Jan Beirlant 
  
Mikael Escobar-Bach 
  
Yuri Goegebeur 
  
Armelle Guillou 
  
  
Bias-corrected estimation of stable tail dependence function

Keywords: Multivariate extreme value statistics, stable tail dependence function, bias correction AMS Subject classification: 62G05, 62G20, 62G32

We consider the estimation of the stable tail dependence function. We propose a biascorrected estimator and we establish its asymptotic behaviour under suitable assumptions.

The finite sample performance of the proposed estimator is evaluated by means of an extensive simulation study where a comparison with alternatives from the recent literature is provided.

Introduction and notations

Many problems involving extreme events are inherently multivariate. For instance, de Haan and de Ronde (1998) estimate the probability that a storm will cause a sea wall near the town of Petten (the Netherlands) to collapse because of a dangerous combination of sea level and wave height. Other examples can be found in actuarial science, finance, environmental science and geology, to name but a few. A fundamental question that arises when studying more than one variable is that of extremal dependence. Similarly to classical statistics one can summarise extremal dependency in a number of well-chosen coefficients that give a representative picture 1 of the dependency structure. Here, the prime example of such a dependency measure is the coefficient of tail dependence [START_REF] Ledford | Modelling dependence within joint tail regions[END_REF]. Alternatively, a full characterization of the extremal dependence between variables can be obtained from functions like e.g. the stable tail dependence function, the spectral distribution function or the Pickands dependence function. We refer to [START_REF] Beirlant | Statistics of Extremes -Theory and Applications[END_REF] and de [START_REF] De Haan | Extreme Value Theory -An Introduction[END_REF], and the references therein, for more details. In this paper we will focus on bias-corrected estimation of the stable tail dependence function.

For any arbitrary dimension d, let pX p1q , ..., X pdq q be a multivariate vector with continuous marginal cumulative distribution functions (cdfs) F 1 , ..., F d . The stable tail dependence function is defined for each x i R , i 1, ..., d, as lim tÑV tP ¡ 1 ¡ F 1 pX p1q q ¤ t ¡1 x 1 or ... or 1 ¡ F d pX pdq q ¤ t ¡1 x d © Lpx 1 , ..., x d q which can be rewritten as

lim tÑV t 1 ¡ F F ¡1 1 p1 ¡ t ¡1 x 1 q, ..., F ¡1 d p1 ¡ t ¡1 x d q ¨$ Lpx 1 , ..., x d q (1)
where F is the multivariate distribution function of the vector pX p1q , ..., X pdq q.

Now, consider a sample of size n drawn from F and an intermediate sequence k k n , i.e. k Ñ V as n Ñ V with k{n Ñ 0. Let us denote x px 1 , ..., x d q a vector of the positive quadrant R d and X pjq k,n the k¡th order statistic among n realisations of the margins X pjq , j 1, ..., d. The empirical estimator of L is then given by

p L k pxq 1 k n i1
1l tX p1q i ¥X p1q n¡rkx 1 s 1,n or ... or X pdq i ¥X pdq n¡rkx d s 1,n u .

The asymptotic behaviour of this estimator was first studied by [START_REF] Huang | Statistics of bivariate extremes[END_REF]; see also [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF], and de [START_REF] De Haan | Extreme Value Theory -An Introduction[END_REF]. As is common in extreme value statistics, the empirical estimator p L k pxq is affected by bias, which often complicates its application in practice. This bias-issue will be addressed in the present paper.

In the univariate framework there are numerous contributions to the bias-corrected estimation of the extreme value index and tail probabilities. Typically, the bias reduction of estimators for For the sequel, in order to study the behaviour of p L k pxq or a function of it, we need to assume some conditions mentioned below and well-known in the extreme value framework:

First order condition: The limit in (1) exists and the convergence is uniform on r0, T s d for T ¡ 0;

Second order condition: There exist a positive function α such that αptq Ñ 0 as t Ñ V and a non null function M such that for all x with positive coordinates

lim tÑV 1 αptq 2 t 1 ¡ F F ¡1 1 p1 ¡ t ¡1 x 1 q, ..., F ¡1 d p1 ¡ t ¡1 x d q ¨$ ¡ Lpxq @ M pxq, (2) 
uniformly on r0, T s d for T ¡ 0;

