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ABSTRACT

The impact of shelf slope on the linear stability of buoyant coastal currents and on the nonlinear formation

of coastal meanders and eddies is investigated. The authors consider a simplified two-layer stratification in

cylindrical geometry where a buoyant surface current flows along the coast above a denser water, with a flat

bottom or steep shelves. Simulations were performed using the Nucleus for European Modelling of the Ocean

(NEMO) ocean global circulation model. The initial state of these simulations was defined according to

laboratory experiments performed in the same configuration. Comparisons between laboratory and nu-

merical results highlight the role of momentum diffusion and of the initial perturbations amplitude. The

authors’ results confirm that the topographic parameter To (ratio between the shelf slope and the isopycnal

slope of the current) is the relevant parameter to quantify the shelf impact on the linear and nonlinear dy-

namics of the surface current. When the evolution of the buoyant coastal current is controlled by the baro-

clinic instability, the increase of To yields a selection of smaller unstable wavelengths and a decrease of the

unstable growth rates. For finite values of To, a complete stabilization of the surface current can be reached.

The typical radius of the first eddies generated by the coastal current is set by the linear stage of the baroclinic

instability. However, secondary nonlinear processes may lead to larger or smaller structures. The authors

exhibit a new dynamical sequence, leading to the formation of submesoscale cyclonic eddies over a steep shelf

by splitting of mesoscale eddies. These cyclonic eddies trap and transport water masses and may play an

important role in the cross-shelf exchanges.

1. Introduction

Coastal currents are important features of the re-

gional circulation that control the cross-shelf transport.

However, coastal current is a generic term that covers

a wide variety of dynamical configurations. This study

focuses on buoyant coastal currents. Such geostrophic

currents are characterized by a light water mass flowing

along the coast above a denser water mass and by an

outcropping density front located at the offshore edge of

the flow, as shown in Fig. 1. Strait connections between

distinct ocean subbasins are the main sources of buoyant

coastal currents. For instance, in the Mediterranean Sea,

the light Atlantic Water entering through the Strait of

Gibraltar forms the Algerian Current in the western

Mediterranean (Millot 1987; Obaton et al. 2000) and the

Lybio–Egyptian Current in the eastern Mediterranean

(Alhammoud et al. 2005; Hamad et al. 2005; Millot and

Taupier-Letage 2005b). Other buoyant coastal currents

in regional seas can be observed: the Norwegian Atlantic

Current along the eastern coast of Greenland (Pickart

et al. 2005) or the Bransfield Current along the southern

coast of the South Shetlands Islands in the Bransfield

Strait (Sangrà et al. 2011). Such currents generally flow

over the coastal shelf and the bottom bathymetry has

a significant impact on the current dynamics.

Coastal current instabilities may form meanders and

lead to the formation of eddies. Because of complex
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interaction processes like air–sea interactions or bathy-

metric effects, a large range of unstable wavelengths is

possible. Therefore, various cyclonic or anticyclonic

eddies differing in size and intensity with various ther-

mohaline characteristics can be generated. These coherent

structures can either flow along or across the current or

be detached from the coast (Millot and Taupier-Letage

2005a; Jouanno et al. 2008; Carton and Chao 1999).

Hence, the coastal eddies play a significant role in the local

mixing of biogeochemical properties and in the dispersion

of pollutants and the redistribution of nutrient-rich coastal

waters toward the oligotrophic open sea (Riandey et al.

2005). The numerical simulations of these eddies, in re-

alistic configuration and without assimilation, is a major

challenge. Actually, it is very difficult to forecast, in a re-

gional model, the right eddy at the right location ac-

cording to the various processes involved, particularly the

bathymetric effect.

At a first order of approximation, we can simplify the

vertical stratification of a buoyant boundary current as

a two-layer system including a light water flowing above

a dense bottom water. Hence, the stability of buoyant

coastal currents with a flat bottom (Fig. 1a) has often

been studied using two-layer models. One of the first

attempts to describe the baroclinic instability was made

by Phillips (1954) using a simplified two-layer quasi-

geostrophic model. The most unstable wavelength lB of

this idealized baroclinic flow (constant velocity in each

layer) corresponds roughly to lB ’ 2pRd with Rd 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g*h1h2/(h1 1 h2)

p
/f being the baroclinic deformation

radius (Pedlosky 1987; Vallis 2006), where h1 and h2 are

the upper- and the lower-layer thicknesses, respectively;

g* is the reduced gravity; and f is the Coriolis parameter.

The baroclinic instability, due to a resonant interaction

between two Rossby waves, is controlled for this case

by the two-layer aspect ratio d 5 h1/(h1 1 h2). When the

coastal current tends to be surface advected (i.e., d goes to

low values), the values of the growth rates of baroclinic

instabilities decrease and the most unstable wavelength

increases. The two-layer shallow-water model (Boss et al.

1996; Sakai 1989; Gula and Zeitlin 2010b) was then used

to take into account ageostrophic instabilities. Unlike the

intermediate models (i.e., quasigeostrophic or frontal–

geostrophic models; Swaters 1993; Reszka and Swaters

1999), the shallow-water model takes into account finite

Rossby numbers and fast wave motions. Hence, several

new branches of instability may appear because of the

unstable resonance between a geostrophic Rossby mode

and an ageostrophic Kelvin or gravity wave. These ageo-

strophic instabilities generate unstable perturbations at

smaller scales than the standard baroclinic instability

does. The unstable wavelengths of a Rossby–Kelvin lRK

or a Rossby–Poincaré lRP interaction are close to the

deformation radius lRK ; lRP’Rd (Sakai 1989; Gervasio

1997; Gula and Zeitlin 2010a,b), which is 5–6 times smaller

than the standard baroclinic wavelength selection lB ’
2pRd. However, these ageostrophic instabilities have

large growth rates only for finite Rossby (or Froude)

numbers (Sakai 1989; Gula and Zeitlin 2010b) and they

are generally neglected for small Rossby number flows.

The validity of quasigeostrophic models to describe

unstable modes of outcropping fronts having large iso-

pycnal deviation was studied by Boss et al. (1996). Their

linear stability analysis shows that the spatial structure

of the frontal modes induced by the outcropping front

differs from standard Rossby modes but does not change

the characteristics of the low wavenumber instability.

Both two-layer quasigeostrophic and the shallow-water

models predict the same growth rates for the unstable

interactions of Rossby–Rossby or Rossby–frontal modes.

Hence, the standard baroclinic instability is expected to

be the dominant instability of small Rossby number

buoyant coastal current.

Attempts to classify the dynamical interaction of a

buoyant coastal current with the shelf slope have been

FIG. 1. Schematics of different buoyant coastal current configu-

rations. The gray features the density of the light water vein. (a)

Buoyant coastal current along a vertical wall. (b) Surface-trapped

current over a steep shelf slope (c) Bottom-trapped current over

a gentle shelf slope.
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previously undertaken. A classification scheme, which

segregates surface-advected current over a steep shelf

slope (Fig. 1b) from bottom-trapped current over a gentle

shelf slope (Fig. 1c), was proposed by Yankovsky and

Chapman (1997), Avicola and Huq (2002), and Lentz and

Helfrich (2002). When the coastal current is bottom

trapped, most of the light water is in contact with the shelf

slope and both its width and stability are controlled by

the bottom Ekman layer dynamics. According to nu-

merical studies (Chapman and Lentz 1994; Yankovsky and

Chapman 1997) or laboratory experiments (Whitehead

and Chapman 1986; Lentz and Helfrich 2002; Wolfe and

Cenedese 2006), the effects of bottom and lateral frictions

and of the bottom Ekman circulation tend to widen and

stabilize the bottom-trapped buoyant coastal current in

comparison with the surface-advected configuration.

The present paper focuses on the baroclinic instability

of surface-advected buoyant coastal current above a steep

shelf slope. We emphasize that, for steep shelf configu-

rations, the shelf effect cannot be neglected and has

a significant impact on the linear stability of the surface-

advected buoyant coastal current and on the nonlinear

formation of large meanders and eddies along the coast.

Indeed, a bottom slope affects the growth rates and the

wavelengths of the most unstable baroclinic modes

(Blumsack and Gierasch 1972; Mysak 1977; Mechoso

1980; Gervasio 1997; Lozier and Reed 2005; Isachsen

2011). When the bottom slope is positive (i.e., same sense

as the isopycnal tilt), the potential vorticity (PV) gradient

may vanish in the bottom layer and suppress the baro-

clinic instability in agreement with the Charney–Stern

theorem (Pedlosky 1987). These theoretical results are

supported by observations indicating that meanders do

not grow upstream of the Cape Hatteras where the Gulf

Stream flows over a steep continental slope. On the other

hand, for buoyant coastal currents the bottom slope is

negative (i.e., shelf slope and isopycnals tilt in the opposite

sense). The impact of such negative slopes on the stability

of coastal current is still under discussion. In the frame-

work of quasigeostrophic models, both two-layer model

(Mysak 1977) and the continuously stratified Eady model

(Blumsack and Gierasch 1972; Mechoso 1980; Isachsen

2011) show that a negative shelf slope reduces the un-

stable growth of baroclinic modes. These idealized studies

demonstrate that the central parameter of the problem is

the ratio of the bottom slope over the isopycnal slope.

