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method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

INTRODUCTION

Modeling of fluid flows including heat or chemical transfers into naturally fractured rocks using explicit descriptions of fractured media (DFN) is becoming increasingly popular among geoscientists. This growing interest is due to a wide range of applications in various industries, to a better characterization of fracture networks, and evidently to the increasing computing power. In the common practice, these detailed descriptions are used to build and to calibrate a so called "double porosity madel" that is designed to manage field applications. This class of double porosity models corresponds to the large scale homogenized version of the Darcy equations in the fractured medium, coupled to a linear transfer madel wit h the matrix that is acting as a reservoir. These models, which were proposed in the early 60's by Barenblatt et al [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[END_REF] remain still the base of most industrial fluid flow simulators [START_REF] Sabathier | A new approach of fractured reservoirs[END_REF][START_REF] Bourbiaux | Scaling Up Matrix-Fracture Transfers in Dual-Porosity Models: Theory and Application[END_REF][START_REF] Adler | Fractures and Fracture Networks[END_REF][START_REF] Sarcla | Hydraulic characterization of fractured reservoirs: Simulation on discrete fracture models[END_REF][START_REF] Neuman | Trends, prospects and challenges in quantifying flow and transport through fractured rocks[END_REF][START_REF]Bourbiaux Fractured Reservoir Simulation: a Challenging and Rewarding Issue Oil Gas Sei[END_REF][START_REF] Lemonnier | Bourbiaux Simulation of Naturally Fractured Reservoirs. State of the Art-Part 1-Physical Mechanisms and Simulator Formulation[END_REF][START_REF] Lemonnier | Bourbiaux Simulation of Naturally Fractured Reservoirs. State of the Art -Part 2 -Matrix-Fracture Transfers and Typical Features of Numerical Studies Oil Gas Sei[END_REF]. Homogenization techniques [START_REF] Arbogast | Derivation of the double-porosity mode! of single-phase flow via homogenization theory[END_REF][START_REF] Panfilov | Averaged model-type transition in flows through multiple heterogeneous porous media[END_REF][START_REF] Royer | Macroscopic modeling of double-porosity reservoirs[END_REF][START_REF] Showalter | Homogenization and Porous Media[END_REF], or Volume averaging techniques [START_REF] Quintard | Transport in chemically and mechanically heterogeneous porous media 1: Theoretical development of region-averaged equations for slightly compressible single-phase flow[END_REF][START_REF] Quintard | Transport in chemically and mechanically heterogeneous porous media ii: Comparison with numerical experiments for slightly compressible single-phase flow[END_REF][START_REF] Landereau | Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems[END_REF] allow a formal derivation of the double porosity equations, starting from 1s the detailed DFN, at least in the Darcy hypothesis, and in the case of a well connected fracture network. Numerical solution of the associated closure problems permits to evaluate the parameters of the dual porosity madel as a function of the geometry of the DFN. Useful connections with random walk theory providing efficient computational tools were made by several authors [START_REF] Mccarthy | Effective permeability of sandstone-shale reservoirs by a random walk method[END_REF][START_REF] Mccarthy | Continuous-time random walks on random media[END_REF][START_REF] Noetinger | Up scaling of fractured porous media using a continuous time random walk method[END_REF][START_REF] Noetinger | Up scaling of fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method[END_REF][START_REF] Noetinger | A direct determination of the transient exchange term of fractured media using a continuous time random walk method[END_REF]. In the case of badly connected networks, modelling approaches involving percolation theory background are more appropriate [START_REF] De Arcangelis | Hydrodynamic Dispersion in Network Models of Porous Media[END_REF][START_REF] Koplik | Transport and dispersion in random networks with percolation disorder[END_REF][START_REF] Berkowitz | Percolation theory and its application to groundwater hydrology[END_REF]. But a complete workflow remains to be developed, especially if strong couplings with the matrix are involved, and in situations in which non linear transfers, like multiphase flow, are to be accounted for [START_REF]Bourbiaux Fractured Reservoir Simulation: a Challenging and Rewarding Issue Oil Gas Sei[END_REF][START_REF] Lemonnier | Bourbiaux Simulation of Naturally Fractured Reservoirs. State of the Art-Part 1-Physical Mechanisms and Simulator Formulation[END_REF][START_REF] Lemonnier | Bourbiaux Simulation of Naturally Fractured Reservoirs. State of the Art -Part 2 -Matrix-Fracture Transfers and Typical Features of Numerical Studies Oil Gas Sei[END_REF]. Direct simulations of flows in 2D or 3D DFN were already performed by several groups ( [START_REF] Adler | Fractures and Fracture Networks[END_REF][START_REF] Chang | Yortsos Pressure transient analysis of fractal reservoirs[END_REF][31][32][33][34][35][36][37][38][39][40]). The underlying numerical methods involve finite volume, finite elements techniques. Sorne groups intend to couple the high resolution DFN model with a flow in the matrix [41].

