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The present work concerns the derivation of entropy stability properties to be satisfied by high-order accurate finite volume methods. Such a stability turns out to be crucial when approximating the weak solutions of hyperbolic systems of conservation laws. In fact, several recent works propose some kind of discrete entropy inequalities associated to high-order schemes. However, these entropy preserving schemes do not seem relevant to impose that the converged solution (in the sense of the Lax-Wendroff Theorem) satisfies the required entropy inequalities. We illustrate such a failure by exhibiting numerical schemes that, from one hand, satisfy entropy stability and, from the other hand, do not prevent numerical blowup. Here, we recall the expected high-order discrete entropy inequalities to be certain that the approximate solution converges to an entropy solution. Equipped with these sufficient numerical entropy stability, we propose to extend the recently introduced high-order MOOD scheme to satisfy the required high-order entropy inequalities. In fact, the MOOD approach is based on an a posteriori estimation and it seems impossible to impose a posteriori the whole set of discrete entropy inequalities. We solve this difficulty by considering a finite volume scheme, which involves (at least one) discrete entropy inequalities with a numerical transport property. From one selected numerical transport discrete entropy inequality, we establish that all the needed discrete entropy inequalities are satisfied. Arguing this specific numerical transport entropy, we derive the expected a posteriori entropy condition to get an entropy preserving high-order MOOD scheme. Numerical experiments illustrate the relevance of the suggested numerical procedure.

An entropy preserving MOOD scheme for the Euler equations

Introduction

The present work concerns the derivation of entropy preserving high-order numerical schemes to approximate the weak solutions of the Euler equations given by     

∂ t ρ + ∂ x ρu = 0, ∂ t ρu + ∂ x (ρu 2 + p) = 0, ∂ t E + ∂ x (E + p)u = 0, (1) 
where the pressure is given by a perfect gas law:

p = (γ -1) E -ρ u 2 2 ,
for a given adiabatic coefficient γ ∈ [START_REF] Abgrall | A review of residual distribution schemes for hyperbolic and parabolic problems: the July 2010 state of the art[END_REF][START_REF] Ben-Artzi | A second-order Godunov-type scheme for compressible fluid dynamics[END_REF].

To shorten the notations, let us introduce the conservative unknown state vector w : R × R + → Ω and the flux function f : Ω → R 3 defined as follows: w = t (ρ, ρu, E) and f (w) = t (ρu, ρu 2 + p, (E + p)u), [START_REF] Batten | On the choice of wavespeeds for the HLLC Riemann solver[END_REF] with Ω the convex set of admissible states given by:

Ω = w ∈ R 3 ; ρ > 0, e(w) = E -ρ u 2 2 > 0 .
Here, the function e : Ω → R + denotes the internal energy.

Because system (1) is well-known to be hyperbolic, the solutions may contains shock discontinuities (for instance, see [START_REF] Godlewski | Hyperbolic systems of conservation laws[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Serre | Systems of conservation laws[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] and references therein). In order to rule out unphysical discontinuous solutions, the system under consideration must be endowed with entropy inequalities (see [START_REF] Lax | Shock waves and entropy[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF][START_REF] Serre | Systems of conservation laws[END_REF] for further details):

∂ t ρF(ln(s)) + ∂ x ρF(ln(s))u ≤ 0 with s = p ρ γ , (3) 
where F : R → R is a smooth function such that w → S(w) = ρF(ln(s))

defines a convex map. To shorten the notation, we set G(w) = ρF(ln(s))u.

(5)

After Tadmor [START_REF] Tadmor | A minimum entropy principle in the gas dynamics equations[END_REF] (see also [START_REF] Harten | Convex entropies and hyperbolicity for general Euler equations[END_REF][START_REF] Serre | Systems of conservation laws[END_REF]), the function F must satisfy F ′ (y) < 0 and F ′ (y) < γF ′′ (y) for all y ∈ R.