However, these quasigeostrophic models are oversim-

plified and their predictions may not be valid for steep

slope configurations, outcropping front and ageostrophic

current. Hence, recent studies generally used the hydro-

static primitive equations to model the unstable dynamics

of coastal current over sloping bathymetry. In this context,

the linear stability analysis of Lozier and Reed (2005)

shows that a negative shelf slope may amplify the un-

stable growth. Other works, using primitive equations

simulations, study the eddy tracer transport across

sloping bottom (Spall 2004; Isachsen 2011). According

to these fully nonlinear simulations, devoted to thermally

forced marginal sea, negative bottom slopes reduce the

eddy diffusivity, in agreement with the stabilization pre-

dicted by the linear Eady theory (Blumsack and Gierasch

1972). Conversely, in an idealized model of the Nordic

Seas, Spall (2010) shows that an increase of the topo-

graphic slope may result in an increased eddy flux.

Besides, in recent laboratory experiments (Rivas et al.

2005; Wolfe and Cenedese 2006), the steep slope con-

figuration seems to amplify the meander formation com-

pared to the gentle slope configuration. Nevertheless,

for such laboratory experiments, the combined effects

of the vertical dissipation and the shelf slope can hardly

be distinguished. According to these various approaches,

several dynamical processes could be affected by the

bottom slope variations. Thus, the impact of negative

slopes on coastal fronts still leads to contradictory results

in the literature.

To better understand how a steep shelf impacts on the

stability of a buoyant coastal current we performed sev-

eral numerical simulations using the Nucleus for Euro-

pean Modelling of the Ocean (NEMO) ocean general

circulation model (Madec 2008) in an idealized two-layer

configuration. The choice of this model is motivated by

future modeling of the regional circulation in the Medi-

terranean Sea at a submesoscale (1/368 and 1/728) resolution.

In section 2, we present the dynamical parameters gov-

erning this idealized configuration and the numerical

parameterizations. In a first step (section 3), we study the

shelf slope effect on a highly dissipative case equivalent to

small-scale laboratory experiments. We then focus on low

dissipative cases to study the impact of the shelf slope

only (section 4). The baroclinic nature of the unstable

coastal front is analyzed in section 4a. We then quantify

the impact of steep slopes on the unstable surface current

(growth rate and wavelength selection) and identify the

relevant parameters describing the bathymetric influence

in section 4b. The nonlinear evolution of meanders and

eddies formed along the shelf and their role on horizontal

transport are discussed in section 4c. Conclusions are

given in section 5.

2. Idealized configuration

a. Physical parameters for a circular two-layer
configuration

As a first approximation of a buoyant coastal current,

we used an idealized two-layer configuration in a circu-

lar basin (Fig. 2). This dynamical configuration results
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from standard rotating lock release experiments (Griffiths

and Linden 1980, 1981; Bouruet-Aubertot and Linden

2002; Stegner et al. 2004; Rivas et al. 2005) performed in

a cylindrical tank. A fixed volume of light water of density

r1, which flows above a dense water of density r2, is

confined along the coast between the external cylinder

of radius R2 and the density front, for which the surface

outcropping is located at the radius R1 (Fig. 2a). Thus,

this buoyant water mass is characterized by a width L 5

R2 2 R1 ’ 5Rd – 6Rd, which is larger than the baroclinic

deformation radius Rd. For a surface-advected coastal

current, the vertical aspect ratio of the flow d5h1/(h1 1 h2)

is small. In the present study, this parameter remains at

the fixed value d 5 0.15, and the baroclinic deformation

radius is approximately R
d
’

ffiffiffiffiffiffiffiffiffiffi
g*h

1

p
/f .

The Burger number,

Bu 5
Rd

L

� �2

5
g*h1

f 2L2
,

quantifies the ratio between the kinetic energy (KE) and

the potential energy for a flow in geostrophic balance.

For a small Burger number (i.e., L larger than Rd), the

available potential energy (APE) is much larger than

the kinetic energy of the surface flow. In the present

study, the Burger number is kept constant in all the

experiments (Bu 5 0.02).

The width L of the light water mass, confined along

the coast, may not coincide with the jet width W induced

by the isopycnal tilt. Actually, here the jet width is

W ’ 2Rd (full width at half maximum in Fig. 3). The

radial velocity profile satisfies the geostrophic balance in

both layers and maximum velocity values are localized

at the front (Fig. 2b). Both laboratory experiments

(Bouruet-Aubertot and Linden 2002; Stegner et al. 2004;

Thivolle-Cazat et al. 2005) and in situ measurements

(Avicola and Huq 2002; Obaton et al. 2000) show that

the jet width W scales with the baroclinic deformation

radius Rd. Hence, we define the Rossby number as

FIG. 2. Side view of half of the tank, from the center to the coast. Geometric parameters are

superimposed on (a) density and (b) velocity fields. Density values range from r1 (dark) to r2

(light) and velocity amplitude from the maximum velocity V0 (black) to rest in the bottom

layer (white). The coast and the front are located at radii R2 and R1 from the center, re-

spectively. The light and dense waters have thicknesses h1 and h2 at the front location, re-

spectively, whereas H is the total depth water in the middle of the tank. In the bottom layer,

the topographic slope s starts at a fixed radius Rs from the center. In the upper layer, a is the

maximum isopycnal slope.

FIG. 3. Surface mean azimuthal velocity profile scaled by fRd in

EXP0 (gray squares). The analytical fit (solid line) is then used as

initial condition in the numerical simulations of Tables 2 and 3. The

coast is located on the right side (x 5 18Rd), and the center is lo-

cated on the left side (x 5 0).
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Ro 5
U

fRd

,

where U is the maximum horizontal velocity of the

buoyant coastal current. In this case, the Rossby number

corresponds to a Froude number Fd 5 U/
ffiffiffiffiffiffiffiffiffiffi
g*h1

p
, which

measures the ratio of the maximum current velocity U to

the maximum phase speed of internal gravity waves

C 5
ffiffiffiffiffiffiffiffiffiffi
g*h1

p
. Finite Froude numbers lead to hydraulic

jump formation and significant wave breaking. In real

oceanic configuration, this parameter is generally small

and we used in the following Ro 5 Fd ’ 0.35.

The isopycnal tilt is quantified here by the maximum

isopycnal slope a of the surface front. We use positive

values for an anticlockwise slope direction. We then

define a topographic parameter To as the ratio of the

shelf slope s to the isopycnal slope a,

To 5
s

a
.

Positive values of To are obtained when both iso-

pycnal (a) and shelf (s) slopes have the same direction.

These cases correspond to typical upwelling events along

the coast or to westward boundary currents. On the other

hand, buoyant coastal currents correspond to negative

values of To when isopycnal and shelf slopes are in op-

posite directions (Fig. 2a). Unlike previous works (Lozier

and Reed 2005; Rivas et al. 2005; Wolfe and Cenedese

2006), where only the shelf slope s was used to quantify

the bathymetric effect, we used in this paper the topo-

graphic parameter (i.e., a relative slope parameter). This

choice is motivated by the Charney–Stern criterion, which

indicates that stabilization occurs when the ratio of the

isopycnal slope to the bottom slope becomes larger

than unity (i.e., To $ 1) for a two-layer Phillips model

with topography (Mysak 1977). An identical topographic

parameter has been introduced by Blumsack and Gierasch

(1972), Mechoso (1980), and Isachsen (2011) for Eady-

type models with slopping bottom. Unlike the two-layer

Phillips model, the bottom slope only enters as a bound-

ary condition in the Eady problem and does not introduce

a PV gradient in the interior. This relative bottom slope

parameter controls both the growth rate and the unstable

wavelength selection of the baroclinic flow. Hence, the

topographic parameter seems to play a crucial role on

the coastal flow stability and, in what follows, we will

mainly vary To while keeping constant the other pa-

rameters (d, Bu, and Ro). To keep constant the vertical

aspect ratio d at the density front location (r 5 R1) when

the shelf slope is changed, the total open water depth H is

adjusted. Note that, when the bottom topography is not

flat, the total open water depth H is bigger than the total

water depth h1 1 h2 above the front at r 5 R1 (Fig. 2a).

Two dimensionless numbers are used to characterize

the diffusion of momentum: the Reynolds number Re

on the horizontal and the Ekman number Ek on the

vertical. They are defined by

Re 5
URd

Ah

,

with Ah being the horizontal diffusivity coefficient, and

Ek 5
A

y

fh2
1

,

with Ay being the vertical diffusivity coefficient. In the

following, we will discuss different simulations charac-

terized by high (low) Reynolds numbers corresponding

to low (high) diffusion. For viscous laboratory experi-

ments, the vertical (Ay) and horizontal (Ah) diffusivity

coefficients are equal to the molecular viscosity Ay 5 Ah 5

n. However, for high Reynolds number simulations, the

vertical and horizontal ‘‘turbulent diffusion’’ (i.e., the

Austausch coefficients) can differ.

b. Laboratory experiments

A few laboratory experiments, carried out with a small-

scale setup (R1 5 12.5 cm, R2 5 20 cm, and h1 5 1.5 cm),

initiate our work and motivate the full numerical study

presented in this paper. The experimental setup is similar

to standard rotating lock release experiments (Griffiths

and Linden 1981; Bouruet-Aubertot and Linden 2002;

Rivas et al. 2005). A fixed volume of light water r1, ini-

tially confined between a bottomless cylinder (r 5 R1)

and the external boundary of a cylindrical tank (r 5 R2),

is quickly released in a denser fluid r2. In contrast with

other studies (Thomas and Linden 2007; Obaton et al.