Here, we focus on the simplest problem: fractures (here 2D abjects like closed polygons or ellipses of small thickness 2s E of high typical conductivity Cf = k f xE are embedded in a 3D matrix having a low permeability km « k f that will be supposed as being uniform for sake of simplicity. The fractures are supposed to be well connected (FIG. 1). Our goal 3o is to solve linear diffusion equation within such a medium. Considering large cases involving thousands of intersecting fractures, the main difficulty of direct numerical solution techniques is to get an automated meshing fulfilling the quality requirements of the associated discretization scheme [START_REF] Adler | Fractures and Fracture Networks[END_REF]40]. Even if this practical question is solved, the overall number of degrees of freedom remain equal to the number of fractures, say N, times the typical number of cells Ntyp used to mesh every fracture (typically Ntyp::: several hundred). The number of associated matrix elements should scale as N x Nt 3 :~. Getting a numerical solution of a 10 millions fractures problem will imply th us solving close to several billion equations. This justifies developing approximation methods in which the number of degrees of 6o methods [START_REF] Noetinger | Up scaling of fractured porous media using a continuous time random walk method[END_REF][START_REF] Noetinger | Up scaling of fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method[END_REF][START_REF] Noetinger | A direct determination of the transient exchange term of fractured media using a continuous time random walk method[END_REF] that can avoid any explicit mesh of the matrix. Analytical forms j(t) accounting from both short times and lon g times asymptotic behavior of f(t) can be proposed. Finally, the resulting equations 2 may be solved in Laplace domain.

The paper is organized as follows: first, the Section 2 introduces the pressure diffusion model in the matrix and in the fractures considered having a small thickness E. In next Section 33.1, we summarize with more details the techniques and results obtained in [START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF], that are also presented in more details in the appendices A,B,C. In section 4, we present our assumptions to account for the matrix to fracture flow. In order to proceed, we must come back about the mathematical treatment of the fini te (not null) thickness of the fractures 4 4.1. We are th us in good position for 6a introducing the so called exchange function f(t) 4 4.2 at the level of a single fracture. The explicit coupling of the DFN to the matrix, as well as the adaptation of the projection formalism is presented in 4 4.3. Sorne general properties of the exchange function are presented in section 5. In section 6, we come back about our main assumption of quasi steady state flow inside the fractures, in order to check its consistency in the light of our findings. The application of the formalism to the resistor capacitor network that will be employed in practice is given in 7, before giving sorne comments and discussions. fracture is considered as being a closed 2D object (e.g. polygonal or elliptic), the position of which can be given by 78 the coordinates of its center, the orientation of its normal, and all the necessary parameters chosen by the geologist 79 to characterize its detailed shape. FIG. 2: An example of 2D elliptic fracture with a number of "cluster of intersections" nni = 3.

MODEL PROBLEM, GEOMETRY AND NOTATIONS

8o

We consider a well connected network of N fractures, so each fracture is connected to all the others via at least one 81 path. So each fracture intersects at least one other fracture. Let nn1 denotes the number of disconnected cluster of 8> intersections of the rh fracture with the others. By the name "cluster of intersections", we mean that intersections between different fractures can intersect between each other (see FIG. 2 ), providing clusters that are not necessarily restricted as segments.

FIG. 3: 3D fracture of thickness é and of permeability ki.

8s

On the hydrodynamic point of view, we consider that all the fractures share a small common thickness denoted 86 by é (FIG. 3). The permeability of the Jth fracture is denoted by kJ. This permeability may vary on the fracture's 87 plane, but in order to simplify notations, this dependence will not be explained, although it will be accounted for in 88 the V' operator manipulations.

89

Our main goal is to study the solution of the following diffusion problem when é is small of:

apé(r,t) ) ( <pf.LCt at = \7• (k(r \i'pé r, t)) + g(r).
(

) k(r) = k1ifr E Diforsomei = 1, ... N (4) k(r) = kmelse ( 3 
) 5 
The source term g(r) is arbitrary for the moment: it can be a bulk source term. Here, we do not have to add boundary conditions at the fractures boundaries in contact with the matrix, but we may recall a normal flux continuity condition that will be ensured :

We denote by D f and Dm the associated diffusion coefficients.

D -}2_ f -i.pP,Ct (6) 
D _ km m - tpP,Ct (7) 
Dm« D1 [START_REF]Bourbiaux Fractured Reservoir Simulation: a Challenging and Rewarding Issue Oil Gas Sei[END_REF] Here r.p is the porosity and Ct is the compressibility of the fluid, both are supposed to share the same value between matrix and fractures, an hypothesis that can be easily relaxed. p, is the fluid viscosity. Finally, in order to obtain a 96 well-posed evolution problem, we assume that initial value data at t = 0 are provided. In that section, we recall the results obtained in [START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF]. We consider first the steady state problem corresponding to 1oo the long time limit of 3 with an impervious matrix km = O. More details are given in the appendix A.

101

The source term 91(r) corresponds to the restriction of g(r) in the I th fracture domain. Notice that the Neumann' 102 boundary conditions at the frontier of [2, and the well connectivity of the network, give a perfectly well posed problem 1o3 in the fracture domain as far as the thickness E is not equal to zero. In [START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF], is was shown that the solution of Laplace 1o4 equation in the fractured domain can be reconstructed once the trace of the pressure at the intersections between 1o5 fractures is known. These intersections are generally segments. This trace may be in turn decomposed by projection 1o6 on a complete set of basic function A. The n-th components of pressure on the j th intersection is denoted by PT. [START_REF] Lemonnier | Bourbiaux Simulation of Naturally Fractured Reservoirs. State of the Art -Part 2 -Matrix-Fracture Transfers and Typical Features of Numerical Studies Oil Gas Sei[END_REF] 119

The notations are essentially the same. This set of first order differentia! equations may be solved once an initial 120 condition is fulfilled. 