Next, we consider the numerical approximation of the weak solutions of (1). Numerous numerical strategies can be found in the literature as soon as first-order finite volume methods are involved. For instance, the reader is referred to [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF][START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws: Exponential-fit, Well-balanced and Asymptotic-preserving[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF] where the usual numerical techniques are detailed. By denoting ∆t a time step and ∆x = x i+1/2 -x i-1/2 a constant cell size, the approximation of w(x i , t n + ∆t) is given as follows:

w n+1 i = w n i - ∆t ∆x f ∆x (w n i , w n i+1 ) -f ∆x (w n i-1 , w n i ) , (7) 
where f ∆x : Ω × Ω → R 3 is a Lipschitz-continuous numerical flux function which is consistent:

f ∆x (w, w) = f (w).
Here, the time step is restricted according to a CFL condition:

∆t ∆x max i∈Z |λ ± (w n i , w n i+1 )| ≤ 1 2 , (8) 
where λ ± (w n i , w n i+1 ) represent some wave speeds associated to the considered numerical flux function f ∆x (w n i , w n i+1 ). The numerical flux function definition can be supplemented by additional robustness and stability properties. Concerning the robustness, the method must preserve the positiveness of both density and internal energy. Hence, as soon as the sequence (w n i ) i∈Z belongs to Ω, the adopted scheme must satisfy w n+1 i ∈ Ω. In this work, the stability of the scheme is understood at the entropy level. Discrete entropy inequalities are imposed in order to exclude, at the discrete level, undesirable unphysical solutions. These reached discrete entropy inequalities read as follows:

1 ∆t S(w n+1 i ) -S(w n i ) + 1 ∆x G ∆x (w n i , w n i+1 ) -G ∆x (w n i-1 , w n i ) ≤ 0, (9) 
where S(w) is defined by [START_REF] Berthon | Inégalités d'entropie pour un schéma de relaxation[END_REF] and G ∆x : Ω × Ω → R denotes the entropy numerical flux function which must be consistent:

G ∆x (w, w) = G(w).
The most common first-order finite volume methods [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF] are proven to satisfy robustness and/or stability properties. For instance, we cite [START_REF] Harten | On upstream differencing and Godunovtype schemes for hyperbolic conservation laws[END_REF] for the HLL scheme, [START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF][START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source[END_REF][START_REF] Chalons | Godunovtype schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction[END_REF] for the extension to simple approximate Riemann solvers, [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF][START_REF] Berthon | Numerical approximations of the 10-moment gaussian closure[END_REF] for relaxation schemes, [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF][START_REF] Batten | On the choice of wavespeeds for the HLLC Riemann solver[END_REF] for HLLC scheme, [START_REF] Roe | Approximate Riemann solvers, parameter vectors, and difference schemes[END_REF][START_REF] Harten | On upstream differencing and Godunovtype schemes for hyperbolic conservation laws[END_REF][START_REF] Dubroca | Solveur de Roe positivement conservatif[END_REF][START_REF] Berthon | A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes[END_REF][START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF] for the Roe and the extension VFRoe schemes. Of course the previous list is not exhaustive. Now, numerous strategies have been proposed to increase the order of accuracy. One of the most popular, and adopted in the present paper, is based on a suitable reconstruction of the state vector on each side of the interfaces located at x i+1/2 . Indeed, in [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF], f ∆x (w n i , w n i+1 ) is nothing but a first-order evaluation of the flux function at the interface x i+1/2 . The space second-order (or high-order) extension is obtained by involving a second-order (or high-order) evaluation of the flux now given by f ∆x w - i+1/2 , w + i+1/2 , where w ± i+1/2 denote reconstructed states. Techniques to derive w ± i+1/2 are widely studied in the literature and it is here impossible to refer all the papers devoted to such a topic. Let us just mention the MUSCL reconstruction [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF][START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF][START_REF] Keen | A second order kinetic scheme for gas dynamics on arbitrary grids[END_REF][START_REF] Perthame | Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions[END_REF][START_REF] Khobalatte | Maximum principle on the entropy and secondorder kinetic schemes[END_REF][START_REF] Clain | L stability of the MUSCL methods[END_REF][START_REF] Coquel | An entropy satisfying MUSCL scheme for systems of conservation laws[END_REF], the kinetic second-order approaches [START_REF] Perthame | Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions[END_REF][START_REF] Khobalatte | Maximum principle on the entropy and secondorder kinetic schemes[END_REF], the ENO/WENO reconstruction [START_REF] Perthame | On positivity preserving finite volume schemes for Euler equations[END_REF][START_REF] Zhang | Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes[END_REF][START_REF] Zhang | Positivity-preserving high order finite difference WENO schemes for compressible Euler equations[END_REF], the PPM reconstruction [START_REF] Woodward | The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations[END_REF], the MOOD reconstruction [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF], and plenty of extensions... In fact, these high-order finite volume methods, which now read as follows:

w n+1 i = w n i - ∆t ∆x f ∆x w - i+1/2 , w + i+1/2 -f ∆x w - i-1/2 , w + i-1/2 , (10) 
involve difficulties to derive robustness and stability properties. The Ω-preserving property to be satisfy by [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF] is now well studied. It is obtained by introducing a suitable limitation procedure inside the reconstruction technique. We refer to [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF] where basic MUSCL reconstructions are considered, and to [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF][START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF] where robustness of more sophisticated approaches are studied. In [START_REF] Perthame | On positivity preserving finite volume schemes for Euler equations[END_REF], the required robustness is established within the WENO reconstruction framework.

Let us underline that these procedures to enforce the needed Ω-preserving property involve a priori limitation techniques. Put in other words, these limitations are global and, sometime, turn out to be too strong. As a consequence, such usual limitations may be too diffusive. To correct this loss of accuracy, the MOOD method has been recently presented in [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF]. It suggests to introduce an a posteriori limitation technique. Hence, the limitation is just local in space to reduce the numerical viscosity and to increase the accuracy of the method.

The difficulties turn out to be very distinct as soon as stability properties must be proven for high-order schemes given by [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF]. Several attempts are proposed in the literature. One proposed strategy is based on the Generalized Riemann Problem [START_REF] Ben-Artzi | A second-order Godunov-type scheme for compressible fluid dynamics[END_REF][START_REF] Bourgeade | An asymptotic expansion for the solution of the generalized Riemann problem. II. Application to the equations of gas dynamics[END_REF][START_REF] Bourgeade | Approximate solution of the generalized Riemann problem and applications[END_REF]. Unfortunately, the solutions of the GRP associated with (1) are very difficult to be exhibited, and this makes poorly attractive the resulting scheme. In [START_REF] Coquel | An entropy satisfying MUSCL scheme for systems of conservation laws[END_REF][START_REF] Coquel | Second-order entropy diminishing scheme for the Euler equations[END_REF], the authors suggest to adopt new projection techniques but the obtained numerical methods are, in general, sophisticated and extensions to more complex problems seem delicate. In the same spirit, we cite the work by Bourdarias et al. [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF] but, as specified by the authors, the derived scheme cannot be easily implemented. More recently, in [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF], discrete entropy inequalities are obtained but for a specific entropy time derivative discrete operator (see also [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF]). Moreover, these stability results are unluckily obtained by enforcing strong limitation procedures and thus by enforcing a lot of numerical viscosity. In addition, the relevance of the unusual entropy time derivative discrete operator, according to the well-known Lax-Wendroff Theorem, is not established. Put in other words, we are not able to prove (up to our knowledge) that the considered discrete entropy inequalities converge, in a sense to be prescribed, to the expected entropy inequalities (3). In [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF] (see also [START_REF] Zhang | Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes[END_REF][START_REF] Zhang | Positivity-preserving high order finite difference WENO schemes for compressible Euler equations[END_REF][START_REF] Khobalatte | Maximum principle on the entropy and secondorder kinetic schemes[END_REF]), an additional stability criterion is obtained by enforcing an entropy maximum principle [START_REF] Tadmor | A minimum entropy principle in the gas dynamics equations[END_REF]. However, this stability condition is weaker than the usual discrete entropy inequalities and, as a consequence, such a maximum principle is not considered in the present work.