2000; Lentz and Helfrich 2002; Helfrich and Mullarney

2005; Wolfe and Cenedese 2006), the coastal current

generated here by gravitational collapse has no starting or

ending point, because of the azimuthal symmetry, and

therefore no boundary effect is present.

A two-layer salt stratification allows us to fix small

values for the reduced gravity g* 5 g(r2 2 r1)/r2’ 0.005 g

and to control the rotation speed V0 5 8 rpm to adjust

the baroclinic deformation radius to Rd 5
ffiffiffiffiffiffiffiffiffiffi
g*h1

p
/(2V0) 5

1:25 cm. In this experiment, the surface layer thickness

h1 ’ 1.5 cm is of the same order of magnitude as the

deformation radius Rd, and the isopycnal slopes a are

therefore close to unity.

Standard particle image velocimetry (PIV) was used to

measure the horizontal velocity field. Small buoyant

particles were put in the upper layer and illuminated by

a horizontal laser sheet of wavelength 670 nm, located

a few millimeters below the upper free surface. The
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particle motion was recorded by a 768 3 576 pixel charge-

coupled device (CCD) camera rotating with the tank.

This camera had a resolution of 15 pixels per cm. The

particle velocities were then estimated using LaVision

PIV software with successive cross-correlation boxes

(Teinturier 2010) yielding a final 63 3 64 or 48 3 49

vector field. Hence, the horizontal velocity field was

measured in the surface layer with a resolution of about 2

vectors per deformation radius.

Two laboratory experiments were performed, the

experiment EXP0 with a flat bottom and the experiment

EXP1 with a bathymetry. Their detailed parameters are

given in Table 1.

c. Initial state of the numerical experiments

We consider here an initial value problem. The dy-

namical evolution and the baroclinic stability of the

buoyant coastal current strongly depend on the initial

state of the experiment. In the laboratory experiments,

after about one rotation period T 5 2p/V0, the density

front reaches a mean adjusted state (mean flow averaged

over T ) in agreement with the geostrophic or gradient

wind balance. The transient and three-dimensional (3D)

instabilities that occur during the very first stage of

the adjustment (typically the first rotation period) are an

efficient mechanism of turbulent dissipation at small

scales in the frontal region (Stegner et al. 2004; Stegner

2007). It is then difficult to reproduce these small scales

and 3D instabilities with a numerical model. Therefore,

for the initial state of the numerical simulations, we

defined a geostrophically balanced state using the lab-

oratory measurements. To construct the initial three-

dimensional velocity and density fields, we used the

mean velocity profile estimated from PIV measure-

ments of the laboratory experiment EXP0 (Fig. 3). This

mean velocity profile corresponds to the azimuthal

velocity spatially averaged over the circular basin and

to a temporal averaging over one rotation period to

filter out inertial oscillations. We first fit this mean

surface velocity profile with the following analytical

function:

V0(r) 5 V0(z 5 0, r)

5 2RdV0

sinh(r/Rd)

sinh(R1/Rd)

�
1 2 tanh

r 2 R1

dx

� ��
. (1)

This analytical function was constructed as a combi-

nation of the Rossby adjustment solution for a uniform

potential vorticity front (Flierl 1979), with a hyperbolic

tangent regularization of the velocity discontinuity with

the scale dx. The values of R1 5 11Rd and dx 5 1Rd were

tuned to maximize the correlation. Because of the small

vertical aspect ratio d 5 0.15, we assume that the velocity

of the deep part of the bottom layer is negligible and set

its value to zero. Here again we use a hyperbolic tangent

profile to mimic the continuous velocity shear from the

thin upper layer to the deep lower layer at rest,

V
u
(z, r) 5 V0(r)

1 2 tanh

�
z 2 Z0(r)

dz

�

1 2 tanh

�
2Z0(r)

dz

� , (2)

with

Z0(r) 5
f

g*

ðr

0
y(z 5 0, r9) dr9,

where Z0 and dz are the mean depth and thickness of this

vertical shear layer. The value for the vertical gradient

dz 5 5 mm was taken from the experimental measure-

ments of vertical density gradient by Stegner et al.

(2004) in a similar setup. The three-dimensional mean

density field r(r, z) is then constructed from the above

velocity Vu(r, z) according to the thermal wind balance,

r(z, r, u) 5 r2 2
r0 f

g

ðr95r

r950
›zV

u
(z, r9) dr9. (3)

The static equilibrium (i.e., ›zr # 0) of this mean density

field was verified everywhere. To trigger out the un-

stable modes in the simulations, azimuthal periodic

density perturbations are added on the basic state along

the front, as in Bouruet-Aubertot and Echevin (2002).

The modified radius of the density front is then

R 5 R1 1 ��icos(ki 3 u). The wavenumber ki spans the

range 2–30 and � ranges between 0.5% and 20%. More

details are given in section 3. The initial velocity field

y
u
(r, u, z) 5 V

u
(r, z) 1 ~y

u
(r, u, z), which is the sum of the

mean velocity profile Vu(r, z) and the azimuthal varia-

tions ~y
u
(r, u, z), is then computed from the perturbed

density field according to the gradient wind balance re-

lation.

d. Numerical model

The numerical code is the ocean global circulation

system NEMO in version 2 (Madec 2008). It solves the

rotating hydrostatic primitive equations within the

TABLE 1. Dimensionless parameters of the laboratory experiment

presented.

Expt Ro Re Ek Bu d s(%) a(%) To

EXP0 0.35 50 3 3 1023 0.0279 0.15 0 37 0

EXP1 0.35 50 3 3 1023 0.03 0.2 25 37 20.68
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Boussinesq approximation. The equations are discretized

on a Cartesian grid. In our idealized configuration, we

used z coordinate with vertical depth levels regularly

spaced (Dz 5 h1/15). The vertical grid resolution Dz is

small to accurately reproduce the thin vertical density

gradient between the two layers. The Cartesian grid is

regular and its horizontal resolution is equal to Dx 5 Dy 5

1.25 3 1023 m, which is on the order of 1/10 of the de-

formation radius, allowing the realistic modeling of me-

soscale structures. The grid therefore has 323 3 323 3 100

grid points in the flat bottom case. With a bottom shelf

topography, the number of vertical levels increases with

the total water depth H and may vary from 100 to 160.

Because of the Cartesian grid, the lateral boundary of the

cylindrical domain is characterized by spatial irregulari-

ties at grid size. Nevertheless, these coastal irregularities

are located several deformation radii away from the front,

and their impacts on the front dynamics are negligible.

We used a rigid lid boundary condition at the free

surface to filter the fast barotropic gravity or Kelvin

waves. On the lateral boundary and the flat bottom, a no-

slip condition is applied. During the run, a convective

adjustment scheme is used to keep static stability (Madec

et al. 1991). In the vertical, a harmonic Laplacian oper-

ator is used for the diffusion of momentum and salinity. In

the horizontal, two types of parameterizations are ap-

plied for the diffusion. For the low Reynolds simulations

in section 3, an explicit Laplacian diffusion operator is

used. The diffusivity coefficients (Austausch coefficients)

are the same on both vertical and horizontal directions

and correspond to the molecular viscosity. For the case of

high Reynolds simulations in section 4, a bi-Laplacian

operator is used for the horizontal diffusion to filter out

the small-scale structures generated by the turbulent

cascade or the computational noise.

Two sets of simulations were performed, the low Rey-

nolds simulations RunLR (Table 2) and the high Reynolds

simulations RunHR (Table 3). For the low Reynolds

simulations, sensitivity experiments differ according to

the value of the topographic parameter To or the value of

the added perturbations of the initial density front �. They

are presented in section 3, and their detailed parameters

are summarized in Table 2. For the high Reynolds sim-

ulations, sensitive experiments differ according to the

value of the topographic parameter To or the value of the

isopycnal slope a). They are presented in section 4, and

their detailed parameters are summarized in Table 3.

3. Baroclinic instability at low Reynolds number

The small scales of the experimental setup induce a low

horizontal Reynolds number (Re 5 50) and a small

Ekman number (Ek 5 3 3 1023). In this case, both the

dissipation and the amplitude of the initial perturbations

play an important role in the evolution of the buoyant

coastal current. In a stable configuration, small non-

axisymmetric perturbations decay and the coastal current

remains almost circular. However, for low Reynolds

numbers, the circular velocity profile also evolves in time

because of the viscous dissipation and the kinetic energy

decays. For an unstable current, the averaged circular

velocity first decays because of the dissipation while small

nonaxisymmetric perturbations are slightly growing.