Third order condition: There exist a positive function β such that βptq Ñ 0 as t Ñ V and a non null function N such that for all x with positive coordinates lim tÑV 1 βptq

5 t 1 ¡ F F ¡1 1 p1 ¡ t ¡1 x 1 q, ..., F ¡1 d p1 ¡ t ¡1 x d q ¨$ ¡ Lpxq αptq ¡ M pxq C N pxq, (3) 
uniformly on r0, T s d for T ¡ 0. This requires that N is not a multiple of M .

Note that these assumptions imply that the functions α and β are both regularly varying with indices ρ and ρ I respectively which are non positive. In the sequel we assume that both indices are negative. Remark also that the functions L, M and N have an homogeneity property, that is

Lpaxq aLpxq, M paxq a 1¡ρ M pxq and N paxq a 1¡ρ¡ρ I N pxq for a positive scale parameter a.

The remainder of the paper is organised as follows. In the next section we introduce our estimators for Lpxq, as well as for the second order quantities ρ and α, and study their asymptotic properties. The finite sample performance of the proposed bias-corrected estimator and of some estimators from the recent literature are evaluated by a simulation experiment in Section 3. The proofs of all results are given in the Appendix.

Estimators and asymptotic properties

Consider now the rescaled version p L k,a pxq : a ¡1 p L k paxq for a positive scale parameter a. Our first aim is to look at the behaviour of

r L k pxq : 1 k k j1
Kpa j q p L k,a j pxq where a j : j k 1 , j 1, ..., k, and K is a function defined on p0, 1q which is positive and such that ³ 1 0 Kpuqdu 1. This function is called a kernel function in the sequel. Let e j be a d¡vector with zeros, except for position j where it is one.

Theorem 1: Let X 1 , ..., X n be independent multivariate random vectors in R d with common joint cdf F and continuous marginal cdfs F j , j 1, ..., d. Assume that the third order condition

(3) holds with negative indices ρ and ρ I and that the first order partial derivatives of L, say δ j L, exist and that δ j L is continuous on the set of points tx R d : x j ¡ 0u. Suppose further that the function M is continuously differentiable and N continuous. Let K be a kernel such that

³ 1 0 Kpuqu ¡1{2 du V. Assuming that the intermediate sequence k satisfies c kαpn{kq Ñ V and c kαpn{kqβpn{kq Ñ 0 as n Ñ V, we have c k 5 r L k pxq ¡ 1 k k j1 Kpa j qLpxq ¡ α ¡ n k © M pxq 1 k k j1 Kpa j qa ¡ρ j C d ÝÑ ¢» 1 0 Kpuqu ¡ 1 2 du Z L pxq (4)
in Dpr0, T s d q for every T ¡ 0 where

Z L pxq : W L pxq ¡ d j1
W L px j e j qδ j Lpxq with W L a continuous centered Gaussian process with covariance structure ErW L pxqW L pyqs µtRpxq Rpyqu where Rpxq tu R d : there exists j such that 0 ¤ u j ¤ x j u and µ is the measure defined as µ tRpxqu : Lpxq. uZ L pxq. From our Theorem 1, we can easily deduce the following corollary which gives the asymptotic behaviour of an uncorrected estimator,

r L k pxq 1 k °k j1 Kpa j q , for L.
Corollary 1: Under the assumptions of Theorem 1, we have

c k 5 r L k pxq 1 k °k j1 Kpa j q ¡ Lpxq ¡ α ¡ n k © M pxq 1 k °k j1 Kpa j qa ¡ρ j 1 k °k j1 Kpa j q C d ÝÑ ¢» 1 0 Kpuqu ¡ 1 2 du Z L pxq in Dpr0, T s d q for every T ¡ 0.
Now the idea is to remove from r L k pxq 1 k °k j1 Kpa j q the bias term by estimating the function α n k ¨M pxq as well as the second order rate parameter ρ. These quantities will be estimated externally with the same intermediate sequence k k n , which is such that k opkq. This idea was originally proposed in the univariate framework by Gomes and co-authors (see [START_REF] Caeiro | Reduced-bias tail index estimators under a third order framework[END_REF] and has the advantage that the variance of the reduced bias estimator is the same as that of the uncorrected estimator.

