Euler–Bernoulli beams have been given by Tong et al.,38

Belytschko and Mindle39 or Xie and Steven40 using a cubic-based interpolation
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function for the displacement. These last authors also discussed the possibility to

have a lumped mass matrix or a consistent mass matrix with respect to the dis-

placement interpolation ¯eld. Belytschko and Mindle39 and Xie and Steven40 derived

the exact frequency solutions using the consistent mass matrix with cubic-based

interpolation function for the displacement. Tong et al.38 also obtained the asymp-

totic solution of the frequency parameter with respect to the size of the ¯nite element.

These numerical results are revisited in this paper using an equivalent gradient

elasticity model.

2. Continuous Problem

The vibration problem of a continuous elastic Euler–Bernoulli beam is investigated

herein. The continuous reference problem is ¯rst brie°y presented. The elastic

bending moment — curvature constitutive law is expressed for the Euler–Bernoulli

kinematics by

M ¼ EIw 00; ð1Þ

where M is the bending moment, E the Young modulus, I the area moment of

inertia, w the de°ection of the beam, and the prime denotes di®erentiation with

respect to x. The equation of motion including the inertia forces is given by

M 00 ¼ ��w
::
; ð2Þ

where the superdot denotes the di®erentiation with respect to time, and � is the mass

per unit length of the beam material. By combining Eqs. (1) and (2), one obtains the

fourth-order partial di®erential equation of motion:

EIw ð4Þ þ �w
:: ¼ 0; ð3Þ

By assuming harmonic motion with ! as the angular frequency of vibration, the free

vibration problem of the Euler–Bernoulli beam is governed by the linear di®erential

equation:

EIw ð4Þ � �!2w ¼ 0; ð4Þ

which can be equivalently handled in a weak format using the principle of virtual

work, i.e.,

Z L

0

fEIw 00�w 00 � �!2w�wgdx ¼ 0: ð5Þ

The Rayleigh's quotient R½w� can be introduced for the computation of !2:

R½w� ¼ !2 ¼
RL

0
EIw 002dx

RL

0
�w2dx

: ð6Þ
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For simply supported boundary conditions, the exact natural kth vibration mode is

the trigonometric solution given by:

wðxÞ ¼ W sin
k�x

L

� �

: ð7Þ

The substitution of Eq. (7) in the Rayleigh's quotient Eq. (6) leads to the well-

known solution of the continuous Euler-Bernoulli beam problem:

!2
k;1 ¼ EI

�

k�

L

� �

4

; ð8Þ

where the subscript k refers to the kth mode considered, and the in¯nite character

refers to the continuous reference problem which possesses an in¯nite number of

degrees-of-freedom.

3. First-Order Finite Di®erence Method

The ¯rst-order ¯nite di®erence formulation of this vibration problem will now be

presented, and exactly solved for the simply supported boundary condition. The

constitutive law Eq. (1) is now written in this ¯nite di®erence formulation as:

Mi ¼ EI
wi�1 � 2wi þ wiþ1

a2
: ð9Þ

a is the uniform grid spacing also de¯ned by a = L/n where n is the number of grid

spacing (and n + 1 is the number of uniformly spaced grid points). The equilibrium

Eq. (2) is expressed with the second-order ¯nite di®erence equation:

Mi�1 � 2Mi þMiþ1

a2
¼ ��w

::
i: ð10Þ

By using again both the equilibrium equation and the constitutive law expressed in

the ¯nite di®erence formulation, one obtains the discretized equation of motion

EI
wiþ2 � 4wiþ1 þ 6wi � 4wi�1 þ wi�2

a4
þ �w

::
i ¼ 0: ð11Þ

By assuming harmonic motion, the free vibration equation of motion is given by

EI
wiþ2 � 4wiþ1 þ 6wi � 4wi�1 þ wi�2

a4
� �!2wi ¼ 0: ð12Þ

An exact solution to this problem can now be investigated. The same methodology

can be followed for the vibration equation, as detailed for instance in Ref. 31, from

the fourth-order linear ¯nite di®erence Eq. (12) restricted to the vibration terms:

wiþ2 � 4wiþ1 þ 6wi � 4wi�1 þ wi�2 �
�2

n4
wi ¼ 0 with �2 ¼ !2 �L

4

EI
: ð13Þ
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The characteristic equation is obtained by replacing wi ¼ A� i in Eq. (13) which

leads to:

1

�
þ �

� �

2

� 4
1

�
þ �

� �

þ 4� �2

n4
¼ 0; ð14Þ

where A is a constant.