During this first stage the circular symmetry is preserved

and the maximum surface velocity can decay significantly

(Fig. 4). However, after a given time the unstable per-

turbations reach a finite amplitude and the buoyant

coastal current is fully destabilized (Fig. 6), large mean-

ders appear, and coherent eddies are formed. The time

needed to reach this full destabilization depends both

on the initial amplitude of the perturbations and their

unstable growth rates. Hence, to perform relevant

TABLE 2. List of low Reynolds simulations, with their parameters. Each numerical simulation is designated by RunLR (low Reynolds)

followed by s and the value of the slope in %. An additional letter is used to distinguish between different initial noise (% of SKE).

Simulation Ro Re Ek Bu d s (%) a To Initial noise (%)

RunLR_s0a 0.35 50 3 3 1023 0.022 0.15 0 38 0 21

RunLR_s0b 0.35 50 3 3 1023 0.022 0.15 0 38 0 3

RunLR_s25 0.35 50 3 3 1023 0.022 0.15 25 38 20.64 3

TABLE 3. List of high Reynolds simulations, with their parame-

ters. Each numerical simulation is designated by RunHR (high

Reynolds) followed by s and the value of the slope in %. An ad-

ditional letter is used to distinguish between different a.

Simulation Ro Ek Bu d s (%) a (%) To

RunHR_s00a 0.3 3 3 1026 0.022 0.15 0 38 0

RunHR_s00b 0.3 3 3 1026 0.022 0.15 0 19 0

RunHR_s10 0.3 3 3 1026 0.022 0.15 10 38 20.26

RunHR_s20a 0.3 3 3 1026 0.022 0.15 20 38 20.52

RunHR_s20b 0.3 3 3 1026 0.022 0.15 10 19 20.52

RunHR_s20c 0.3 3 3 1026 0.022 0.15 5 9.5 20.52

RunHR_s30 0.3 3 3 1026 0.022 0.15 30 38 20.79

RunHR_s50a 0.3 3 3 1026 0.022 0.15 50 38 21.31

RunHR_s50b 0.3 3 3 1026 0.022 0.15 25 19 21.31

RunHR_s50c 0.3 3 3 1026 0.022 0.15 12.5 9.5 21.31

RunHR_s70 0.3 3 3 1026 0.022 0.15 70 38 21.83

RunHR_s80 0.3 3 3 1026 0.022 0.15 80 38 22.11

RunHR_s100 0.3 3 3 1026 0.022 0.15 100 38 22.63
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comparisons between laboratory experiments and nu-

merical simulations, we need to start the simulations

with the same initial conditions (i.e., same mean flow

and same amount of initial noise). If the laboratory ex-

periment is always noisy, we need to add initially some

radial perturbations in the simulations to trigger the

instability.

The matching of the initial conditions and the dissipa-

tion rate are thus discussed in section 3a according to the

evolution of integral quantities such as the mean azi-

muthal velocity and the surface kinetic energy (SKE). The

stage of the fully nonlinear destabilization is then quan-

tified and analyzed in section 3b for the laboratory ex-

periments and in section 3c for the numerical simulations.

The stability analysis is finally performed in section 3d.

a. Viscous dissipation and initial noise amplitude

The evolution of the mean azimuthal velocity Vu(r, t),

spatially averaged along the azimuth in the whole basin,

is given in Fig. 4 for a flat bottom configuration, for both

the laboratory experiment EXP0 and the numerical

simulation RunLR_s0a. The viscous dissipation controls

the first stage of evolution (t , 5T–10T ) and the surface

velocity decays significantly while the width of the mean

current increases. In a second stage (10T # t , 20T),

a more drastic change occurs because of the unstable

growth of finite-amplitude perturbations, leading to an

effective diffusion of the averaged azimuthal velocity

profile. In EXP0, the center of the mean azimuthal cur-

rent shifts toward the center of the basin (Fig. 4); whereas

it stays around its initial location in RunLR_s0a. The

growth of the perturbations occurs earlier in EXP0 than

in RunLR_s0a and may lead to these different behav-

iors. Both the viscous dissipation and the growth of

unstable perturbations control the evolution of the

mean flow and we can hardly extract the viscous dissi-

pative time scale from the decay of the mean azimuthal

velocity.

The viscous decay or baroclinic growth of unstable

perturbations strongly impacts the kinetic energy. We

use here the surface kinetic energy, which corresponds

to the kinetic energy of the horizontal velocities, mea-

sured by PIV in the laboratory or computed in the nu-

merical simulations, at the surface level. The evolutions

of the SKE are plotted in Fig. 5 for a weak noise am-

plitude (3% of the SKE) in RunLR_s0b or a moderate

noise amplitude (21% of the SKE) in RunLR_s0a. For

the numerical simulations, the SKE first decays because

of viscous dissipation. In a second stage, the baroclinic

instability induces an energy transfer from potential to

kinetic energy and the SKE grows until the nonlinear

saturation of the instability is reached. We clearly see in

Fig. 5 that the time needed to form large-scale meanders

or eddies (i.e., nonlinear saturation of the instability)

depends on the amplitude of the initial noise. To simu-

late an early SKE growth as in EXP0, it was necessary to

add a significant amount of initial noise (21% of the

SKE) in the run RunLR_s0a. For instance, if the initial

amplitude of the nonaxisymmetric perturbation is too

weak as in RunLR_s0b, the maximum SKE is reached at

tSKE’ 40T, 15 rotation periods later than in RunLR_s0a

(tSKE’ 25T) and 20 rotation periods later than in EXP0

(tSKE ’ 18T ). However, a perfect match of the SKE

FIG. 4. Surface mean azimuthal velocity profile scaled by fRd at 0,

5, 10, and 25 revolution period T in EXP0 (square, diamond, circle,

and triangle markers, respectively) and in RunLR_s0a (solid lines

with maximum velocity decreasing with time). The coast is located

on the right side (x 5 18Rd), and the center is located on the left

side (x 5 0).

FIG. 5. Temporal evolutions of the SKE scaled by the initial SKE

value at t 5 0 in RunLR_s0a (solid line) and RunLR_s0b (dashed–

dotted line) and in EXP0 (triangle). The initial noise in

RunLR_s0b is 3% of SKE and 21% of SKE in RunLR_s0a (cf.

Table 2).
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growth between numerical simulations and the labora-

tory experiment can hardly be achieved. This is probably

due to the ageostrophic and three-dimensional nature of

the perturbations (Stegner et al. 2004) induced by the

geostrophic adjustment of the lock release experiment.

Hence, we can hardly quantify the viscous decay in the

early stage of the laboratory experiment when the am-

plitude of initial perturbations is large.

The viscous dissipation can be estimated according to

the initial SKE decay only for a low noise level such as in

RunLR_s0b. We fit the decrease of the surface kinetic

energy of RunLR_s0b with e-folding decay rate, and we

obtain a dissipative time scale ty ’ 14T while the rota-

tion period is T 5 4p/f 5 15 s. We can also quantify

a viscous dissipation for a later stage, once the nonlinear

saturation of the instability is achieved and eddies are

fully formed in the basin. In the final stage, the SKE

decay of large-scale eddies should be mainly controlled

by the viscous dissipation. We use the e-folding decay

rate of the surface kinetic energy of RunLR_s0b and

EXP0 when t . 30T to estimate a final dissipative time

scale. A good agreement is found between the experi-

ment (ty 5 9.6T for EXP0) and the numerical simulation

(ty 5 9.4T for RunLR_s0a). Hence, we conclude that the

viscous dissipation of this two-layer rotating flow is ac-

curately reproduced by the hydrostatic NEMO model if

an explicit Laplacian dissipation operator is used. One

can notice that the dissipative time scale t is not modi-

fied when a bottom shelf slope is present in the lower

layer. In low Reynolds (Re 5 50) laboratory experiments,

the molecular viscosity induces a strong dissipation of

the kinetic energy on a typical time scale ty ’ 9T–14T,

which is much smaller than the nonrotating viscous

time scale t
n

5 h2
1/n ’ 200T and slightly larger than the

Ekman time t
E

5 h2
1/

ffiffiffiffiffi
nf

p
’ 2T.

b. Laboratory results

Typical unstable evolutions of buoyant coastal currents,

generated by a lock release setup, are shown in Fig. 6. In

the flat bottom case, finite-amplitude perturbations de-

stabilize the initial circular current after 10–15 rotation

periods (Fig. 6b). The radial perturbation exhibits an

azimuthal wavenumber n 5 9 corresponding to an un-

stable wavelength l 5 2pR1/n ’ 8.7 cm ’ 7Rd. At the

final stage, these unstable meanders lead to the formation of

large-scale eddies that invade the whole basin (Fig. 6c). The

relative vorticity j/f remains moderate (20.5 , j/f , 0.5),

even if some amplification occurs during the nonlinear

stage of the instability (Figs. 6b,c) because of frontal

stretching of the meanders.