First we have to define an estimator for ρ. Similarly to [START_REF] Fougères | Bias correction in multivariate extremes[END_REF], we propose the following estimator:

r ρ k px ¦ q : ¢ 1 ¡ 1 log r log § § § § ∆ k,a prx ¦ q ∆ k,a px ¦ q § § § § 0 ( 5 
)
at a fixed d¡vector x ¦ , where r p0, 1q and

∆ k,a pxq : a ¡1 r L k paxq ¡ r L k pxq.
Proposition 1. For any fixed d¡vector x ¦ , under the assumptions of Theorem 1, we have

c kα ¡ n k © pr ρ k px ¦ q ¡ ρq d ÝÑ 1 ¡ r ρ¡ 1 2 log r Z L px ¦ q M px ¦ q ³ 1 0 Kpuqu ¡ 1 2 du ³ 1 0 Kpuqu ¡ρ du a ¡1{2 ¡ 1 a ¡ρ ¡ 1 .
Secondly we study the estimation of q α k pxq : αpn{kqM pxq. 

p L k,a j pxq Lpxq q α k pxqa ¡ρ j ε j , j 1, . . . , k, (6) 
where ε 1 , . . . , ε k are random error terms. Straightforward application of least squares estimation to [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF], where ρ is fixed at r ρ k px ¦ q given in ( 5), leads to

r α k pxq : °k j1 °k 1 ¡ a ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q © p L k,a j pxq °k j1 °k 1 a ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q © . (7) 
The aim of the next proposition is to establish the asymptotic behaviour of this estimator.

Proposition 2. For any fixed d¡vector x ¦ , under the assumptions of Theorem 1, we have

c k ¡ r α k pxq ¡ α ¡ n k © M pxq © d ÝÑ 1 ¡ r ρ¡ 1 2 log r M pxq M px ¦ q ³ 1 0 Kpuqu ¡ 1 2 du ³ 1 0 Kpuqu ¡ρ du a ¡1{2 ¡ 1 a ¡ρ ¡ 1 ρ 2 ρ ¡ 1 ρp1 ¡ ρqp1 ¡ 2ρq Z L px ¦ q 2p1 ¡ ρq ρ Z L pxq
in Dpr0, T s d q for every T ¡ 0.

We have now all the ingredients to study the behaviour of our bias-corrected estimator for L, namely

L k,k pxq : r L k pxq ¡ ¡ k k © r ρ k px ¦ q r α k pxq 1 k °k j1 Kpa j qa ¡r ρ k px ¦ q j 1 k °k j1 Kpa j q .
This leads to our Theorem 2.

Theorem 2: Under the assumptions of Theorem 1, satisfied for two intermediate sequences k

and k such that k op kq we have c

k ¡ L k,k pxq ¡ Lpxq © d ÝÑ ¢» 1 0 Kpuqu ¡ 1 2 du Z L pxq (8)
in Dpr0, T s d q for every T ¡ 0.

Note that the limiting process is independent of the value of ρ, and that the bias-corrected estimator has the same asymptotic variance as the uncorrected estimator of Corollary 1.

A problem of interest could be now to minimize the variance in our Theorem 2. To this aim, we illustrate in Corollary 2 that if we take a power kernel, that is a kernel of the form Kptq pτ 1q t τ 1l ttp0,1qu with τ ¡ ¡1{2, the variance of our bias-corrected estimator L k,k pxq is decreasing as τ increases, and it can reach the variance of the empirical estimator p L k pxq, i.e. the variance of Z L pxq (see Proposition 2 in Fougères et al., 2015).