In order to derive robust and entropy preserving high-order schemes, we here adopt the a posteriori MOOD technique [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] (see also [START_REF] Hu | Positivity-preserving method for high-order conservative schemes solving compressible Euler equations[END_REF] for a related method).

In the next section, we give our main motivations by briefly studying the convergence behavior of the discrete entropy inequalities as stated in [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF][START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF]. These motivations are completed by numerical experiments performed with standard MUSCL schemes over very fine meshes. It turns out that these numerical approaches are not stable at all as soon as the mesh size is small enough. As a consequence, we suggest to modify the usual MUSCL schemes, or equivalently the usual high-order reconstructions, by introducing an a posteriori limitation according to only one discrete entropy inequality. Indeed, an a posteriori entropy evaluation cannot be performed by considering the whole space of convex entropy functions and we have to deal with one particular discrete entropy inequality. Hence, in Section 3, considering one specific discrete entropy inequality, we prove that all the reached discrete entropy inequalities can be restored. Equipped with such a result, Section 4 is devoted to the derivation of the e-MOOD scheme by introducing inside the adopted initial high-order scheme (here, MUSCL scheme to simplify), an a posteriori restriction given by the preservation of the relevant discrete entropy inequality. This procedure is illustrated by several numerical experiments in the last section.

Main motivations

The objective of the present paper is to derive high-order accurate entropy preserving schemes to approximate the weak solutions of (1). One of the main problem arising when dealing with high-order schemes concerns the derivation of suitable discrete entropy inequalities. Let us just recall that the discrete entropy inequalities are derived so that the converged solution is entropy preserving. Put in other words, the considered discrete entropy inequalities must converge, in the sense of the wellknown Lax-Wendroff Theorem [START_REF] Lax | Systems of conservation laws[END_REF] (see also [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Eymard | Finite volume methods[END_REF]), to the expected continuous entropy inequalities [START_REF] Ben-Artzi | A second-order Godunov-type scheme for compressible fluid dynamics[END_REF].

In fact, several high-order (MUSCL) entropy inequalities have been derived in the recent literature (for instance, see [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF][START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF]). But, it is not convincing that these discrete inequalities satisfy the expected convergence behavior. The purpose of the present section is to briefly study the behavior of the usual high-order entropy inequalities inside the convergence regime. In fact, at the end of this section, we will present several numerical experiments to exhibit the failures of MUSCL schemes to restore (3), based on the usual reconstruction techniques and both first-and high-order time discretization. We do not rigorously justify these failures but some arguments are here given.

First, for the sake of completeness, we recall the Lax-Wendroff Theorem for high-order (space and time) accurate conservative schemes. It is the opportunity to report the expected high-order entropy inequalities to be satisfied so that the converged solution is entropy preserving according to [START_REF] Ben-Artzi | A second-order Godunov-type scheme for compressible fluid dynamics[END_REF]. Next, we briefly review the usual discrete entropy inequalities coming from high-order space and time accurate schemes. We will show that these usual discrete entropy inequalities coincide with the required one within the Lax-Wendroff Theorem up to a positive measure. Put in other words, the usual discrete entropy inequalities seem insufficient to ensure that the converged solution is entropy preserving. We illustrate this negative result with numerous numerical experiments.