Equation (14) is symmetrical with respect to interchanging � and 1=�, and

admits four solutions written as (see also Ref. 31):

�1;2 ¼ cos�� j sin� and �3;4 ¼ 2� cos��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� cos�Þ2 � 1
q

with � ¼ arccos 1� �

2n2

� �

and j2 ¼ �1: ð15Þ

For the simply supported discrete beam system, the natural vibration modes are

obtained from the trigonometric shape function wi ¼ W sinð�iÞ; thus leading to the

natural vibration frequency �n ¼ k� as obtained in Refs. 17 or 31:

�k;n ¼ 4n2sin2 k�

2n

� �

¼ ðk�Þ2 1� ðk�Þ2
12n2

� �

þ o
1

n4

� �

: ð16Þ

We then obtain for the square of the natural frequencies:

!2
discrete

!2
E

¼ 1� ðk�Þ2
6n2

þ o
1

n4

� �

; ð17Þ

where !2
E ¼ EI

� ðk�
L
Þ4 is the natural frequency parameter of the continuous beam.

The discrete equations are extended to an equivalent continuum via a con-

tinualization method. The following relation between the discrete and the equivalent

continuous systemwi ¼ wðx ¼ iaÞ holds for a su±ciently smooth de°ection function as:

wðxþ aÞ ¼
X

1

k¼0

ak@ k
x

k!
wðxÞ ¼ ea@xwðxÞ with @x ¼ @

@x
: ð18Þ

The pseudo-di®erential operators can be introduced as:

wi�1 þ wiþ1 � 2wi ¼ ½ea@x þ e�a@x � 2�wðxÞ ¼ 4 sinh2 a

2
@x

� �

wðxÞ: ð19Þ

The pseudo-di®erential operator can be e±ciently approximated by the Pad�e's

approximant (see for instance Refs. 3–7):

4

a2
sinh2 a

2
@x

� �

¼ @ 2
x

1� l2c@
2
x

þ � � � with l2c ¼
a2

12
: ð20Þ

By using such a pseudo-di®erential operator, the constitutive law Eq. (9) using Eqs.

(19) and (20) may be continualized as:

M � l2cM
00 ¼ EIw 00 with l2c ¼

a2

12
: ð21Þ
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One recognizes an Eringen's type di®erential equation41 applied at the beam scale,

thereby leading to a nonlocal bending moment — curvature constitutive law.

By using the same methodology, the equilibrium equations [Eq. (10)] may be also

continualized as:

M 00 ¼ ��w
:: þ �l2cw

:: 00 with l2c ¼
a2

12
: ð22Þ

In view of Eqs. (21) and (22) and neglecting the terms in l4c , one obtains the modi¯ed

nonlocal bending wave equation as:

�ð1� 2l2c@
2
xÞ@ 2

twþ EI@ 4
xw ¼ 0 with l2c ¼

a2

12
: ð23Þ

Equation (23) can be also directly obtained from the expansion of the discrete

operator in Eq. (12) as:

wiþ2 � 4wiþ1 þ 6wi � 4wi�1 þ wi�2

a4
¼ ½e2a@x � 4ea@x þ 6� 4e�a@x þ e�2a@x �

a4
wðxÞ

¼ 16

a4
sinh4 a

2
@x

� �

wðxÞ ¼ @ 4
x 1þ a2

6
@ 2
x

� �

wðxÞ þ � � � ¼ @ 4
x

1� a2

6 @ 2
x

wðxÞ þ � � � :
ð24Þ

The continualized problem governed by Eq. (23) is also equivalent to the following

nonlocal model, where the nonlocal operator is applied only to the constitutive law

and the equilibrium equations remain local:

M � 2l2cM
00 ¼ EIw 00 and M 00 ¼ ��w

::
with l2c ¼

a2

12
: ð25Þ

Within this point of view, it is worth mentioning that a factor 2 a®ects the length

scale calibration in the nonlocal law.