Corollary 2: Under the assumptions of Theorem 2, for the power kernel Kptq pτ 1q t τ 1l ttp0,1qu with τ ¡ ¡1{2, we have c

k ¡ L k,k pxq ¡ Lpxq © d ÝÑ 2 1 τ 1 2τ Z L pxq
in Dpr0, T s d q for every T ¡ 0.

Simulation experiment

In order to evaluate the finite sample behaviour of our estimator L k,k pxq, we perform a simulation study and we compare our estimator with the empirical one, p L k pxq, and two bias-corrected estimators recently proposed by [START_REF] Fougères | Bias correction in multivariate extremes[END_REF], defined as follows

9 L k,a,k pxq : p L k,a pxq ¡ p ∆ k,pa ¡p ρ k px ¦ q 1q ¡1{p ρ k px ¦ q pxq r L k,a,k pxq : p L k pxq p ∆ k,a paxq ¡ p L k paxq p ∆ k,a pxq p ∆ k,a paxq ¡ a p ∆ k,a pxq
where p ∆ k,a pxq is defined similarly as ∆ k,a pxq but based on the empirical estimator, that is

p ∆ k,a pxq : a ¡1 p L k paxq ¡ p L k pxq and p ρ k px ¦ q similarly as r ρ k px ¦ q but based on p ∆ k,a pxq: p ρ k px ¦ q : £ 1 ¡ 1 log r log § § § § § p ∆ k,a prx ¦ q p ∆ k,a px ¦ q § § § § § 0. (9) 
For simplicity, we focus on R 2 and using the homogeneity property, we consider only the estimation of Lpt, 1 ¡tq for t p0, 1q, corresponding to Pickands dependence function, and the same distributions as in [START_REF] Fougères | Bias correction in multivariate extremes[END_REF], namely the Cauchy distribution, for which Lpx, yq px 2 y 2 q 1{2 ; the Student(ν) distribution, for which

Lpx, yq y F ν 1 £ py{xq 1{ν ¡ θ c 1 ¡ θ 2 c ν 1 x F ν 1 £ px{yq 1{ν ¡ θ c 1 ¡ θ 2 c ν 1
where F ν 1 is the cdf of the univariate Student distribution with ν 1 degrees of freedom and θ is the Pearson correlation coefficient. We set θ 0.5 and ν 2; the bivariate Pareto of type II model, for which Lpx, yq x y ¡ px ¡p y ¡p q ¡1{p . We set p 3 and we called this model BPII(3); the Symmetric logistic model, for which Lpx, yq px 1{s y 1{s q s . We set s 1{3; the Archimax model with the logistic generator Lpx, yq px 2 y 2 q 1{2 and with the mixed generator Lpx, yq px 2 y 2 xyq{px yq.

For each distribution, we simulate 1000 samples of size 1000. As recommended by Fougères et al. (2015), we use the values a r 0.4, k 990, and we take x ¦ x. Since any stable tail dependence function satisfies maxpt, 1 ¡ tq ¤ Lpt, 1 ¡ tq ¤ 1, all the estimators have been corrected so that they satisfy these bounds.

First, in Figure 1 we give the boxplots of p ρ k p0.5, 0.5q and r ρ k p0.5, 0.5q for a power kernel with τ 0, 5 and 10 in case of a Studentp2q distribution. It is clear from these boxplots that the estimators for ρ perform reasonably well with respect to the median, but with some volatility, except in case τ 0 where it is reduced. However, as we will see in the other figures, these uncertainties seem to have fortunately no impact on the performance of our estimators for L. Note also that our estimator r ρ k px ¦ q is at least as competitive as the one proposed by [START_REF] Fougères | Bias correction in multivariate extremes[END_REF], whatever the value of τ ¥ 0. Moreover, to avoid problems in the computation of 9 L k,a,k pxq due to the fact that p ρ k px ¦ q can be too close to 0, we set p ρ k px ¦ q ¡1 if p ρ k px ¦ q r¡0.1, 0s and its definition given in (9) otherwise. Similarly, for consistency, this modification has been used for r ρ k px ¦ q.