Lax-Wendroff theorem for high-order schemes

We approximate the weak solutions of a hyperbolic system of conservation laws in the shortened form:

∂ t w + ∂ x f (w) = 0, w(x, t = 0) = w 0 (x), (11) 
where the state vector and the flux function are given by ( 2), and supplemented by the entropy inequalities (3). We adopt a general m-step Runge-Kutta time scheme written as follows:

w n,(0) i = w n i , w n,(ℓ) i = w n i - ∆t ∆x ℓ-1 j=0 c ℓ,j f n,(j) i+1/2 -f n,(j) i-1/2 , ℓ = 1, • • • , m, w n+1 i = w n,(m) i . (12) 
The coefficients c ℓ,j are assumed to satisfy the following consistency conditions:

c ℓ,j ≥ 0, m-1 j=0 c m,j = 1. (13) 
We impose the scheme to be space high-order. To address such an issue, we consider a numerical flux function depending on a large stencil:

f n,(j) i+1/2 = f s ∆x w n,(j) i-s+1 , • • • , w n,(j) i+s , (14) 
where f s ∆x : Ω 2s → R 3 is continuous and consistent:

f s ∆x (w, • • • , w) = f (w).
As usual, the initial data is here approximated as follows:

w 0 i = 1 ∆x x i+1/2 x i-1/2 w 0 (x)dx.
For the sake of simplicity in the forthcoming statements, we introduce the following piecewise constant functions:

w ∆ (x, t) = w n i , for (x, t) ∈ [x i-1/2 , x i+1/2 ) × [t n , t n + ∆t), w ∆,(ℓ) (x, t) = w n,(ℓ) i , for (x, t) ∈ [x i-1/2 , x i+1/2 ) × [t n , t n + ∆t).
Theorem 2.1 (Lax-Wendroff) Assume that the sequence ∆x tends to zero with a constant positive ratio ∆t/∆x, and assume

• there exists a compact K ⊂ Ω such that, for all 0 ≤ ℓ ≤ m, w ∆,(ℓ) belongs to K,

• the sequence w ∆ converges in L 1 loc (R × R + ; Ω) to a function w.

Then w is a weak solution of [START_REF] Bourgeade | Approximate solution of the generalized Riemann problem and applications[END_REF].

In addition, let us assume the existence of an entropy numerical flux G s ∆x : Ω 2s → R, which is Lipschitz-continuous and consistent:

G s ∆x (w, • • • , w) = G(w),
where G is defined by [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF], such that we have the following discrete entropy inequality:

1 ∆t S(w n+1 i ) -S (w n i ) + 1 ∆x m-1 j=0 c m,j G n,(j) i+1/2 -G n,(j) i-1/2 ≤ 0, ( 15 
) with G n,(j) i+1/2 = G s ∆x w n,(j) i-s+1 , • • • , w n,(j)
i+s . Then w is an entropy solution of ( 11)-( 3).

Here, we point out the difficulties coming from establishing the discrete entropy inequalities [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. In fact, several first-order schemes in the form [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF], like Godunov scheme, HLL and HLLC schemes, relaxation schemes, Osher scheme [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF][START_REF] Berthon | Numerical approximations of the 10-moment gaussian closure[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Berthon | Inégalités d'entropie pour un schéma de relaxation[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] are proven to satisfy such required discrete entropy inequalities. Unfortunately, by extending these first-order entropy preserving schemes to get high-order numerical methods in the form (12), we do not recover high-order discrete entropy inequalities given by [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. Our purpose is now to exhibit high-order discrete entropy inequalities inheriting from time and space high-order extensions, and to consider their convergence behavior.

The proof of the Lax-Wendroff Theorem (2.1) is classical and several versions can be found in [START_REF] Lax | Systems of conservation laws[END_REF][START_REF] Godlewski | Hyperbolic systems of conservation laws[END_REF][START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Eymard | Finite volume methods[END_REF]. However, because of the high-order discrete entropy inequalities [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF], up to the authors knowledge, no complete proof can be found in the literature. Although the proof is standard, for the sake of completeness, we detail it in Appendix A.