The Rayleigh's quotient for the computation of !2 of the nonlocal problem can be

presented as:

R½w� ¼
RL

0
EIw 002dx

RL

0
�w2 þ 2�l2cw 02dx

�
RL

0
EIw 002dx

RL

0
�w2dx

: ð26Þ

For the simply supported beam problem, the substitution of Eq. (7) in the Rayleigh's

quotient Eq. (26) leads to the nonlocal solution of the continuous Euler–Bernoulli

beam problem:

!2
k;n ¼

!2
k;1

1þ k�lc
L

� �2 with !2
k;1 ¼ EI

�

k�

L

� �

4

and l2c ¼
a2

6
: ð27Þ

Equation (27) is consistent with the asymptotic expansion of the exact solution given

by Eq. (17), and it also coincides with the asymptotic expansion given by Leckie and

Lindberg.17 We note that there is a factor 2 between the equivalent length scale for

the buckling problem and the one of the dynamics problem32:

l2c;dynamics ¼
a2

6
¼ 2l2c;statics: ð28Þ
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4. Higher-Order Finite Di®erence Method

The same continuous problem will now be handled using a higher-order ¯nite dif-

ference scheme. An improved ¯nite di®erence analysis may be based on the intro-

duction of the second-order central di®erence for the expressions of the ¯rst and the

second derivatives of the displacement (see Refs. 16, 28–30). The higher-order ¯nite

di®erence formulation of the constitutive equation [Eq. (1)] now reads as

Mi ¼ EI
�wi�2 þ 16wi�1 � 30wi þ 16wiþ1 � wiþ2

12a2
: ð29Þ

The higher-order ¯nite di®erence equilibrium equation [Eq. (2)] is presented as:

�Mi�2 þ 16Mi�1 � 30Mi þ 16Miþ1 �Miþ2

12a2
¼ ��w

::
i: ð30Þ

The consideration of harmonic motion and in view of Eqs. (29) and (30) lead to the

eight-order ¯nite di®erence equation:

EI
wi�4�32wi�3þ316wi�2�992wi�1þ1414wi�992wiþ1þ316wiþ2�32wiþ3þwiþ4

144a4

��!2wi ¼ 0: ð31Þ

It is also possible to get an exact analytical solution to this numerical scheme, by

solving the linear ¯nite di®erence equation. The characteristic equation is obtained

by replacing wi ¼ A� i in Eq. (31) which leads, with �2 ¼ !2 �L 4

EI
to:

ð��4 � 32��3 þ 316��2 � 992��1 þ 1414� 992�þ 316�2 � 32�3 þ �4Þ � 144
�2

n4

¼ 0; ð32Þ

which can also be presented as:

1

�
þ �

� �

� 2

� 	

2 1

�
þ �

� �

� 14

� 	

2

� 144
�2

n4
¼ 0: ð33Þ

It is possible to factorize in the following way:

1

�
þ �

� �

� 2

� 	

1

�
þ �

� �

� 14

� 	

� 12
�

n2


 �

� 1

�
þ �

� �

� 2

� 	

1

�
þ �

� �

� 14

� 	

þ 12
�

n2


 �

¼ 0: ð34Þ

This equation admits eight solutions for �. By solving the ¯rst term, one gets

1

�
þ �

� �

2

� 16
1

�
þ �

� �

þ 28� 12
�

n2
¼ 0

or equivalently

�2 � 8� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3þ �

n2

� �

s
!

�þ 1 ¼ 0: ð35Þ
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The ¯rst group of solutions are obtained as:

�1;2 ¼ 4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3þ �

n2

� �

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3þ �

n2

� �

s

þ 3 3þ �

n2

� �

v

u

u

t ;

�3;4 ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3þ �

n2

� �

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15� 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3þ �

n2

� �

s

þ 3 3þ �

n2

� �

v

u

u

t :

ð36Þ

The second group of solutions comes from the second-order polynomial equation:

1

�
þ �

� �

2

� 16
1

�
þ �

� �

þ 28þ 12
�

n2
¼ 0

or equivalently

�2 � 8� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3� �

n2

� �

s
!