When a moderate bottom slope bathymetry is added,

while keeping the vertical aspect ratio d 5 0.15 constant,

a strong stabilization of the surface currents occurs. The

right panels in Fig. 6 show the dynamical evolution of

the surface velocity and vorticity fields in EXP1 with

a bottom shelf slope s 5 0.25 corresponding to a topo-

graphic parameter To 5 20.68. In this weakly unstable

configuration, the buoyant coastal current exhibits some

meanders, but coherent vortices are not generated. The

dissipation overcomes the unstable growth of radial

perturbations and the surface circulation remains almost

circular. Both the maximum velocity and vorticity values

decay while the current width increases with time (Figs.

6e,f).

c. NEMO model simulations

The evolutions of the horizontal surface velocity and

vorticity fields, from simulations, are shown in Fig. 7 for

direct comparisons with EXP0 (Fig. 6). In the flat bot-

tom case, finite-amplitude perturbations destabilize the

initial circular current after 10 rotation periods (Fig. 7a).

The radial perturbation exhibits an azimuthal wave-

number n 5 9–10 corresponding to an unstable wave-

length l 5 2pR1/n ’ 7.8 2 8.7 cm ’ 6 2 7Rd. Then, the

unstable meanders lead to the formation of large-scale

eddies that invade the whole basin (Fig. 7c). This nu-

merical simulation RunLR_s0a is in correct agreement

with the laboratory experiment EXP0. As is shown in

Fig. 5, the numerical modeling is very sensitive to the

initial noise perturbation. For a smaller noise amplitude,

as in RunLR_s0b, the eddy formation (i.e., nonlinear

saturation) occurs much later after 20–30 rotation pe-

riods. Hence, a fine tuning of the initial perturbation is

needed to obtain a qualitative agreement between the

simulations and the laboratory experiments. Indeed, if

we run a numerical simulation with a bottom slope s 5

0.25 identical to the experiment EXP1, we should re-

duce the initial noise amplitude to 3% to obtain a qual-

itative agreement with the laboratory experiment. The

right panels of Fig. 7 correspond to the simulation

RunLR_s25 with the same topographic parameter as

EXP1. As in the laboratory experiment, the surface

flow is weakly unstable and an azimuthal wavenumber

n 5 10 is visible on the vorticity field (Fig. 7e). The

meander amplitude is reduced and coherent vortices do

not emerge. This is probably the signature of a reduced

growth rate induced by the shelf slope. Indeed, if the

growth rates and/or the initial noise amplitudes are too

small, the dissipation overcomes the growth of radial

perturbations and prevents the formation of coherent

eddies.

d. Stability analysis from the NEMO model

Unlike the laboratory experiment, the linear stage of

the simulations can provide a first estimate of the un-

stable growth rate. The coarse resolution (64 3 64 grid
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FIG. 6. Surface velocity vectors superimposed on the relative vorticity field in the upper layer j/f (colors)

after several rotation periods: (a),(d) 10T, (b),(e) 20T, and (c),(f) 30T in (a)–(c) EXP0 with flat bottom and

(d)–(f) EXP1 with a topographic slope s 5 25%. Anticyclonic patterns are colored in blue, whereas cyclonic

ones are in red. One vector for every 4 is depicted.
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FIG. 7. As in Fig. 6, but for in (a)–(c) RunLR_s0d with flat bottom and (d)–(f) RunLR_s25b with a topographic

parameter To 5 20.64. One vector for every 8 is depicted.
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points) and the weak sensitivity of the PIV prevent an

accurate measurement of small-amplitude perturbations

in the experiments. However, the model resolution

(323 3 323) allows a spectral decomposition of the azi-

muthal modes, and if the initial noise amplitude is weak

enough the linear growth of the unstable perturbation

can be quantified. Hence, in the following we look at

numerical runs with small initial noise (amplitude less

than 5%). During the linear stage, the radial velocity

is interpolated, each inertial period Tf 5 T/2, along a cir-

cle of radius R1 located at the maximum velocity of the

coastal current. A fast Fourier transform is then per-

formed on this signal to calculate the energy of each az-

imuthal mode. The temporal evolution of the amplitude

of each mode is fitted with an exponential law to estimate

the corresponding growth rate s. The dimensionless un-

stable dispersion relations are plotted in Fig. 8 for three

runs, RunLR_s0b, RunLR_s25, and RunHR_s00, dif-

fering by their Reynolds number or topographic param-

eter. The linear growth rates are rescaled by the initial

azimuthal velocity U and the deformation radius Rd,

whereas the wavenumber k is rescaled by Rd. For the flat

bottom case (RunLR_s0b), we find a maximum growth

rate of the unstable perturbations for kRd ’ 0.8 in good

agreement with the simplified Phillips model of baroclinic

instability, which predicts the maximum growth for

kRd 5 0.65 when d 5 0.15 (see appendix). The wave-

length selection of the unstable mode seems to be cor-

rectly approximated by standard baroclinic instability;

nevertheless, the growth rates are strongly overestimated.

Indeed, the Phillips model predicts a maximum value

around smaxRd /U 5 0.15, whereas the perturbations

in the simulations exhibit a much smaller growth rate

smaxRd /U ’ 0.03. When a bottom shelf is added with

a slope s 5 0.25 (RunLR_s25a), a shift in the wave-

length selection occurs and the growth rates are reduced.

The maximum growth rate smaxRd /U ’ 0.017 corre-

sponds here to an e-folding time t ’ 13T, which is very

close to the viscous decay e-folding time ty 5 9T–14T

estimated above. Hence, the viscous dissipation strongly

reduces the growth of unstable perturbation, especially

when the bottom shelf slope tends to stabilize the buoy-

ant coastal current.

4. Baroclinic instability at high Reynolds number

In the ocean, unlike laboratory experiments, the mo-

lecular viscosity is neglected and the momentum diffusion

is mainly controlled by small-scale turbulent advection.

To reproduce the high Reynolds dynamics of real

coastal flows and allow the comparison with the inviscid

quasigeostrophic theory, we performed several numer-

ical runs (Table 3) using a bi-Laplacian operator for

horizontal motions and a standard diffusion on vertical

motion corresponding to low Ekman numbers (Ek 5

3 3 1026). In the case of low dissipation such as in

RunHR_S00a, the unstable growth rate is increased

compared to low Reynolds simulations (Fig. 8). In sec-

tion 4a, we analyze the geostrophic nature of the in-

stability in high Reynolds simulations. Then, in section 4b,

we quantify the impact of the bathymetry on the linear

stage development. Finally, section 4c describes the

nonlinear saturation regime and the eddy formation.

a. The geostrophic nature of the instability

Both geostrophic or ageostrophic instabilities may de-

stabilize a buoyant coastal current. According to the large

vorticity values (20.5 # j/f # 0.5) of the initial out-

cropping current (Figs. 6, 7, 14) one may suspect some

unstable coupling between the geostrophic Rossby

modes and the ageostrophic Kelvin or Poincaré wave

modes (Sakai 1989; Gervasio 1997; Gula and Zeitlin

2010a,b). Hence, in what follows, we try to characterize

the dynamical nature of the buoyant coastal current

instability, for the flat bottom and for the steep shelf

slope configurations.

According to the Charney–Stern criterion, opposite

PV gradients in the upper and lower layers are necessary

to allow an unstable coupling between Rossby modes

(geostrophic baroclinic instability). The PV profiles Qi

of the initial axisymmetric current in the top (i 5 t) and

the bottom (i 5 b) layers are shown in Fig. 9. Even if the

simulations are performed with a continuously stratified

FIG. 8. Dispersion relation computed for RunLR_s0a with a flat

bottom (white circle), RunLR_s25 with To 5 20.64 (white square),

and RunHR_s00a with flat bottom (black square). The unstable

growth rate s and the wavenumber k are scaled using the de-

formation radius Rd and the maximum azimuthal initial velocity V0

of each simulation.
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model, we choose here the shallow-water formulation

Qi5(ji 1 f)/hi for the PV due to the specific two-layer

stratification we used [Eqs. (2) and (3)]. Indeed, the sharp

density gradient between the surface and the bottom

water induces a virtual interface between the upper and

the lower layers and allows a clear definition of their

respective thicknesses hi. We first note that the PV is

monotonic in each layer, and therefore the flow is ex-

pected to be stable in case of barotropic shear pertur-

bations. However, for all the simulated cases, the

horizontal PV gradient between the coast and the open

sea is positive in the upper layer and negative in the

lower layer. Indeed, the surface PV increases from an

almost constant value Qt ’ Q0 5 f/h1 near the coast

where ht(x) ’ h1 and diverges close to the outcropping

front where ht(x) / 0, whereas in the bottom layer the

PV decreases from the coast Qb ’ f/h2 to the open sea

Qb ’ f/H because of the increase of the bottom layer

depth H $ h1 1 h2. The steep shelf slope may strongly

amplify the PV gradient in the bottom layer but does not

change its sign, and the surface current remains poten-

tially unstable according to the Charney–Stern criterion.

The baroclinic instability is characterized by the ability

of the flow to convert the APE into kinetic energy. Be-

cause of the large width L 5 5Rd–6Rd of the buoyant

water (i.e., small Burger number), the initial coastal flow

configuration corresponds to a large amount of APE.