Space high-order discrete entropy inequalities

From a given first-order scheme in the form [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF] satisfying first-order discrete entropy inequalities (9), numerous methods have been introduced to increase the order of accuracy (for instance see [START_REF] Abgrall | A review of residual distribution schemes for hyperbolic and parabolic problems: the July 2010 state of the art[END_REF][START_REF] Ben-Artzi | A second-order Godunov-type scheme for compressible fluid dynamics[END_REF][START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Van Leer | A historical oversight: Vladimir P. Kolgan and his high-resolution scheme[END_REF][START_REF] Shu | Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[END_REF]). In the present work, we restrict ourselves to MUSCL reconstruction techniques known to give second-order space accurate schemes. However, the reader is referred to [START_REF] Berthon | A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes[END_REF][START_REF] Yamamoto | Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations[END_REF] where high-order MUSCL reconstructions are suggested.

We recall that the MUSCL approach is based on a vector state reconstruction on each side of the interface located at x i+1/2 as follows:

w - i+1/2 = w n i + 1 2 µ n i and w + i+1/2 = w n i+1 - 1 2 µ n i+1 . (16) 
The increment (µ n i ) i∈Z is defined by a limiter function to read:

µ n i = L w n i -w n i-1 , w n i+1 -w n i , (17) 
where L : R 3 × R 3 → R 3 is a Lipschitz-continuous function, which satisfies:

L(v, v) = v ∀v ∈ R 3 , (18) 
∃M > 0; L(v 1 , v 2 ) ≤ M max ( v 1 , v 2 ) , ∀v 1 , v 2 ∈ R 3 . ( 19 
)
Precise definitions of L are widely studied in the literature (for instance, see [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] and references therein). From now on, let us underline that the usual limiter functions (minmod, superbee, MC,...) satisfy the requirements ( 18)- [START_REF] Coquel | An entropy satisfying MUSCL scheme for systems of conservation laws[END_REF].

Next, from the first-order scheme [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF], we get a space second-order scheme in the form [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF]. Concerning the second-order discrete entropy inequalities associated with [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF], several strategies have been recently proposed. For instance, in [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF], independently from the limiter choice L, one get the following discrete entropy inequalities:

1 ∆t S w n+1 i - 1 2 S w + i+1/2 + S w - i+1/2 + 1 ∆x G ∆x w - i+1/2 , w + i+1/2 -G ∆x w - i-1/2 , w + i-1/2 ≤ 0. ( 20 
)
A second example can be found in [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF] where a specific MUSCL procedure is introduced to get

1 ∆t S w n+1 i - 1 ∆x x i+1/2 x i-1/2 S w n i + x -x i ∆x µ n i dx + 1 ∆x G ∆x w - i+1/2 , w + i+1/2 -G ∆x w - i-1/2 , w + i-1/2 ≤ 0. ( 21 
)
Immediately, we notice that the discrete time derivative involved in both (20) and [START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] does not coincide with the required one given by [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. Our purpose is now to illustrate that these variants of the discrete entropy inequalities are not efficient and are not relevant to get an entropy converged solution.

In the sequel, it will be useful to unify the notations. We rewrite [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] and (21) as follows:

1 ∆t S w n+1 i -S (w n i ) + 1 ∆x G n i+1/2 -G n i-1/2 ≤ 1 ∆t (P n i -S(w n i )) , (22) 
where P n i = P S (w n i , µ n i , ∆x) finds an immediate definition with P S being an operator associated with an entropy function S. Indeed, if we consider [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF], we obtain:

P S (w, µ, ∆x) = S(w -µ/2) + S(w + µ/2) 2 . ( 23 
)
Next, if we consider [START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF], we obtain:

P S (w, µ, ∆x) = 1 ∆x ∆x/2 -∆x/2 S w + x ∆x µ dx. (24) 
Let us emphasize that since S is a convex function, we have in both definitions ( 23) and ( 24) as long as P is well defined

P S (w, µ, ∆x) -S(w) ≥ 0, ∀w ∈ Ω.
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In fact, P can be understood as a projection to approximate the entropy evaluated on w n i . We impose the existence of a positive constant C such that

0 ≤ P S (w, µ, ∆x) -S(w) ≤ C ∇ 2 S µ 2 . ( 25 
)
This property is easily satisfied by both definition ( 23) and [START_REF] Eymard | Finite volume methods[END_REF]. Now, we will see that 1 ∆t (P n i -S(w n i )) converges to a positive measure to make unsuitable the discrete entropy inequalities [START_REF] Diperna | Convergence of approximate solutions to conservation laws[END_REF]. In order to provide a complete illustration of the failure of ( 22), we propose to extend these space high-order discrete entropy inequalities by considering time high-order accurate schemes.