Next, we examine the performance of the estimators for Lpxq at specific points in R 2 . In Figure 2 L k,a,k pxq (dotted line) and r L k,a,k pxq (dashed line), and the empirical one, p L k pxq (dash-dotted line), for x p0.5, 0.5q and x p0.2, 0.8q, respectively. From the plots of the sample means we can clearly see the bias-correcting effect of L k,k pxq and r L k,a,k pxq: compared to the empirical estimator these estimators have a stable sample path that is close to the true value of Lpxq and this for a wide range of values of k. The estimator 9

L k,a,k pxq has some bias-correcting effect, though the gain relative to the empirical estimator is quite distribution dependent. Unlike r L k,a,k pxq, the estimator L k,k pxq has a very smooth sample path, which can be expected as we take essentially a weighted sum of the empirical estimator calculated over different values of x.

In terms of MSE, L k,k pxq has a better performance than 9 L k,a,k pxq and r L k,a,k pxq. Compared to the empirical estimator, one can see that it has an MSE value that is at least as good as that of the minimum MSE for p L k pxq, but it has this low MSE over a very wide range of k-values.

Finally, we compare the different estimators for L not at a single point but for the whole function, using the absolute bias and MSE, computed over N 1000 replications as follows:

Abiaspkq : 1 10

10 ţ1 § § § § § 1 N N i1 p L piq k px t q ¡ Lpx t q § § § § § MSEpkq : 1 10N 10 ţ1 N i1 ¡ p L piq k px t q ¡ Lpx t q © 2
where tx t : 4 Appendix: Proofs

Proof of Proposition 1

The key elements in the proof are the homogeneity of the functions L and M together with the equality in distribution between the processes Z L paxq and c aZ L pxq. Thus from our Theorem q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q rho_hat tau=0 tau=5 tau=10 1, we deduce that

∆ k,a px ¦ q α ¡ n k © M px ¦ q 1 k k j1 Kpa j qa ¡ρ j ra ¡ρ ¡ 1s Z L px ¦ q c k » 1 0 Kpuqu ¡ 1 2 dura ¡ 1 2 ¡ 1s o P ¢ 1 c k .
A similar expression can be obtained for ∆ k,a prx ¦ q from which we can easily justify the expression of our estimator r ρ k px ¦ q given in ( 5), and deduce that r

ρ k px ¦ q ρ 1 ¡ r ρ¡ 1 2 log r 1 c k Z L px ¦ q α n k ¨M px ¦ q ³ 1 0 Kpuqu ¡ 1 2 du 1 k °k j1 Kpa j qa ¡ρ j a ¡ 1 2 ¡ 1 a ¡ρ ¡ 1 o P £ 1 c kα n k ¨ ,
from which we can easily deduce our Proposition 1.

Proof of Proposition 2

To prove the proposition, we use the Skorohod construction, meaning that we have to look at the difference and to show that it tends almost surely uniformly to 0 as n Ñ V. According to Proposition 2 in Fougères et al. (2015) and using [START_REF] Dutang | Robust and bias-corrected estimation of the coefficient of tail dependence[END_REF], we have

D : § § § § § c k ¡ r α k pxq ¡ α ¡ n k © M pxq © ¡ 1 ¡ r ρ¡ 1 2 log r M pxq M px ¦ q ³ 1 0 Kpuqu ¡ 1 2 du ³ 1 0 Kpuqu ¡ρ du a ¡1{2 ¡ 1 a ¡ρ ¡ 1 ρ 2 ρ ¡ 1 ρp1 ¡ ρqp1 ¡ 2ρq Z L px ¦ q ¡ 2p1 ¡ ρq ρ Z L pxq § § § § 0 
D ¤ § § § § § § c kα ¡ n k © M pxq °k j1 °k 1 ra ¡ρ j ¡ a ¡r ρ k px ¦ q j sra ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q s °k j1 °k 1 a ¡r ρ k px ¦ q j ra ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q s ¡ 1 ¡ r ρ¡ 1 2 log r M pxq M px ¦ q ³ 1 0 Kpuqu ¡ 1 2 du ³ 1 0 Kpuqu ¡ρ du a ¡1{2 ¡ 1 a ¡ρ ¡ 1 ρ 2 ρ ¡ 1 ρp1 ¡ ρqp1 ¡ 2ρq Z L px ¦ q § § § § § § § § § § § ¤ ¥ °k j1 °k 1 a ¡ 1 2 j ra ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q s °k j1 °k 1 a ¡r ρ k px ¦ q j ra ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q s ¡ 2p1 ¡ ρq ρ Z L pxq § § § § § § op1q.
The main idea now is to replace everywhere the terms with r ρ k px ¦ q by the same terms with ρ and to study the difference by the mean value theorem. For instance, if we look at the term