According to Fig. 10, the release of the initial APE

induces an increase of the total KE and corresponds to

the amplification of the unstable perturbations. Indeed,

for the flat bottom simulation (RunHR_s00a), the KE

increases at t 5 20/30T coincides with the current me-

anders and eddy formation (Fig. 14a). Hence, the APE

provides the energy for the growth of unstable modes

within the coastal current, as is the case for the standard

baroclinic instability.

The wavelength selection generally differs between

geostrophic and ageostrophic instabilities; therefore, the

analysis of the most unstable wavenumber gives infor-

mation about the instability. According to the dispersion

relation in Fig. 8, for both the high and the low Reynolds

regimes, the highest growth rate occurs for kRd ’ 0.8

(i.e., l 5 2pRd/0.8 ’ 7.8Rd). This value is close to the

prediction of the standard Phillips model describing the

unstable coupling between two Rossby modes. This un-

stable wavelength, for the flat bottom case, is much larger

than the wavelength predicted by the ageostrophic cou-

pling between a Rossby and a Kelvin wave (l ’ Rd), for

instance. Hence, the typical sizes of the unstable mean-

ders do not correspond here to the wavelength selection

induced by ageostrophic instabilities.

We then perform a careful analysis of the spatial

structure of the most unstable mode in both layers.

We first decompose each component a(r, u, z) of the flow

(a stands for the velocity y or the density r) into a mean

axisymmetric part a(r, z) 5 1/2p
Ð 2p

0 a(r, u, z) du and an

azimuthal perturbation ~a(r, u, z) 5 a(r, u, z) 2 a(r, z). In

the linear stage of the instability, when the nonlinear

coupling between modes can be neglected, the perturba-

tions associated with each azimuthal wavenumber corre-

spond to the unstable eigenmodes. From the perturbed

FIG. 9. The PV [Q5(ji 1 f )/hi] in the top layer (Qt; solid line and

right axis) and the bottom layer (Qb; dashed line and left axis). The

PV is scaled by the value of Q in the upper layer at the beginning

(Q0 5 f/h1) of the simulation. In the bottom layer, the PV is de-

picted for the simulations RunHR_s00a (flat bottom; To 5 0) and

RunHR_s50a (To 5 21.31 and s 5 50%). For comparison, the PV

in the bottom layer without current above (Q 5 f/H) is depicted for

RunHR_s50a (pointed line) and shows the PV gradient due only to

the bottom topography. At the outcropping, the PV in the top layer

goes to infinity.

FIG. 10. Temporal evolution of the total APE and total KE for

RunHR_s00a with flat bottom. APE and KE are scaled by the

maximum APE.
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velocities [~y(r, u, z)], we compute the vorticity of the

velocity perturbations ($L~y). During the linear stage of

the instability, the vorticity perturbations ~j(r, u, z) (with

a standing for j in the definition above) is equal at a first

order of approximation to the vorticity of the velocity

perturbations [~j(r, u, z) 5 $L~y]. The perturbation vor-

ticity fields ~j(r, u, z) computed at a very initial stage (t 5

10T) is shown in Fig. 11 for a flat bottom and for a steep

shelf slope configuration. Figure 11a shows the azi-

muthal perturbation associated with the eigennumber

n 5 9 (the most unstable mode) for the flat bottom case.

For both the upper and the lower layers, the unstable

perturbations are localized in the region of strong PV

gradient, which corresponds here to the core of the

coastal current. There is no signature of unstable per-

turbations close to the coast such as Kelvin wave modes.

Besides, the perturbed velocity and density fields satisfy

the thermal wind balance. Hence, these azimuthal per-

turbations are geostrophically balanced in both layers.

Figure 11b shows the azimuthal perturbation associated

with the eigennumber n 5 12 for a steep shelf slope

configuration s 5 50% and To 5 21.3. In this case, the

unstable perturbations in the bottom layer extent on

a wider area along the shelf slope. This spatial structure

is similar to a topographic Rossby wave pattern. Here

again, the azimuthal perturbations are geostrophically

balanced in both layers.

Hence, according to the energy budget, the wavelength

selection, and the spatial structure of the unstable modes,

we can conclude that this coastal current instability cor-

responds to a standard baroclinic instability: that is, to the

coupling of geostrophic Rossby modes between the sur-

face and the deep lower layers.

b. Topographic impact on the linear unstable growth

To quantify the impact of the bathymetry, we use the

topographic parameter To 5 s/a, where s is the shelf

slope and a is the isopycnal slope of the buoyant coastal

current. For such a current, shelf and isopycnal slopes are

in opposite directions and the parameter To is therefore

negative. In the following, we vary To while keeping the

other parameters (d, Bu, Ro, and Ek) constant. The im-

pacts of the relative shelf slope on the most unstable

growth rate sm and the corresponding wavenumber km

are shown in Figs. 12 and 13. The maximum growth rate

decays when To becomes negative, and below a critical

value Toc ’ 22.7 the coastal current is stable. Hence,

a clear stabilization of the baroclinic instability occurs

when the relative shelf slope increases. This stabilization

is due to the strong increase in phase speed of the bot-

tom Rossby mode. Indeed, the shelf slope induces a to-

pographic Rossby mode in the lower layer (Fig. 11b).

When the phase speed in the lower layer is too large,

FIG. 11. Relative vorticity of the velocity perturbations ~j/f

(colors) in the upper layer superimposed on the relative vorticity of

the velocity perturbations (in contours) in the lower layer (a) for

RunHR_s00a with flat bottom at 10T and (b) for RunHR_s050a

with To 5 21.31 at 15T. Negative isovalues are from 20.01 to

20.002 with an interval of 0.002 (dashed line), and positive

isovalues are from 0.002 to 0.01 with an interval of 0.002 (solid

line).
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the unstable coupling between the upper and the lower

Rossby modes cannot occur. A similar stabilization is

found with the Phillips model when a linear bottom slope

is added (cf. the appendix). However, the critical value

needed to stabilize the baroclinic instability is much

larger Toc ’ 223 in this simplified quasigeostrophic

model. As far as the wavelength selection is concerned,

the increase of the shelf slope shifts the unstable mode to

smaller wavelengths (i.e., larger wavenumbers). Accord-

ing to Fig. 13, in a steep shelf configuration (To 5 22.5),

close to stabilization, the dimensionless wavenumber

reaches a value of kRd 5 1.3, whereas it was only kRd ’
0.8 in the flat bottom configuration. The baroclinic

Phillips model (solid line in Fig. 13) exhibits the same

trend in the wavelength selection.

To check the relevancy of the topographic parameter

To, we perform several runs where the shelf and the

isopycnal slopes are changed while To is kept constant.

To reduce the slopes, we increased the horizontal scales

without changing the vertical ones. The Coriolis param-

eter f is changed accordingly to keep the Burger (Bu) and

the Rossby (Ro) numbers constant. According to Fig. 13,

the shelf slope could be varied from s 5 0.65 to s 5 0.12

without noticeable changes in the unstable growth rate or

the most unstable wavelength if To remains unchanged.

Hence, the shelf slope does not impact directly on the

linear stability of the coastal current. We confirmed here

that the relevant parameter that controls the stability

and the wavelength selection of a buoyant coastal cur-

rent over a steep shelf is the topographic parameter To

as was suggested by quasigeostrophic theory, in the

framework of the two-layer Phillips model (Mysak 1977)

or generalized Eady models (Blumsack and Gierasch

1972; Mechoso 1980; Isachsen 2011). We also checked

that the nonlinear evolution of the coastal current and

the eddy generation are only controlled by the relative

shelf slope parameter To 5 s/a (and not the absolute

slope values) for the hydrostatic NEMO runs.

c. Nonlinear saturation and eddy generation

The nonlinear saturation, leading to the formation of

meanders and mesoscale or submesoscale eddies, is

a key process of the cross-shelf transport. The shelf slope

may have a strong impact on the trajectories or the ro-

bustness of these eddies (Sutyrin et al. 2003, 2009). The

nonlinear evolution of the instability and its impact on

the intrusions of dense water mass in the coastal zone

are shown in Fig. 14, where both a flat bottom (To 5 0)

and a steep shelf slope (To 5 21.3) configurations are

presented. The formation of finite-amplitude meanders

is shown in Figs. 14a,d. The typical scale of these non-

linear meanders is controlled by the linear wavelength

selection and decreases when the shelf slope gets steeper

as shown in Fig. 13. Indeed, 9 meanders are formed

in the flat bottom case (To 5 0), compared to 12 when

To 5 21.3. In the deep bottom layer (not shown), dipolar

structures are formed just below the surface meanders.

The coupling induced by the linear baroclinic in-

stability is still active during the nonlinear stage, and

the bottom layer dipoles induce a radial stretching of

the surface meanders. Hence, the density front is shif-

ted toward the coast and leads to the formation of

FIG. 12. Maximum growth rate sm of the instability as function of

the topographic parameter To computed for the high Reynolds

simulations (Table 3). The unstable growth rate s is scaled using the

deformation radius Rd and the maximum azimuthal initial velocity

V0 of each simulation. Simulations with different isopycnal slopes a

are presented to show the relevancy of using To instead of s.