for alllabels i, j, m and n. We are now in position t o couple the fracture network with the matrix. In order t o fix the ideas, we solve the initial 121 value problem 3. The init ial value data at t = 0 is p(r, t = 0) = 0 if r E matrix. Our first assumption is to consider 12s th an the ratio of typical diffusion ti me over an elementary matrix block having a charact eristic size of L ( that can be 12• considered as of the same order of magnitude of a fr acture length) over a characteristic diffusion time over a single 13o fracture that can be estimat ed as i;; is very large. So, the pressure inside the blocks can be considered as slowly m varying in the time domain. This observation permits us to use the preceding projection formalism at quasi steady m st at e. At a given time and at a given location r inside a fr acture, say the J-th fracture , one can compute a matrix t o m fracture flux h mt (r , t ) given by fimJ(r, t)

Here, n1 is a vector normal to the I th fracture, and the + or -signs correspond to both sides of the fracture. At 

So, using the decomposition a~ = S" uS+ U S_, one gets [START_REF] Quintard | Transport in chemically and mechanically heterogeneous porous media ii: Comparison with numerical experiments for slightly compressible single-phase flow[END_REF] One can exploit the smallness of é to estimate the various integrals and in order to decrease the order of integration.

(

) 17 
The 2D integration was transformed into a 1D one along the curve denoted by aaS+. The normal vector n is the normal vector to the 1D curve aaS+ belonging to the I th fracture plane. As the preceding equality is exact for any !5o

aaS+, and using Green's theorem, one gets the local 2D equation valid only on the fracture plane:

éV• (k(r)Vp" (r, t)) + frmJ(r, t) (18) 
! 51

In present form, the limit é--+ 0 can be evaluated safely. The differentia! operators are defined as in the preceding 152 sections on the considered fracture only. In practice, we have essentially to solve the same equations, up to a factor 153 é. The projection formalism can be used on the fracture domain using the following correspondence:

1 -frmJ(r, t) é ( 19 
)
154

The next issue will be to relate the interporosity flux frmt(r, t) to the fracture pressure p"(r, t) = p(r, t and so for the total source term accounting for bath sides of the fracture:

gr(r) -~ r dt'f (t-t') apr(r, t')
c Jo Im at' [START_REF] Noetinger | Up scaling of fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method[END_REF] This form may be justified by the following arguments: let Dm be a matrix black surrounded by several fractures.

Let Pf ( t) be the pressure of these fractures, assumed to be spatially uniform. We consider a solution of the diffusion equation inside the matrix black without any source term:

apm(r, t) 'f!f.J,Ct at = \7• (km \70pm(r, t)) = Ü, ( 22 
) Pm(r, t) = PJ(t) if rE aDm (23)
The present goal is to relate the flux ~'Vp~(r, t) • n, or at least its average 18 J"' 17 fan"' d 2 r~\7p~(r, t) • n to the variations of the pressure at the boundary P 1 (t). Applying the divergence theorem, we obtain:

l n d 2 km n + ( t) _ ln l d(Pm)(t) _ d fnm d 3 rPm(r, t) r -v Pm r, • n --cpCt Jtm dt --cpCt dt • âflm f.J, (24) 
Here (•••)denotes a volume average of the pressure Pm over the matrix black. The minus sign cornes from the normal n orientation.

It is now possible to search for a relation between (Pm)(t) and PJ(t) under the form of a convolution product:

(Pm)(t) =lat dt' f(t-t')PJ(t'), (25) 
The mapping function f(t), homogeneous to an inverse of time is the solution of a well posed boundary value problem Ho that will be discussed in more details in 5. Coming back to the average flux, using 24 and 25, and elementary m properties of convolution products, we get the following form:

m Coming back to the local interporosity flux ~ V'p;t,(r, t) • n1 in the general case of a non uniform pressure in the m fractures, the preceding developments suggest the proposed form that leads to 21.

km 'Vp+ (r t) 0 n = -t dt'r.pc IDml r+(t-t') api(r, t')

J.1. m ' I Jo tlaDml at' ( 26 
)
11•
The subscript + recalls that any location in a fracture is in contact with two matrix blacks. Adding both contri-11s butions, we get:

(

) ( 27 
) 28 
11o

A more detailed discussion about the f(t) functions will be provided in section 5. We now turn our attention about m the final closure of the problem, and the resulting consequences on the projection formalism. As in [START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF], we introduce the following pressure decomposition, see appendices A and B for the details. The pressure fluctuation op(r, t) follows the equation:

t ao (r t') rpp,ct Jo dt'(V 1 o(t-t')+ Vmf(t-t') Pat' ( 29 
)
L f 1t rpp,ct(Vfo(t-t')+ Vmhm(t-t'))Fp(t')Fp(r), [START_REF] Chang | Yortsos Pressure transient analysis of fractal reservoirs[END_REF] jEJr n=l 0 with an additional condition:

op(r, t) = 0 if r E U ni .
Here, the pjn(t) are assumed to be "slowly varying" if compared to typical diffusion time over one fracture. The steady state assumption assumes that the residual term op(r, t) obeys a steady state equation in which the left hand side is considered as negligible. The validity of this major assumption will be discussed in more details in section 6.

So, we assume that 

V/ Y'• (kiV'op(r, t)) = L f 1t
oo \1 i, m, L L K[';n x ln (V 1 o(t-t')+ Vmhm(t-t')) ~t = L L V 1 Tt;n x Pp jEJ(i) n=l 0 jEJ(i) n=l (31) 
This is the proposed equation 

\:/ i, m, L L K;:_r x (V!+ Vrnf(s)(sPp(s) -Pp(t = 0)) = L L V 1 T[jn x Pp(s) (34) jEJ(i) n=l jEJ(i) n =l 197
In the Laplace domain, the net effect of the matrix is a modification of the porosity by a s dependent porosity.