�þ 1 ¼ 0; ð37Þ

which also possesses four solutions:

�5;6 ¼ 4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3� �

n2

� �

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3� �

n2

� �

s

þ 3 3� �

n2

� �

v

u

u

t ;

�7;8 ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3� �

n2

� �

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

15� 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3� �

n2

� �

s

þ 3 3� �

n2

� �

v

u

u

t :

ð38Þ

It is also possible to rewrite the set of solutions �3;4 using the trigonometric functions:

�3;4 ¼ cos�� j sin� with � ¼ arccos 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3þ �

n2

� �

s
" #

and j2 ¼ �1: ð39Þ

For the simply supported discrete system, the natural vibration modes are obtained

from the trigonometric shape function wi ¼ W sinð�iÞ; thus leading to the natural

vibration frequency �n ¼ k�, which can also be expressed by:

�

n2
¼ 7� 8 cos�þ cos2�

3
with � ¼ arccos 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3þ �

n2

� �

s
" #

; ð40Þ

which has hitherto not been reported to the best of the authors' knowledge. It is

possible to show from Eq. (40) by using an asymptotic expansion that:

� 2
k;n

�2
k;1

¼
!2

k;n

!2
k;1

¼ 1� ðk�Þ4
45n4

þ o
1

n6

� �

: ð41Þ
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The higher-order pseudo-di®erential operator in Eq. (29) or in Eq. (30) can also be

expanded as:

�wi�2 þ 16wi�1 � 30wi þ 16wiþ1 � wiþ2

12a2

¼ ½�e�2a@x þ 16e�a@x � 30þ 16ea@x � e2a@x �
12a2

wðxÞ

¼ @ 2
x 1� a4@ 4

x

90

� �

wðxÞ þ � � � ¼ @ 2
x

1þ a4@ 4
x

90

wðxÞ þ � � � : ð42Þ

The constitutive law Eq. (29) can then be continualized such as:

M þ l4cM
ð4Þ ¼ EIw 00 with l4c ¼

a4

90
: ð43Þ

The equilibrium equations [Eq. (30)] can be continualized as well:

M 00 ¼ ��w
:: � �l4cw

:: ð4Þ with l4c ¼
a4

90
: ð44Þ

By combining Eq. (43) with Eq. (44), one obtains the nonlocal bending wave

equation as

�ð1þ 2l4c@
4
xÞ@ 2

twþ EI@ 4
xw ¼ 0 with l4c ¼

a4

90
: ð45Þ

Equation (45) could have been obtained directly from the asymptotic expansion:

wi�4 � 32wi�3 þ 316wi�2 � 992wi�1 þ 1414wi � 992wiþ1 þ 316wiþ2 � 32wiþ3 þwiþ4

144a4

¼ @ 4
x 1� a4

45
@ 4
x

� �

wðxÞ þ � � � ¼ @ 4
x

1þ a 4

45 @
4
x

wðxÞ þ � � � : ð46Þ

Equation (46) is also equivalent to the nonlocal model:

M þ 2l4cM
ð4Þ ¼ EIw 00 and M 00 ¼ ��w

::
with l4c ¼

a4

90
: ð47Þ

As observed for the ¯rst-order ¯nite di®erence method, a factor 2 also a®ects the

length scale calibration in the nonlocal law for the higher-order ¯nite di®erence

method. The Rayleigh's quotient for the computation of !2 of the new nonlocal

problem can be presented as:

R ¼
RL

0
EIw 002dx

RL

0
�w2 þ 2�l4cw 002dx

�
RL

0
EIw 002dx

RL

0
�w2dx

: ð48Þ

For the simply supported beam problem, the substitution of Eq. (7) in the Rayleigh's

quotient Eq. (48) leads to the nonlocal solution of the continuous Euler–Bernoulli

beam problem:

!2
k;n ¼

!2
k;1

1þ k�lc
L

� �4 with !2
k;1 ¼ EI

�

k�

L

� �

4

and l4c ¼
a4

45
: ð49Þ
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We also note that there is a factor 2 between the equivalent length scale for the

(static) buckling problem and the one of the dynamics problem:

l4c;dynamics ¼
a4

45
¼ 2l4c;statics: ð50Þ

5. Finite Element Method

The Finite Element Method is now applied to the beam vibrations problem, using

Hermitian cubic-based interpolation functions. The Hermitian cubic functions can be

used for the interpolation function of the displacement ¯eld:

w ¼ wi�1ð1� 3�2 þ 2�3Þ þ wi�
2ð3� 2�Þ þ �i�1a�ð1� �Þ2 � �ia�

2ð1� �Þ; ð51Þ

where � ¼ x=a. By substituting this Hermitian cubic function into the Rayleigh's

quotient, one obtains

R½w; �� ¼
Pn

i¼1

R 1

0
EI
a 4

d
2
w

d�
2

� �

2
d�

Pn
i¼1

R 1

0
�w2d�

; ð52Þ

which is now calculated for the cubic-based Hermitian interpolation function:

R½w; �� ¼

X

n

i¼1

EI

3a4

ð6wi � 6wi�1Þ2 � ð6wi � 6wi�1Þð6a�i�1 þ 6a�iÞ

þ12a2ð�2
i�1 þ �i�1�i þ �2

i Þ

" #

X

n

i¼1

�

35

ð13w 2
i�1 þ 9wi�1wi þ 13w 2

i Þ þ a2
�2
i�1

3
� �i�1�i

2
þ �2

i

3

� �

þ 11

3
ðwi�1a�i�1 � wia�iÞ þ

13

6
ðwia�i�1 � wi�1a�iÞ

2

6

6

4

3

7

7

5

: ð53Þ

By taking the stationarity conditions of the Rayleigh's quotient R½w; �� ¼ 0 for

the two-variable ¯eld ðwi; �iÞ, we obtain the coupled system of ¯nite di®erence

equations:

4ðwiþ1 � 2wi þ wi�1Þ � 2ða�iþ1 � a�i�1Þ

þ �!2a4

210EI
9wiþ1 þ 52wi þ 9wi�1 �

13

6
ða�iþ1 � a�i�1Þ

� 	

¼ 0;

6ðwiþ1 � wi�1Þ � 2ða�iþ1 þ 4a�i þ a�i�1Þ

þ �!2a4

70EI

13

6
ðwiþ1 � wi�1Þ þ

�3a�iþ1 þ 8a�i � 3a�i�1

6

� 	

¼ 0;

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð54Þ

which would have been equivalently obtained by using the weak formulation Eq. (5)

of the problem with the Hermitian cubic functions. It is possible to de¯ne the

11



following ¯nite di®erence operators

�0 ¼ 1

6
½e�a@x þ 4þ ea@x �; �1 ¼

1

2a
½�e�a@x þ ea@x � and

�2 ¼ 1

a2
½e�a@x � 2þ ea@x �:

ð55Þ

The ¯nite di®erence system associated with the Finite Element Method can then be

presented using the ¯nite di®erence operators:

4�2 þ
3�!2a4

70EI
�2 þ

�!2a2

3EI

� �

w� 4þ 13�!2a4

630EI

� �

�1� ¼ 0;

12þ 13�!2a4

210EI

� �

�1wþ �12�0 �
3�!2a4

70EI
�0 þ

�!2a4

21EI

� 	

� ¼ 0:

8

>

>

>

>

<

>

>

>

>

:

ð56Þ

The ¯nite di®erence equation is then obtained in a single format as:

4�2 þ
3�!2a4

70EI
�2 þ

�!2a2

3EI

� �

�12�0 �
3�!2a4

70EI
�0 þ

�!2a4

21EI

� �

þ 4þ 13�!2a4

630EI

� �

12þ 13�!2a4

210EI

� �

� 21

2

6

6

4

3

7

7

5

w ¼ 0; ð57Þ

which can also be written as

�2!4a6

63ðEIÞ2 wi þ
�!2a4

21EI
4þ 3�!2a4

70EI

� �

wiþ1 � 2wi þ wi�1

a2

þ �!2a2

3EI
�12� 3�!2

70EI
a4

� �

wiþ1 þ 4wi þ wi�1

6

þ 4þ 3�!2a4

70EI

� �

�12� 3�!2

70EI
a4

� �

wi�2 þ 2wi�1 � 6wi þ 2wiþ1 þ wiþ2

6a2

þ 3 4þ 13�!2
a
4

630EI

!

2
wi�2 � 2wi þ wiþ2

4a2
¼ 0: ð58Þ

The characteristic equation is obtained by replacing wi ¼ A� i in Eq. (58) which

leads, with �2 ¼ !2 �L 4

EI
to:

48þ 4�2

35n4
þ �4

6300n8

� �

�þ 1

�

� �

2

þ �192� 296�2

35n4
� 2�4

175n8

� �

�þ 1

�

� �

þ 192� 1104�2

35n4
þ 13�4

315n8
¼ 0; ð59Þ

that admits the following four solutions

�1;2 ¼ cos�� j sin� and �3;4 ¼
192þ 296� 2

35n4 þ 2� 4

175n8

2 48þ 4�2

35n4 þ � 4

6300n8

� �

� cos��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

192þ 296� 2

35n
4 þ 2� 4

175n
8

2 48þ 4� 2

35n
4 þ �

4

6300n
8

� � � cos�

2

4

3

5

2

� 1

v

u

u

u

t with

12



�¼ arccos

192þ 296�2

35n 4 þ 2�4

175n 8 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

192þ 296�2

35n
4 þ 2�4

175n
8

� �

2
� 4 48þ 4� 2

35n 4 þ �4

6300n 8

� �

192� 1104�2

35n 4 þ 13�4

315n 8

� �

r

4 48þ 4� 2

35n 4 þ � 4

6300n 8

� �

2

6

6

4

3

7

7

5

:

ð60Þ

A second-order polynomial equation in �2 is obtained from Eq. (60):

�4

n8

4cos2�

1575
� 16 cos�

175
þ 52

315

� �

þ �2

n4

64cos2�

35
� 2368 cos�

35
� 4416

35

� �

þ 768cos2�� 1536 cos�þ 768 ¼ 0: ð61Þ
This equation has been ¯rst obtained by Belytschko and Mindle39 and then used

again by Xie and Steven.40 For the simply supported discrete beam system, the

natural vibration modes are obtained from the trigonometric shape function

wi ¼ W sinð�iÞ, thus leading to the natural vibration frequency �n ¼ k�, which is

also expressed by:

�2

n4
¼

�64cos 2�þ2368 cos�þ4416
35

2 4cos 2�
1575 � 16 cos�

175 þ 52
315

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�64cos 2�þ2368 cos�þ4416
35

� �

2
� 4 4cos2�

1575 � 16 cos�
175 þ 52

315

� �

768cos2�� 1536 cos�þ 768ð Þ
r

2 4cos 2�
1575 � 16 cos�

175 þ 52
315

� �

with � ¼ k�

n
: ð62Þ

An asymptotic expansion shows that:

�k;n ¼ ðk�Þ2 1þ ðk�Þ4
1440n4

� �

þ o
1

n6

� �

: ð63Þ

We then obtain for the square of the natural frequencies:

!2
discrete

!2
E

¼ 1þ ðk�Þ4
720n4

þ o
1

n6

� �

; ð64Þ

where !2
E ¼ EI

� ðk�
L
Þ4 is the natural frequency parameter of the continuous beam. This

result Eq. (64) with the factor 1/720 has been already obtained by Tong et al.38

Now, by using a continualization procedure, an asymptotic expansion of each

di®erence operator in Eq. (57) gives:

4þ ða@xÞ2
3

þ 1

90
ða@xÞ4 þ

1

5040
ða@xÞ6

� �

@ 2
x þ

3�!2a4

70EI
@ 2
x þ

3�!2a6

840EI
@ 4
x þ

�!2a2

3EI

� 	

� �12� 2a2@ 2
x �

1

6
ða@xÞ4 �

1

180
ða@xÞ6 �

3�!2a4

70EI
� �!2a6

140EI
@ 2
x þ

�!2a4

21EI

� 	

þ 48þ 52�!2a4

105EI

� �

1þ ða@xÞ2
3

þ 2

45
ða@xÞ4 þ

1

315
ða@xÞ6

� �

@ 2
x þ oða8Þ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

w ¼ 0;

ð65Þ
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which can be e±ciently approximated by the following sixth-order di®erential

equation, when collecting the terms up to the fourth-order in a4:

@ 4
x �

�!2

EI
þ a2 @ 6

x

6
� �!2@ 2

x

6EI

� �

þ a4 @ 8
x

80
� 29�!2@ 4

x

2520EI
þ 1

2520

�!2

EI

" #

2
!( )

w ¼ 0:

ð66Þ

The di®erential equation [Eq. (66)] can also be factorized as

@ 4
x �

�!2

EI
þ a2 @ 6

x

6
� �!2@ 2

x

6EI

� �

þ a4 @ 8
x

80
� 29�!2@ 4

x

2520EI
þ 1

2520

�!2

EI

" #

2
!