1 k 2 k j1 k ¸ 1 a ¡r ρ k px ¦ q j ra ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q s
appearing several times as a denominator in the bound of D, we can rewrite it as follows:

1 k 2 k j1 k ¸ 1 a ¡ρ j ra ¡ρ j ¡ a ¡ρ s 1 k 2 k j1 k ¸ 1 a ¡r ρ k px ¦ q j pa ¡r ρ k px ¦ q j ¡ a ¡r ρ k px ¦ q q ¡ a ¡ρ j pa ¡ρ j ¡ a ¡ρ q % ρ 2 p1 ¡ ρq 2 p1 ¡ 2ρq o ¢ 1 c k ¡2pr ρ k px ¦ q ¡ ρq £ 1 k k j1 a ¡2q ρ k px ¦ q j ln a j 2pr ρ k px ¦ q ¡ ρq £ 1 k k j1 a ¡q ρ k px ¦ q j £ 1 k k j1
a ¡q ρ k px ¦ q j ln a j by the mean value theorem where q ρ k px ¦ q is an intermediate value between r ρ k px ¦ q and ρ. Using the same approach for each term combining with Proposition 1 leads to Proposition 2.

Proof of Theorem 2

According to our Theorem 1, we clearly have the following decomposition

c k ¡ L k,k pxq ¡ Lpxq © c k α ¡ n k © M pxq ¡ ¢ k k r ρ k px ¦ q r α k pxq ' 1 k °k j1 Kpa j qa ¡ρ j 1 k °k j1 Kpa j q c k ¢ k k r ρ k px ¦ q r α k pxq 1 k °k j1 Kpa j qra ¡ρ j ¡ a ¡r ρ k px ¦ q j s 1 k °k j1 Kpa j q £ ³ 1 0 Kpuqu ¡ 1 2 du 1 k °k j1 Kpa j q Z L pxq o P p1q c k α ¡ n k © M pxq ¡ ¢ k k r ρ k px ¦ q α ¢ n k M pxq ' 1 k °k j1 Kpa j qa ¡ρ j 1 k °k j1 Kpa j q O P ¤ ¥ ¢ k k r ρ k px ¦ q¡ 1 2 kα ¢ n k pr ρ k px ¦ q ¡ ρq £ ³ 1 0 Kpuqu ¡ 1 2 du 1 k °k j1 Kpa j q Z L pxq o P p1q
by applying our Proposition 2 and again the mean value theorem. Under the assumptions of our Theorem 2, we have

c k ¡ L k,k pxq ¡ Lpxq © c k α ¡ n k © M pxq ¡ ¢ k k r ρ k px ¦ q α ¢ n k M pxq ' 1 k °k j1 Kpa j qa ¡ρ j 1 k °k j1 Kpa j q £ ³ 1 0 Kpuqu ¡ 1 2 du 1 k °k j1 Kpa j q Z L pxq o P p1q.
Recall now that the function α is regularly varying with index ρ 0, that is αptq t ρ α ptq where α is slowly varying at infinity. Thus when t Ñ V and c cptq Ñ V. To be convinced by [START_REF] Goegebeur | Asymptotically unbiased estimation of the coefficient of tail dependence[END_REF], remark that for all x, y ¡ 0 and t ¡ 0 we have with β 1 ptq αptqβptq and L t px1q t 1 ¡ F F ¡1 x ¡ρ ψp1{xq, with ψpxq a x ρ I ¡1 ρ I and a ¡ 0 (in case a 0 one can redefine α as ¡ α and the result will follow with a ¡ 0). Note that the positive constant a can in fact be incorporated in the function β, so from now on we take without loss of generality a 1. We have thus, with r where 0 δ ¡ρ I and κ ¡ 0. Since both functions in the right-hand side are bounded for