198

Setting Vrn = 0, one recovers the impervious matrix case equations 1. It appears that having a solution of the 199 corresponding impervious matrix problem given by 1 using Laplace transforms, and replacing the Laplace argument This corresponds to the original set of equations, up to a V! factor that appears as a retention factor that will hinder 2o8 diffusion in the fracture domain. We can now study the exchange function as well as its practical evaluation. We recall [START_REF] De | Functions of flow from porous rock blocks[END_REF] At short times t, when the potential in the fractures corresponding to the boundaries of the matrix blocks, is set to Comparing both results shows that for consistency, C = 1 k~: 1 . This formula can be interpreted as follows: at short times t, the characteristic diffusion length is of the order of vn;;:f;. So the corresponding flux is given by 46 up to numerical constants. This corresponds to the large s asymptotics of f ( s).

Several other general properties of f(t) can be attained by studying the limit s ---+ O. One has, using a Taylor expansion of the th function: We observe that f(s = 0) = 1. This is a general equality that occurs because using 36 and remarking that both fracture and matrix potential equalize at the long times (or low frequency) limit so j(s = 0) = 1. In next paragraph, we show that the linear term in s is closely related to the so called "ex change coefficient" cx 00 = 3 ~rrp_, in present case.

This coefficient arises from large scale averaging theories that yields homogenized form of double porosity equations [START_REF] Noetinger | Up scaling of fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method[END_REF] valid at long times, long distances. A useful interpretation of f(t) in terms of escape time pdf from the matrix was derived in [START_REF] Noetinger | Up scaling of fractured porous media using a continuous time random walk method[END_REF][START_REF] Noetinger | A direct determination of the transient exchange term of fractured media using a continuous time random walk method[END_REF]. It corresponds to the exit time distribution from the matrix blocks of a particle undergoing brownian motion of diffusion coefficient -f-m-.. In particular, the average exit time may be directly related to the so <pJl.Ct called exchange coefficient or "shape factor" that enter in classical dual porosity models [START_REF] Landereau | Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems[END_REF][START_REF] Noetinger | Up scaling of fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method[END_REF]. Continuous time random walk techniques can thus be set-up to determine this exit time distribution. This can provide techniques avoiding any explicit meshing of the matrix. Detailed expressions of exchange functions using Laplace transforms are given for several block geometries by de Swann [START_REF]A de Swaan Analytic solutions for determining naturally fractured reservoir properties by well testing[END_REF][START_REF]A de Swaan Influence of shape and skin of matrix-rock blocks on pressure transients in fractured reservoirs SPE formation 51o evaluation[END_REF][START_REF] De | Functions of flow from porous rock blocks[END_REF], that can be useful for testing numerical solutions or analytical parameterizations.

It can be shown that choosing the following form for f(s)

( 48) 254 corresponding to an exponential relaxation in the time domain is equivalent to consider a steady state double porosity 255 model [START_REF] Noetinger | A direct determination of the transient exchange term of fractured media using a continuous time random walk method[END_REF]. Using 48 and 24, it is possible to show that at a given time, the flux between matrix and the fractures is 256 given by:

( 49)

This corresponds t o a steady state double porosity model with a particular choice of the so called shape factor o: 00 [START_REF] Landereau | Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems[END_REF]. The flux is proportional to the difference between the pressure of the matrix and the fracture. The reader should note that in [START_REF] Noetinger | A direct determination of the transient exchange term of fractured media using a continuous time random walk method[END_REF], the exchange function f(s) corresponds to V1 + Vmf(s).

TESTING THE SELF CONSISTENCY OF THE ASSUMPTIONS

In that section, we verify on a simplified test problem whether the quasi steady state assumption of section 4 4.3 is consistent with the subsequent findings. In other words, we check if the source term arising from the matrix does not modify drastically the pressure diffusion inside a fracture, that could lead to fracture relaxation time comparable with the matrix relaxation time. We come back about a simplified form of 30 on a single fracture, keeping our notations: The negative sign was chosen to recall that the Laplace operator has negative eigenvalues. Using Laplace transform, m and the property 33, we get:

or , equivalently:

Recalling the boundary conditions for Jp( r, s) = 0 at the fractures intersections, it is clear th at for large ti me Jp(r, t) --+ 0 for t --+ oo. The convergence is exponential and in order to estimate the relaxation time, the roots of 21s the denominator has to be evaluated. The resulting expressions can be simplified using the fact that oe 00 « À, and we obtain two roots, up to terms of order ~ « 1, which are -À and -~. Finally, after simplification with the " 'Pm m numerator, we get:

Jp(r, s) = s ~À Jp(r, t = 0) equivalent to: Jp(r, t) = exp-(Àt)Jp(r, t = 0) 21•
This confirms the fast relaxation of the transient and the justification of the quasi steady state approximation.

APPLICATION TO THE RESISTOR CAPACITOR, OR PIPE NETWORK

281

In that subsection, we restrict the problem to the case m = 1 and n = 1 used in practice [42]. In practice it means 282 physically that we estimate only the average pressure along each intersection, and that the mass conservation equation 283 at the intersection is only fulfilled globally. Assuming that all p im = 0 if m 2: 2, the differential system to be solved """"' n dP} ( t) """"' 11 1 Vi,

L... K;j x (V 1 o(t) + Vmf(t)) * ~ = L... V 1 Tij x Pj. jEJ(t) jEJ(i) (51) 28s 
We recall the following relation [START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF]:

286
where S1 is the total area of the fracture.