FIG. 13. Most unstable wavenumbers km of the instability as

a function of the topographic parameter To computed for the high

Reynolds simulations (Table 3). The wavenumber is scaled using

the deformation radius Rd. Simulations with different isopycnal

slopes a are presented to show the relevancy of using To instead of s.
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FIG. 14. Surface velocity vectors superimposed on the relative vorticity field in the upper layer j/f (colors) after

several rotation periods: (a) 20T, (b) 30T, and (c) 40T in RunHR_s00a with flat bottom and (d) 28T, (e) 41T, and

(f) 51T in RunHR_s050a with a topographic parameter To 5 21.31. Times presented are chosen to represent the

same stage of the instability in the flat bottom and the topographic cases. Anticyclonic patterns are colored in blue,

whereas cyclonic ones are in red. 1 vector over 8 is depicted. The range (211) is chosen to best represent the

vorticity field. Note that only a few filaments have an absolute relative vorticity greater than 1 (around 3).
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mesoscale cyclonic eddies (Figs. 14b,e). Once the

eddies are formed and detached from the initial density

front, they are submitted to secondary nonlinear pro-

cesses that affect their size and shape. For the flat

bottom case (Fig. 14c), the cyclonic mesoscale eddies

merge together, following an inverse cascade, and lead

to larger mesoscale vortices. On the other hand, for

a steep shelf slope configuration, mesoscale eddies tend

to be stretched and split into smaller submesoscale

cyclones (Fig. 14f).

To quantify more precisely the impact of the shelf

slope on the formation of coastal eddies, we quantify the

intensity, the horizontal size, and the thickness of the

cyclonic structures that are formed in the surface layer.

The evolution of the maximum vorticity is shown in

Fig. 15. The initial value corresponds to the intensity

of the cyclonic shear at the edge of the axisymmetric

buoyant coastal current. This initial value is relatively

high j/f ’ 0.5 because of the outcropping configura-

tion. Then, because of the weak dissipation in the high

Reynolds simulations, a moderate decay of the front

vorticity is induced until the unstable perturbation grows

sufficiently to form large meanders or eddies at t 5 15/20T

for the flat bottom case or t 5 60/70T for a very steep

configuration (To 5 22.6) close to the stability thresh-

old. At that stage, the baroclinic instability generates

finite-amplitude perturbations and the potential to ki-

netic energy transfer induces a strong amplification of

the vorticity. At the final stage, when cyclonic eddies are

detached from the coastal front, the relative vorticity at

the edge or in the core of the cyclones may reach values

up to j/f ’ 1.3, which are much larger than the initial

values. According to Fig. 15, this vorticity amplification

is not affected by the amplitude of the shelf bathymetry,

and the cyclonic eddies reach the same intensity over

a flat bottom or a steep shelf slope.

Various dynamical criteria could be used to quantify the

location and the size of a coherent vortex (Pasquero et al.

2001; Isern-Fontanet et al. 2004). However, as far as cross-

shelf transport is concerned, we define a vortex as a co-

herent structure able to trap and isolate a water parcel in

its core. Hence, to identify the water parcels, we plot the

density field at a given depth (z 5 2h1/2), and, according

to the threshold density value (rc 5 (r1 1 r2)/2), we can

separate the light coastal water (r # rc) from the dense

water (r $ pc) coming from the central basin (i.e., the

open sea).

The initial front between dense and light water is

clearly visible in Figs. 16a,d, and the coastal cyclonic

eddies corresponding to the inflow of dense water parcels

along the coast can be detected in Figs. 16b,e. Once they

are formed, we can estimate an averaged radius of cy-

clonic eddies rc 5
ffiffiffiffiffiffiffiffiffi
A/p
p

from the area A of dense fluid

parcels, or in other words the surface area of the trapped

region in the cyclonic core. Figure 17a shows the impact

of the shelf bathymetry on the sizes of the cyclones

generated by the buoyant coastal current instability. The

cyclonic eddy radii rci are estimated just after the non-

linear saturation when the first eddies are detached from

the coastal front. The mean cyclonic radius rc is com-

puted by averaging the radius with the number of de-

tected cyclones Nc. The error bars correspond to the

standard deviation of the identified eddies, and we stop

the computation of mean values when the number of

detected eddy is too small (i.e., Nc # 4). Figure 17a

shows that the typical radius rc /Rd of the first cyclones

generated by the baroclinic instability decays when the

topographic parameter reaches negative values. These

cyclonic radii follow the evolution of the most unstable

wavelength l according to the linear stability analysis

(Fig. 13) and correctly match the relation rc 5 1/4l. Hence,

the eddy sizes are initially controlled by the linear in-

stability process. However, at later times, secondary

nonlinear processes may strongly affect the eddy size.

Different backgrounds are used in Fig. 18 to distinguish

between three dynamical stages. The white region cor-

responds to the exponential growth of infinitesimal per-

turbations. During this linear stage, the front meanders

are small and eddies are not formed yet. Then, the non-

linear saturation (light gray) occurs when the meanders

reach a finite amplitude and lead to the formation of

isolated eddies (Figs. 16a,d). Finally, in the gray regions,

the eddies are fully developed and secondary nonlinear

processes occur. For the flat bottom case, the secondary

merging process is characterized by an increase of the

mean radius while the total number of eddies decrease.

FIG. 15. Time evolution of the maximum vorticity averaged over the

cyclonic vortices detached from the coastal current in RunHR_s00a

with flat bottom (solid line) and RunHR_s100 with To 5 22.63.
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FIG. 16. Density anomaly (s 5 r 2 1020) in the upper layer after several rotation periods: (a) 28T, (b) 35T,

and (c) 40T for RunHR_s00a with flat bottom and (d) 75T, (e) 80T, and (f) 85T for RunHR_s100 with To 5

22.63. Snapshots at different times according to the simulations were selected to show the instabilities at the

same stage for flat bottom and topographic cases. Interior basin dense water is colored in blue, and coastal

light water is colored in red. To focus on mesoscale structures, only a zoom of the tank is shown.
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This inverse cascade leads to mesoscale cyclones with

a mean radius rc much larger than 1/4l, the radius pre-

dicted by the linear wavelength selection (Fig. 18). How-

ever, for steep shelf configurations (e.g., for To 5 22.6),

once the vortices are fully developed and detached from

the density front (gray region) some stretching and split-

ting induced by the bottom topography lead to much

smaller eddy sizes (Figs. 16e,f). The mean cyclonic eddy

radius rc decreases toward submesoscale values such as

rc/Rd ’ 0.6 2 0.7. These values are much smaller than the

value predicted by the linear stability analysis 1/4l ’ Rd

(Fig. 18).

The depth of cyclonic eddies (i.e., dense water in-

trusions) can be estimated from the three-dimensional

density field. Once a patch of dense fluid (r $ rc) with

closed contours is detected on the surface density field,

we can calculate the maximum depth dc of this three-

dimensional lens. The mean relative depth dc/h1 of cy-

clonic eddies are plotted in Fig. 17b as a function of

the topographic parameter To. Unlike, the mean radius

(Fig. 17a), the typical thickness of these mesoscale cy-

clones remains almost constant and seems to be weakly

affected by the bottom bathymetry.

Considering the cyclonic intrusions of dense water in

coastal areas induced by the baroclinic instability of

buoyant coastal currents, the main impact of a steeper

shelf bathymetry is to induce smaller eddies. Although

the intensity or the vertical extent of these cyclonic lenses

is weakly affected by the bottom slope, the mean areas of

these dense water parcels are nevertheless strongly con-

trolled by the bathymetry. The typical cyclonic eddy radius

first decreases because of the linear instability process, and

afterward nonlinear processes amplify this tendency and

lead to the formation of smaller submesoscale vortices

over the shelf slope.

5. Discussion and conclusions

The stability of buoyant coastal currents above a steep

shelf slope was investigated by both laboratory experi-

ments and numerical simulations. Unlike previous pa-

pers (Lozier and Reed 2005; Rivas et al. 2005; Wolfe and

Cenedese 2006), where the shelf slope s was used to

quantify the bathymetric effect, we use here the topo-

graphic parameter To 5 s/a, the ratio of the bottom shelf

slope s over the surface isopycnal slope a. We follow here

the simplified quasigeostrophic studies (Blumsack and

Gierasch 1972; Mysak 1977; Mechoso 1980; Isachsen

2011) that demonstrate that To is a central parameter

that controls the impact of the bottom shelf slope on the

surface current stability. Moreover, in the framework of

two-layer stratification, we separate the influence of the

topographic parameter To from the vertical aspect ratio

parameter d (the ratio of the upper-layer thickness over

the total water depth below the front), which controls

the baroclinic instability over a flat bottom (Pedlosky

1987; Vallis 2006). When both parameters are varied

together, the impact of the shelf slope on coastal fronts

seems unclear with contradictory results. Hence, to clarify

the situation, we mainly vary the topographic parameter

To while keeping the vertical aspect ratio d and other

dynamical parameters constant.