c k ¡ L k,k pxq ¡ Lpxq © k k k α ¢ n k M pxq ¢ k k ρ ¡ ¢ k k r ρ k px ¦ q ' 1 k °k j1 Kpa j qa ¡ρ j 1 k °k j1 Kpa j q k k k α ¢ n k ¢ k k ρ M pxq α p n k q α p n k q ¡ 1 ' 1 k °k j1 Kpa j qa ¡ρ j 1 k °k j1 Kpa j q £ ³ 1 0 Kpuqu ¡ 1 2 du 1 k °k j1 Kpa j q Z L pxq o P p1q £ ³ 1 0 Kpuqu ¡ 1 2 du 1 k °k j1 Kpa j q Z L pxq o P p1q O P £ ¢ k k 1 2 ¡q ρ k px ¦ q ln ¢ k k k α ¢ n k pr ρ k px ¦ q ¡ ρq ¢ k k 1 2 ¡ρ k α ¢ n k β ¢ n k 1 β ¡ n k © α p n k q α p n k q ¡ 1
x rx 0 , Vq, x 0 ¡ 0, result [START_REF] Goegebeur | Asymptotically unbiased estimation of the coefficient of tail dependence[END_REF] follows.

  tail parameters is obtained by taking the second order structure of an extreme value model explicitly into account in the estimation stage. We refer here to Beirlant et al. (1999), Feuerverger and Hall (1999), Matthys and Beirlant (2003), and more recently, Gomes et al. (2008) and Caeiro et al. (2009) . In the bivariate framework some attention has been paid to bias-corrected estimation of the coefficient of tail dependence η. Goegebeur and Guillou (2013) obtained the bias correction by a properly weighted sum of two biased estimators, whereas Beirlant et al. (2011) fitted the extended Pareto distribution to properly transformed bivariate observations. Recently, a robust and bias-corrected estimator for η was introduced by Dutang et al. (2014). For what concerns the stable tail dependence function we are only aware of the estimator recently proposed by Fougères et al. (2015).

Theorem 1

 1 is a direct application of Proposition 2 in Fougères et al. (2015) combining with the homogeneity properties of L and M mentioned above and the equality in distribution between the processes Z L puxq and c

  and 3 we show the sample mean (left) and the empirical mean squared error (MSE, right) of L k,k pxq with τ 0 (dashed line), τ 5 (full line) and τ 10 (dotted line) as a function of k, for x p0.5, 0.5q and x p0.2, 0.8q, respectively, on three of the above mentioned distributions for brevity. As is clear from these figures, in general the estimators have for all values of τ a nice stable behaviour close to the true value of Lpxq. This can be expected since our estimators are bias-corrected. In terms of MSE the best performance is at both x positions obtained for τ 5, and therefore in subsequent comparisons of estimators we will focus on this choice for our estimator. It is noteworthy to observe that the MSE has a very low curvature, so the MSE-values are very close to the minimum of the MSE for a very wide range of values for k. In Figures4 and 5we compare the performance of L k,k pxq (full line) with the two estimators proposed by Fougères et al. (2015), 9

t 10 ,

 10 1 ¡ t 10 ¨; t 1, ..., 10u and p L piq k is the estimate based on the i¡th sample. We naturally replace p L piq k by L piq k,k , 9 L piq k,a,k and r L piq k,a,k . In Figure 6 we show the Abiaspkq of the estimators under consideration as a function of k for the six distributions mentioned above. Figure 7 displays MSEpkq. These global performance measures lead us to the same conclusions as the aforementioned study at specific points. Because of the bias-correction, the estimators L k,k and r L k,a,k keep the bias low for a wide range of k-values. Overall, the estimator L k,k has a more smooth sample path than 9 L k,a,k and r L k,a,k , and therefore it also outperforms the estimators of Fougères et al. (2015) in terms of minimal MSE. Also here, the MSE of our estimator is close to or better than the minimal MSE value of the empirical estimator, and this for a wide range of k-values.