287

The resulting time discretization scheme of the differentia! equations ( 51 vi,

L VtTN x (P} -Pl), (52) jEJ(i) 
with M;

L Kf]. (53) jEJ(i) 29 1 
Indeed , these equations (52) possess the structure of the equations driving the variations of the node potentials of 292 a resistor/capacitor network. The main difference is that the capacity term appears under the form of convolution 293 products, that are simple products in the Laplace domain.

294

The numerical determination of the T;Y can be clone by solving nn elementary Laplace problems with the boundary 29s conditions at the intersections, and computing next the scalar products (A15). Thus, the masses M; given by (53) 296 are obtained using a suitable surface integration scheme. Fast evaluations of these quantities avoiding solving local 297 Laplace problems on each fracture are proposed in [42]. 298

FINAL COMMENTS AND DISCUSSIONS

299

In this paper, we generalize a method that permits to solve diffusion problems in complex 3D fracture networks 3oo using a relatively small number of degrees of freedom . The generalization enables us to consider ftows coupled with a 3o2 exchange function f(.). The main assumption is that diffusion is so fast in the fractures that the matrix blacks are 303 bounded by essentially spatially uniform boundary conditions that are quasi steady state. The second assumption 3o4 is to replace the local matrix to fracture flux by its average. Bath assumptions permit to define f(.) as a volume 305 average of a solution of a well posed boundary value problem. This function can be determined by existing numerical 306 techniques that avoid a complex meshing of the DFN and solving a badly conditioned problem. It passes also a 307 probabilistic interpretation as it represents the pdf of escape time of diffusing particle in the matrix. Alternatively, it 308 can be parameterised using generic analytical forms fulfilling asymptotic requirements at short and long times. These 309 forms permit to capture the essential features of the matrix: The surface to volume ratio, the typical size L of the 31o blacks, and a shape factor. Very ramified DFN with many dead ends having fractallike structures could be described m using a power law f(.) limitation to the pipe network approximation (n, rn) restricted to 1. Another issue is the generalization of the present formalism to other transport equations, such as convection diffusion equations in the fracture network, coupled with purely diffusive transport in the matrix. This could be done following works of [START_REF] De Arcangelis | Hydrodynamic Dispersion in Network Models of Porous Media[END_REF] and [START_REF] Koplik | Transport and dispersion in random networks with percolation disorder[END_REF].

APPENDIX A: PROJECTION FORMALISM STEADY STATE CASE 1. Small fracture thickness limit

The projection method follows several steps. The first one is to account for the small thickness r:: of the fractures in arder to be able to treat the intersection between fractures as lD abjects, and the fractures as 2D abjects embedded in a 3D.

Sorne geometrical quantities and several notations are presented in (FIG. 6). Let nu be an intersection between the two fractures I and J; a 3D volume having the shape of a match. As r:: tends to zero, this volume becomes a ID segment corresponding to the intersection of the two planes containing fractures I and J. In arder to simplify the discussion, and this changes nothing to the global solution, we consider that this segment does not intersect a 327 third fracture. Let x denote a coordinate along this segment. The point rn!J (x) denotes in a rather nat ur al way the 328 generic point of this segment labeled by x (in practice, the three coordinates of rni.J (x) may depend linearly on x).

•

x FIG. 6: Geometry and notation two rectangular fractures and the associated intersection, and limit t:---+ O.

329

As é tends to zero, we can consider that close to the point rnJJ (x), the intersection separa tes locally the Jth fracture 33o (resp Jth) in two halves denoted arbitrary by the suffix f. and r (for left and right). We introduce also the normal 331 nnu u as being the normal to intersection niJ pertaining to the plane of the Jth fracture, painting in the f. direction.

332

In addition, it is possible to introduce the \l 1 gradient operator as being the 2D gradient operator operating only in 333 the Jth fracture plane. When there is no ambiguity, we will remove the index I to this operator.

334

We denote the considered limitas lim 6 --+ 0 (p 6 (r)) = p(r). We argue that p(r) is the solution of the following problem:

(Al)

The notation \lI ... corresponds to the 2D gradient operator defined in the fracture. In or der to get a meaningfullimit, 336 we must specify boundary conditions at the frontiers of the computational domain, at the boundary of each fracture, 337 and finally at the intersections between fractures.

33s

The boundary condition at the frontier n of the computational domain remains essentially unchanged (notice that 339 the same reasoning should hold also when using mixed Dirichlet Neumann conditions). Considering now each fracture , 340 the boundary value problem to be solved is 2D. The position vector ris essentially 2D. In particular, the boundary to an ellipse in the case of elliptic fractures) can be written as:

where n is the outward normal to the boundary (FIG. 6). Notice that in the present formulation, the two initial faces of the fracture in direct contact with the matrix do not play any role.

In order to get a well-defined problem, a boundary condition must be specified at every intersection between fractures. In [START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF], the following condition was proposed:

It means physically that at each location of the intersection, the four fluxes converging at the considered position must balance. The subscript c and r (left and right) account for the two sides of the intersection. The normal nnJJJ is one normal vector to the intersection under consideration lying in the plane of the I th fracture involved in the 35o intersection. This condition reflects that due to the small transverse area of the intersection, longitudinal flow in the 1s1 intersection will become negligible as é ---+ 0, independently on the value of permeability value at the intersection.