The hydrostatic NEMO model was first used with a

standard dissipative operator (Laplacian) and a molecular

viscosity coefficient to perform quantitative laboratory–

numerical comparisons. If the initial noise amplitude of

the numerical simulation is accurately fixed, the unstable

evolution of the buoyant coastal current, measured

by PIV in the rotating tank experiment, is correctly

FIG. 17. (a) Mean radius rc and (b) mean depth dc of the cyclones

just after their separation from the coastal current as a function of

To. Here, rc is scaled by the deformation radius and the radius

predicted by the stability analysis (l/4) is plot as a thick black line in

(a), and dc is scaled by the initial thickness of the upper layer.
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reproduced by the idealized NEMO model. The un-

stable growth of the surface current meanders and their

characteristic wavelengths are significantly affected by

the bottom shelf slope. The laboratory and the numer-

ical results both show a strong stabilization of the

buoyant coastal current and a smaller wavelength se-

lection when the shelf slope becomes larger than the

isopycnal slope of the surface front. We note that the

impact of the topographic parameter To on the wave-

length selection is correctly predicted by an over-

simplified two-layer quasigeostrophic model. Hence, for

a geostrophic (small Rossby number Ro ’ 0.2–0.3) and

surface-advected (small d 5 0.15) coastal front, the

standard baroclinic instability appears to be the leading

instability. Nevertheless, we show that the viscous dis-

sipation of a small laboratory setup strongly reduces the

growth of unstable perturbations, especially when the

bottom shelf slope tends to stabilize the buoyant coastal

current.

To reproduce the high Reynolds dynamics of real

coastal flows, we performed several numerical runs using

a bi-Laplacian operator for horizontal motions and a

standard diffusion for vertical motions corresponding to

a very low Ekman number (Ek 5 3 3 1026). The energy

budget corresponds to a standard baroclinic instability

where the release of the available potential energy in-

duces an increase of the total kinetic energy and drives

the amplification of unstable perturbations. The linear

stage of the instability was also quantified from the

numerical runs. The linear growth of the perturbation

spectrum leads to the formation of mesoscale meanders

l ’ 2pRd in agreement with the wavelength selected

by the unstable coupling between two Rossby modes

(Phillips 1954). The unstable coupling with ageostrophic

Kelvin or gravity modes would have selected a much

smaller wavelength here (Sakai 1989; Gervasio 1997; Gula

and Zeitlin 2010a,b). Besides, we have shown that the

unstable modes in both the upper and the lower layers

satisfy the geostrophic balance. Hence, according to the

energy budget, the wavelength selection, and the spatial

structure of the unstable modes, we can conclude that the

coastal front instability studied is driven by the standard

baroclinic instability.

An important result of this study is the confirmation,

with a fully nonlinear primitive equation model and lab-

oratory experiments, that the topographic parameter To

is the relevant parameter to quantify the impact of a steep

bottom slope on the stability of buoyant coastal current.

We show that a complete stabilization of the coastal front

can be reached for finite negative values: for instance,

Toc ’ 22.7 when d 5 0.15, Ro 5 0.3, and Bu 5 0.02.

These results are in agreement with the recent studies

of Spall (2004) and Isachsen (2011), who show a strong

decrease of the eddy heat flux (i.e., stabilization) of

a thermally forced coastal current when the topographic

parameter reaches similar values.

FIG. 18. Time evolution of the mean cyclonic radius rc and of the number of eddies Nc for

(a),(b) RunHR_s00a with flat bottom and (c),(d) RunHR_s100 with To 5 22.63. Three stages

are highlighted: the linear growth of perturbations (white), the nonlinear saturation (light

gray), and the fully nonlinear stage (gray). The letters in parentheses in (a) and (c) refer to the

corresponding density snapshot in Fig. 16.
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Another important result of this study is the evidence

that a steep shelf slope affects the nonlinear development

of the baroclinic instability of a buoyant coastal current

and may lead to the formation of submesoscale eddies.

In a flat bottom configuration, the baroclinic instability

generally leads to mesoscale eddies (l ’ Rd and larger)

and only ageostrophic instabilities are known to generate

smaller eddies. In this study, we exhibit a new dynamical

sequence leading to the formation of submesoscale

structures, in the context of weakly unstable geostrophic

modes. At the linear stage of the instability, a steeper

shelf slope (increase in To) tends to stabilize the coastal

buoyant current. For this stabilization process, smaller

wavelengths are selected. For intermediate cases, when the

coastal front is weakly unstable, the nonlinear saturation

leads to smaller eddies. We have seen that, once cyclonic

intrusions of cold seawater are formed above the coastal

shelf, a secondary process tends to stretch these coherent

cyclones and to split them into smaller submesoscale

eddies. Then, these small cyclones may reach a charac-

teristic radius rc’ 0.6Rd 2 0.7Rd over a steep shelf (To’
22.6) while for a flat bottom configuration (To 5 0) only

large mesoscale eddies can be formed rc ’ 2Rd 2 2.5Rd.

This direct cascade to small-scale structures could be

compared to the spectral energy fluxes of a thermally

forced coastal current calculated by Isachsen (2011).

Following the procedure used by Scott and Wang (2005),

the authors found that there is a negative flux (inverse

kinetic energy cascade) at scales roughly larger than the

deformation radius Rd, whereas a weaker positive flux

occurs at scales smaller than Rd. In our case, without any

external forcing, a finite amount of kinetic energy is ini-

tially released by the baroclinic instability at a given scale.

For the flat bottom configuration, this scale is larger than

the deformation radius (Fig. 18a) and the nonlinear eddy–

eddy interaction leads to an inverse energy cascade in

agreement with calculations of Isachsen (2011). However,

for the steep shelf slope configuration, the initial release

of kinetic energy occurs at a smaller scale (almost Rd).

This initial spectral distribution of the kinetic energy

may constrain the nonlinear evolution of the flow and

emphasis on the direct energy cascade that occurs at

submesoscale. However, the exact nature of this direct

energy cascade that occurs at submesoscale and the

role of steep bottom slope on the splitting process are

not explained yet and should be studied in the future.
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APPENDIX

Phillips Instability Problem over a Sloping Bottom

This simplest baroclinic instability problem considers

a two-layer system where the velocities in each layer Ui

(i stands for the layer 1 or 2) are independent of y but

differ in magnitude. We note hi, the depth of each layer,

and a, the mean slope of the interface between the two

layers. A sloping bottom of height hb is added in the

lower layer, and we note s 5 ›yhb, the mean slope of this

bathymetry.

We scale the basic variables according to

(x, y) ; Rd, (h1, h2) ; (H1, H2),

(u, y) ; U, t ; Rd/U, f ; f0, (A1)

and we introduce the nondimensional parameter,

g 5 H1/H2, To 5 s/a. (A2)

The dimensionless quasigeostrophic potential vorticity

qi in each layer can be written as

q1 5 Dc1 2 (c1 2 c2)

q2 5 Dc2 1 g(c2 2 c1) 2 gToy
,

(
(A3)

with ci the geostrophic streamfunction (›yci 5 2Ui).

The potential vorticity in each layer is advected by the

geostrophic velocity [›tqi 1 J(ci, qi) 5 0], and therefore

the dimensionless two-layer quasigeostrophic model is

written as

›t[Dc1 2 (c1 2 c2)] 1 J[c1, Dc1 2 (c1 2 c2)] 5 0

›t[Dc2 1 g(c1 2 c2)] 1 J[c2, Dc2 1 g(c1 2 c2)] 2 gTo›xc2 5 0
,

(
(A4)
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where J(a, b) 5 ›xa›yb 2 ›ya›xb is the Jacobian operator.

To study the linear stability of that flow, we de-

compose the streamfunction c as follows: c 5 C(y) 1

f(x, y, t), where f is a small perturbation, and we use

U1 5 Us 5 U2 2 U1 and U2 5 0. The linearized equations

are then

(›t 1 Us›x)[Df1 2 (f1 2 f2)] 1 Us›xf1 5 0

›t[Df2 1 g(f1 2 f2)] 2 gUs(1 2 To)›xf2 5 0

(

(A5)

The perturbation f may be decomposed into normal

modes,

fi(x, y, t) 5 Fie
ik(x2ct)eily, (A6)

and we define K2 5 k2 1 l2

Introducing (A6) into (A5) yields the linear system

[c(1 1 K2) 2 UsK
2]F1 1 [Us 2 c]F2 5 0

gcF1 1 [gUs(1 2 To) 2 c(g 1 K2)]F2 5 0
.

(

(A7)

For nontrivial solution, the determinant of coefficients

must be zero. This gives a quadratic equation in c,

c2K2(K2 1 1 1 g) 2 cUs[K
4 1 g(2 2 To)K2 2 gTo]

1 K2U2
s g(1 2 To) 5 0, (A8)

and solving this we obtain

c 5
US[K4 1 g(2 2 To)K2 2 gTo] 1 Us

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K8 2 4gK4 1 2gToK2(K4 1 K2 2 2g) 1 (gTo)2(11K2)2

q
2K2(K2 1 1 1 g)

. (A9)

Finally, we exhibit the growth rate, s 5 k 3 Im(c). We

find, for instance, that the maximum growth rate and the

most unstable wavelength for the flat bottom case (To 5

0) are s 5 0.136 and k 5 0.6. This model gives a complete

stabilization (s 5 0) of the instability for To 5 223.
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