Figure 1 :

 1 Figure 1: Boxplots of p ρ k p0.5, 0.5q and r ρ k p0.5, 0.5q for a power kernel with τ 0, 5 and 10 in case of a Studentp2q distribution.

Figure 2 :

 2 Figure 2: Mean (left) and MSE (right) of our estimator L k,k p0.5, 0.5q for different values of τ : τ 0 (dashed line), τ 5 (full line), τ 10 (dotted line). Three distributions have been considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).

Figure 3 :

 3 Figure 3: Mean (left) and MSE (right) of our estimator L k,k p0.2, 0.8q for different values of τ : τ 0 (dashed line), τ 5 (full line), τ 10 (dotted line). Three distributions have been considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).

Figure 4 :

 4 Figure 4: Mean (left) and MSE (right) of our estimator L k,k at x p0.5, 0.5q with τ 5 (full line) compared to the estimators of Fougères et al. (2015): 9 L k,a,k (dotted line) and r L k,a,k (dashed line) and the empirical estimator p L k (dash-dotted line). Three distributions have been considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).

Figure 5 :

 5 Figure 5: Mean (left) and MSE (right) of our estimator L k,k at x p0.2, 0.8q with τ 5 (full line) compared to the estimators of Fougères et al. (2015): 9 L k,a,k (dotted line) and r L k,a,k (dashed line) and the empirical estimator p L k (dash-dotted line). Three distributions have been considered: First line: Student(2); Second line: Cauchy; Third line: BPII(3).

Figure 6 :

 6 Figure 6: Absolute bias of our estimator L k,k with τ 5 (full line) compared to the estimators of Fougères et al. (2015): 9 L k,a,k (dotted line) and r L k,a,k (dashed line) and the empirical estimator p L k (dash-dotted line). Six distributions have been considered: First line: Student(2) (left), Cauchy (right); Second line: BPII(3) (left), Symmetric logistic (right); Third line: Archimax mixed (left), Archimax logistic (right).

.

  Now write, for some function r β ¦ where r By Theorem B.2.18 in de Haan and Ferreira (2006) (see also[START_REF] Drees | On smooth statistical tail functionals[END_REF] we have for any ε ¡ 0 there is a t 0 such that for t, tx ¡ t 0 , p1 κqr|ψpxq| εx ρ I δ s.

  1 p1 ¡ t ¡1 xq, ..., F ¡1 d p1 ¡ t ¡1 xq ¨$, and using the fact that L t px1q xL t{x p1q, that1 x 4 L t pxy1q ¡ Lpxy1q ¡ αptqM pxy1q β 1 ptq ¡ L t px1q ¡ Lpx1q ¡ αptqM px1q β 1 ptq B L t{x py1q ¡ Lpy1q ¡ αpt{xqM py1q β 1 pt{xq ¡ L t{x p1q ¡ Lp1q ¡ αpt{xqM p1q β 1 pt{xq αptqx ¡ρ @ {β 1 ptq $ pMpy1q ¡ M p1qq .Since the limit for t Ñ V of β 1 pt{xq{β 1 ptq exists, from[START_REF] Gomes | Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses[END_REF] the limit for t Ñ V of 1 βptq ¡ αpt{xq αptq ¡ x ¡ρ © exists such that, combining with Theorem B.2.1 in de Haan and Ferreira (2006):

	lim tÑV	1 βptq	¢	αpt{xq αptq ¡ x ¡ρ	x ¡ρ lim tÑV	1 βptq	¢	α pt{xq α ptq ¡ 1
	Taking limits for t Ñ V we obtain that			
	1 x pNpxy1q ¡ N px1qq lim tÑV 4 pNpy1q ¡ N p1qq β 1 pt{xq β 1 ptq	1 βptq	¢	αpt{xq αptq ¡ x ¡ρ	pMpy1q ¡ M p1qq	B	.	(11)

& β 1 pt{xq β 1 ptq 2 αpt{xq ¡
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