Note that the same argument can be followed in the case of a transient problem, because the volume integral of the accumulation term inside the intersection will also become negligible.

The projection method.

We are in position to build an approximation scheme allowing us to eliminate interna! degrees of freedom inside each fracture. In a finite element solution framework, using an explicit mesh of each fracture, these degrees of freedom will correspond to the unknowns associated with the generic element inside each fracture. The basic idea is to express these lumped degrees of freedom as a function of the pressure trace at intersections. Thus, using the boundary 359 condition (A2), we get equations coupling only degrees of freedom attached to intersections. In order to proceed, we 36o focus our attention over the Jth fracture called fh of the set. In order to simplify the analysis, we suppose that this 361 fracture intersects nn 1 other fractures by simple intersections restricted to be segments. So, the nn1 intersections are that is intercepted by I (FIG. 6). So we have J(i) = J 1 U h(i). By hypothesis, this fracture is weil defined.

36s

For each intersection segment, we introduce a complete set of basis functions, denoted by il>j(x). Here, the integer that:

p(r) = L f Pp f> 1 n(r) + 1 d 2 r' B(r, r') x 9I(r'). j Eh n=l nr (AS)
Here the Green's function B(r, r') is an elementary solution of the Laplace problem, with a source term o(r-r'):

VI= 1, • • •, N, Vr• (ki\7rB(r, r')) = o(r-r'). ( A9 
)
to be solved with the following boundary conditions:

0 for rE 85h, B(r, r') 38o
One must remember that it is a 2D Green's function, because the working space is the space of the fracture. This is the general form of the solution with source term, but we still need relations to determine the set of Pp values. This will be done by using the boundary condition (A2) in next subsection.

In order to get equations allowing to determine the unknowns pim, we use the boundary condition (A2), conveniently projected on the basis function <I>i(x). The projection gives the following relation: Vi= 1, • • • , nn, V m = 1, • • • , oo, 1 dxnniJie" ki (r(x))[\7Ip(rniJ(x))R-\7Ip(rniJ(x))r)] x <I>i(x) The notation I:' means that the summation must be performed over both fractures involved by the ith intersection 393 of the Jth fracture. Here, the notation I(i) denotes that we are considering the moment of the solution over the ith 394 intersection, between the Jth fracture, and the I(i)th intersection. It is this summation over all the involved fractures 39s that permits to ensure mass conservation at the intersections. In orcier to simplify the presentation, we did not 396 reintroduce the labels of I and J th fractures. In practice, one will truncate the orcier n of the approximation by 397 restricting m, n ~ n 0 . At the end of the process, we will have to solve a linear system of Nn x n 0 equations. To the 398 lowest orcier approximation n 0 = 1, will correspond Nn equations to be solved. This corresponds well to our initial 399 program , this approximat ion will be studied in more details in Section 7.

4oo

The algebraic form (A15) permits to check by direct inspection that we have the general symmetry relation: Finding a method to control the accuracy of the method as a function of m and n would be of theoretical interest.

Fast evaluations methods of K and T remain an open area of work followed by Khvoenkova and Delorme [42]. The 441 similar approach followed in 2D, with fracture intersections th at degenerate as single points is exact, and corresponds 442 to a so called resistor/network mode! developed by [31].
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 1 FIG.1: 3D network of 2D polygonal fractures in a cubic box J?.

1 .

 1 The projection formalism in the case of an impervious matrix 99

121

  Explicit evaluation methods of T['jn and KJ.'r are given in the appendix A and B. Both matrices K and T are 122 symmetric positive.
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 1 Basic assumptions, accounting for the finite thickness of the fractures 126
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 45 FIG. 4: Notations for the exchange flux
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 43 Final closure and projection formalism 179 Combining 3 and 28, we get an equation driving p(r, t) inside any fracture: ap(r,t) ( ( )) Vm t , ( ')ap(r,t') 'PJ.l.Ct at = V'• ki 'Vp r, t -Vj 'PJ.l.Ct lo dt f t-t at' 18o When it is possible, we suppress the subscript I because we are considering local pressure without any ambiguity on 181 the I th fracture. As the local pressure p(r, t) appears in both members, the original diffusion equation becomes an 182 integral equation which can be rewritten under the alternative form:

  00 p(r, t) = op(r, t) + L L Pp(t)Fp(r) jEJr n=l

2oos

  by s(VJ + Vmf(s)) will provide the solution of 34. Numerical Laplace inversion can be performed with accuracy 201 by Stehfest algorithm [45]. The net result is that using Laplace transform techniques, the additional computational 202 cost relies mainly in the determination of the exchange function f(.). This observation was already highlighted by 2o3 several authors in the context of the averaged continuous double porosity descriptions with transient interporosity 2o4 flow [24-26]. 2o5 Fin ally, for small s, as f ( s) "' 1 (section 5) corresponding to long time relaxation or low frequencies forcing, one 2o6 obtains, coming back to the time domain: (35) 201

1 .

 1 Numerical evaluation of the exchange function 211

22g 1 ,

 1 the diffusion in the matrix takes place only in a small boundary layer close to the fractures. One can adopt two 23o point of views, in the first one, one can write f ( s) = ~ x th(~ f) ' :::: ~. In the second point of view, one m can consider that the matrix blocks are infinite, e = oo, which does not permit using 43 directly because the average pressure on the matrix is not well defined. But, one can use directly the evaluation 20 of the matrix to fracture flux.

tpctDm 8 P

 8 !fx=l (x= 0, s) for x> 0 by symmetry to obtain: ( 45) In the real time domain, this corresponds to ( 46)

2 j

 2 (s) = 1---D /! + ...