¼ 1þ ða@xÞ2
6

þ ða@xÞ4
90

� �!2a4

2520EI

� 	

@ 4
x �

�!2

EI
þ a4

720
@ 8
x

� 	

þ oða6Þ; ð67Þ

which means that the cubic-based ¯nite element model can be equivalently reduced

to the eight-order di®erential equation:

EI
a4

720
wð8Þ þ EIwð4Þ � �!2w ¼ 0: ð68Þ

Walz et al.14 also obtained an eight-order di®erential equation for the continualized

bending problem which was investigated by the Hermitian-based Finite Element

model, with the correct coe±cient 1/720 but with a di®erent sign. For the ¯nite

element model considered herein, the associated Rayleigh's quotient can then be

expressed by:

R ¼
RL

0
EIðw 002 þ l4cw

ð4Þ2Þdx
RL

0
�w2dx

�
RL

0
EIw 002dx

RL

0
�w2dx

with l4c ¼
a4

720
ð69Þ

leading to the gradient elasticity solution Eq. (68), associated with the gradient

elasticity constitutive law:

M ¼ EIðw 00 þ l4cw
ð6ÞÞ with l4c ¼

a4

720
: ð70Þ

Considering again a simply supported beam, and introducing a sinusoidal shape

function wðxÞ ¼ W sinð�x=LÞ as a test function into the Rayleigh's quotient leads to

the natural frequencies from this approximated gradient elasticity solution. Equa-

tion (69) shows that the Finite Element model gives an upper bound of the \local"

problem asymptotically found for n tending towards in¯nite.

!2
k;n

!2
k;1

¼ 1þ ðk�Þ4
720n4

: ð71Þ

Figures 1 and 2 show the comparison between the exact numerical solution (¯rst-

order ¯nite di®erence method, higher-order ¯nite di®erence method, and Hermitian

cubic-based ¯nite element method). The closeness of the approximated nonlocal

14



approaches with respect to the exact discretized problem shows the e±ciency of the

continualization methodology. The upper bound status of the ¯nite element ap-

proach and the lower bound status of the ¯nite di®erence approach are con¯rmed in

Fig. 1. Moreover, as shown by Fig. 2, the ¯nite element solution based on the cubic

0.8

0.9

1

1.1

1.2

011

Continualized Method Finite Element Method Finite Difference Method

n

First-order Finite 

Difference

Hermitian Finite Element 

Higher-order 

Finite Difference

2
,

2
,

∞k

nk

ω

ω

Fig. 1. Comparison between ¯nite di®erence methods, ¯nite element methods and continualization
procedure for fundamental frequency with respect to the size of discretized problem.
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Fig. 2. Error function with respect to size of discretized problem for each numerical method; Comparison

between exact solution and approximated nonlocal or gradient elasticity solution.
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Hermitian interpolation function appears to be the most e±cient numerical approach

for this problem in comparison to both the ¯rst-order and the higher-order ¯nite

di®erence approaches. Of course, the e±ciency of the ¯nite element method strongly

depends on the adopted displacement interpolation ¯eld.

6. Concluding Remarks

The vibration behavior of elastic beams is studied using standard numerical methods

such as ¯nite di®erence or ¯nite element methods. Some exact solutions of the ¯nite-

dimensional discretized problems are presented for archetypal boundary conditions.

The ¯nite numerical approaches are then approximated by some enriched nonlocal

or gradient elastic problems. The analogy between the ¯nite numerical approaches

and the equivalent enriched continuum is demonstrated, using a continualization

procedure, which converts the discrete numerical problem into a continuous nonlocal

or gradient one. For di®erent orders of ¯nite di®erence (FD) schemes, di®erent

nonlocal length scales are obtained, with respect to the step size a of the numerical

scheme, i.e. lc ¼ a=
ffiffiffi

6
p

� 0:408a for ¯rst-order FD scheme as shown in Eq. (27), and

lc ¼ a=
ffiffiffiffiffi

454
p

� a=
ffiffiffiffiffiffiffiffiffiffiffi

6:708
p

� 0:386a for higher-order FD scheme as shown in Eq. (49).

In both cases, the nonlocal length scale of the dynamics problem is larger than the

one of the statics problem. The ¯nite di®erence schemes leads to a lower bound of the

\local" continuous problem.

For the cubic Hermitian ¯nite element, the discretized system is e±ciently ap-

proximated by a gradient elasticity law. In this case, the gradient elasticity length

scale is the same than the one of the statics problem. The ¯nite element formulation

leads to an upper bound of the \local" continuous problem. The comparison between

the exact numerical solution and the approximated nonlocal approaches shows the

e±ciency of the continualization methodology. These analogies between enriched

continuum and ¯nite numerical schemes provide a new attractive framework for

potential applications of enriched continua in computational mechanics.
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