362 non-intersecting segments denoted by n 1

 1 of arbitrary lengths, the label of which belong to a subset of the Nn labels 363 denoted ][, such that Gard][ = nni• For the intersection labeled by i, we cali J(i) the label of the other fracture 3o•

+

  li dxnniJJR" kJ(r(x))[\7 Jp(rniJ(x))R-\7 Jp(rniJ(x))r] x <I>i(x) =O. (A10) 38s This allows us to get an infinite set of relations, by inserting (AS) in the projection of the boundary conditions (A10) : Vi,• • • , m, (A 11) or, equivalently, introducing Bf' =-In d 2 r' Bf'(r') x 9I(r')-In d 2 r' Bf'(r') x 9I(i)(r'):

  401for alllabels i, j, m and n.402It can be checked by inspection of this formula that the matrix TN is symmetric, positive. It is not defini te because bp(r, t) obeys the following equation:r.pJ.LCt obp~;, t) = \7• (kr\lbp(r, t))-r.pJ.LCt L f Pp(t)Pp(r), condition: bp(r, t) = 0 if r E U ni .different fractures are not directly coupled. This is quite natural, as all the information must be carried by the m intersections. The boundary value problem (A5) can be solved using for example a finite element code by meshing 436 only the Jth fracture, once for all i, j, m and n, plus a Laplace equation sol ver. High values of m and n will probably 437 need highly refined meshes, corresponding to having a high leve! of details. The same procedure must evidently 438 be repeated for every fracture, leadil1g to a numerical cost proportional to twice the total number of intersections.

  439

  In or der to determine Pp, one needs boundary conditions at every intersection. It was shown that a correct boundary 1os condition is th at the sum of the (general! y four) fluxes converging at a given point of the considered intersection is wo equal to zero (see appendix A and[START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF]). Projecting thus this condition of the same set of basis function gives thus the LCtL 2 / k 1 « T 91 ) is smaller than the characteristic ti me of variation of the source

	uo following linear system:
		00 Vi= 1, Nn; m = 1, oo, L 2:TI.r x Pt	(9)
			jEJ(i) n=l
	111	Explicit expressions for T{jn are given in the appendix A. The right hand side Bi are linear forms involving the
	m source term 91 are also given in the same appendix.
	113	3.2. Generalization ta the transient case: the quasi steady state approximation
	11•	The projection formalism can be adapted in order to solve the transient diffusion equation 3 with a source term in
	m	the fracture domain only. The proposed expression is a faithful approximation if the characteristic diffusion time over
	116 one fracture (of typical value m term. this hypothesis is not restrictive at all and may be fulfilled in most practical cases. In that situation, the latter
	11 s	can appear as being stationary. The net result is a generalization of 9 that reads:
		Vi= 1, Nn; m = 1, oo,	oo 2::: I:Kr;n x -il-= 2::: I:rrr x Pp +Br;'. dPn(t) oo
			JEJ{t) n=l	jEJ(i) n=l

T :::::: tpf..

  2. Further insights can be given introducing time domain Laplace transform defined

		dg(t) [dt](s) = sg(s)-g(t = 0)	(33)
	194	By convention, throughout the rest of the paper, employing as argument corresponds to using the Laplace transform
	195	of any function g ( t).
	196	The Laplace transform of 31 gives :
		00	00
		by
		g(s) =Loo exp-stg(t)dt	(32)

With the property for the Laplace transform of the time derivative of a function g(t):

  relating the volume average 212 (Pm)(t) =of the pressure in the matrix to the forcing imposed by the boundary condition in the fractures PJ(t):

		Pm (x = 0, t) = 1 for t > 0
		OP Hm a;ç-(x = e, t) = 0, for t > 0 by symmetry
		(Pm)(t) =lot dt' J (t-t')Pj(t'), Vx -=J O, pm(x, t = 0) = 0
		this equation can be solved using time domain Laplace transform:
	213	Or, equivalently using Laplace transforms:
		(Pm )(s) = f(s)PJ(s)	(36) ( 41)
		Pm(x = O,s) = 1/s
		OP Hm (
			(37)
		Pm(r,t) = 1 if r E 8Dm,t > 0	(38)
		Pm(r, t = 0) = 0 \fr E Dm	(39)
	222	5.2. Properties of the exchange function
	223	Equations 25 and 39 permits to obtain sorne analytical solutions in simple cases for f(t) or f(s). We can consider
	22•	

214 Choosing as PJ (t) a Heaviside function gives: (PHm )(t) = J~ dt'f(t'), from which f(t) can be obtained by direct time 21s derivative evaluation. So, solving the following boundary value problem: OP Hm (r, t) ( ( 'fJ J-LCt at = \1• km \!Op Hm r, t)), 216 and computing the aver age (PHm)(t) yields the exchange function. This evolution equat ion can be solved by several 217 numerical methods. The main task is to mesh the matrix. Note that any explicit meshing of the fractures is avoided 21s because the fractures enter only via a Dirichlet boundary condition. The resulting linear systems to be solved will not 219 contain highly contrasted coefficients , because k f does not enter in the problem, so correct preconditioning properties no can be expected. A useful alternative interpretation of the exchange function in terms of random walks can be 221 proposed [20, 22]. Alternative numerical techniques such as MINC approaches can also be employed [37]. 1D blocks (the associated coordinate x E [0, 2C] perpendicular to the plane of the fracture). The potential PHm(x, t) depends on x and t, So one can use the 1D solution: ( 40) ) a;;x = e, s = 0, for t > 0 by symmetry ( 42) m This single variable differentiai equation can be solved easily. One obtains finally: ( 43) 22a

  It corresponds to an initial value problem on the fracture domain, without source term. We want to check if the relaxation time associated with the operator 'P/JCt J~ dt'(VJ5(t-t')+ Vmf(t-t')88 Pb:,t') is small compared with the diffusion time in the matrix ~ Dm/fJ2 . In orcier to proceed, we consider that f(s) is given by the steady state double porosity model48. We replace also the Laplace operator V1 \7• (kr \7 6p(r, t)) by its smallest eigenvalue corresponding to

	(50)
	6p(r, t = 0) fixed

t 85 (r t') 'P/JCt Jo dt'(VJ6(t-t')+ Vmf(t-t') Pat'

the larger relaxation time of the fracture: Vj\7• (kr\76p(r, t)) rv -Vji.p/JCtÀbp(r, t). Here, À rv DJifl_ 2 » OEoo rv Dm/fl_

2 . 

  ) can be rather time consuming in the 288 case of large fracture networks. It is thus appealing to use a mass condensation (or mass lumping) scheme by 289 acknowledging that pressure variations of neighboring nodes will be very close together. We replace I:jEJ(t) K}} x

	290	dPj (t)	'Ç"'	11	dP/ (t)	.

dt by 6jEJ(i) K;j x dt . So we get.

  function accounting for scale dependent surface to volume ratio. Using Laplace transform 312 techniques, we show that the effect of the matrix can be modeled at a small extra cast once a previous modeling m of potential diffusion in the DFN with an impervious matrix is available. No major extra computing cast can be 314 expected. Numerical tests have to be carried out in arder to test the accuracy of the approach, and especially of the

	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326

is:

low permeability matrix acting as a reservoir. The flow exchanges with the matrix can be modeled using the so called

condition at the border of each fracture, say 8f!1 in the Jth fracture plane, (a ID curve, corresponding for example

intersections are known: Pj(r). Using the linearity of the Laplace equation, and the boundary conditions, we showed

The definition of P 1 n(r) explains the overall simplification. Now , we can use the pseudo steady state assumption 416 to drop the partial time derivative in the LHS. It means physically that the pressure inside a given fracture follows a

252 5.3. The steady state double porosity case

n = 1, • • • oo labels the function, while j = 1, • • • , nn 1 labels the intersection number. We add two conditions: il>j(x) l il>'J(x)dx that up to a dilatation due to the varying length of the intersection, the same set of functions can be retained for every 369 intersection between any fractures. We introduce elementary solutions defined by f>p(r), solution of the following 370 boundary value problem: We consider now the complete Laplace limit problem (Al). We suppose that the pressures profiles at all the existing 00 "' "'yrr:n X pn

In orcier to emphasize the overalllinearity of the problem, we have introduced the following quantities T[jm and B;:' 389 as:

rt;n 1, dxnn!Jn kr(r(x))[v!Pp(r(x))e-Y'r.Pp(r(x))r] x <I>f'(x),

It was shown in [START_REF] Noetinger | Jarrige A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks[END_REF], and the proof is presented in the appendix C that Tijm and Bi(r') may be written under a much 391 more simple and explicit form:

we have the general relation:

This equality can be derived by noticing that we have the general sum rule:

"""' '1 that interna! degrees of freedom inside a fracture are driven by the value of the potential at the intersections.

m steady state problem with a source term given by the term ( cpf.J>Ct "L7ni "L,~=l Pp(t)Pp(r)). We get:

jEh n=l 41s

In this expression, the term ( cpf.J>Ct LjEh "L,~=l Pp(t)Pj(r)) is a surface source term that appears due to the changing 419 forcing term at the intersections. lt specifies the form of the g 1 (r). Using the general solution with source term (AS),

we get thus the following solution: Here, we have used directly the equality (A16). The set of equations can be rewritten under a more synthetic form:

Summarizing the mass and transmissibility matrices, we get remarkable expressions involving surfaces integrais of the base solutions: We want to show that: 44s

We start from the definitions:

Bf(r')

446 with pim(r) which is solution of the following boundary value problem:

These equalities may be derived by remarking that T[jn and Bf(r') can be rewritten under a slightly different form:

Tt;n = li dxn• ki(r(x))['liPJn(r(x))-'VIFT(r(x))r] x <I>i(x) li dxn• ki(r(x))\liPp(r(x)) x pim(r(x)) 1 drn• ki(r(x))\liPp(r(x)) x Pt(r(x))

Bf(r')

1 dxn•ki(r(x))\liB(r(x),r') x pim(r(x)). For Bf"(r' ) we need sorne additional manipulations in the same style:

Bf"( r')

1 dxn• ki(r )'\JIB(r(x), r') x pim(r(x)) un kuan1 r d 2 r'\7• [ki(r)'\JIB(r, r') x Pt (r)].

ln1

Using the equation defining B(r, r') , we obtain:

Bf"(r') = pim(r') + r d 2 rki(r)'\7 I B(r, r') • '\7 pim(r).

ln 1

The second term of the RHS may be written under a more explicit form: This provides the announced result.