Time high-order discrete entropy inequalities

In order to increase the time order of accuracy, we here adopt the usual Runge-Kutta time scheme to consider a numerical approximation given by [START_REF] Bourgeade | An asymptotic expansion for the solution of the generalized Riemann problem. II. Application to the equations of gas dynamics[END_REF]. To write the discrete entropy inequalities associated with [START_REF] Bourgeade | An asymptotic expansion for the solution of the generalized Riemann problem. II. Application to the equations of gas dynamics[END_REF], we adopt a reformulation of (12) introduced by Shu and Osher [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF][START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF]. It consists in writing ( 12) as a convex combination of time first-order schemes. We skip the computation details given in [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF][START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF], but we just recall that, for all positive parameters (α ℓ,j

) 1≤ℓ≤m 0≤j≤ℓ-1 such that ℓ-1 j=0 α ℓ,j = 1, for all 1 ≤ ℓ ≤ m,
the m-step Runge-Kutta time scheme ( 12) can be equivalently rewritten as follows:

w n,(0) i = w n i , w n,(ℓ) i = ℓ-1 j=0 α ℓ,j w n,(j) i - β ℓ,j α ℓ,j ∆t ∆x f n,(j) i+1/2 -f n,(j) i-1/2 , w n+1 i = w n,(m) i , (26) 
where the coefficients β ℓ,j are given by

β ℓ,j = c ℓ,j - ℓ-1 k=j+1 α ℓ,k c k,j . The sequence (α ℓ,j ) 1≤ℓ≤m 0≤j≤ℓ-1
is chosen in order to enforce the positiveness of the parameters β ℓ,j . Now, since the parameters α ℓ,j and β ℓ,j are positive, we note that the intermediate states w n,(ℓ) i are nothing but a convex combination of first-order time schemes with time steps respectively given by β ℓ,j α ℓ,j ∆t. Next, we establish the discrete entropy inequalities satisfied by the time highorder scheme [START_REF] Bourgeade | An asymptotic expansion for the solution of the generalized Riemann problem. II. Application to the equations of gas dynamics[END_REF], or equivalently [START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF]. Let us emphasize that the following result turns out to be independent from the adopted space order of accuracy. Lemma 2.2 Let us consider a time first-order scheme given by

w n+1 i = w n i - ∆t ∆x f n i+1/2 -f n i-1/2 , f n i+1/2 = f s ∆x (w n i-s+1 , • • • , w n i+s ),
supplemented by discrete entropy inequalities as follows:

1 ∆t S(w n+1 i ) -S(w n i ) + 1 ∆x G n i+1/2 -G n i-1/2 ≤ δ (w n i ) , (27) 
where

G n i+1/2 = G s ∆x (w n i-s+1 , • • • , w n i+s ) and δ (w n i
) is a positive perturbation. Assume that the parameters α ℓ,j > 0 are defined such that the parameters β ℓ,j are nonnegative. Then the scheme (12) satisfies the following discrete entropy inequalities:

1 ∆t S(w n+1 i ) -S(w n i ) + m-1 j=0 c m,j 1 ∆x G n,(j) i+1/2 -G n,(j) i-1/2 ≤ m-1 j=0 α m,j δ w n,(j) i . (28) 
Before to prove this result, let us comment the role played by the perturbation δ(w n i ) centered on w n i , but which may depends on other states. As soon as a standard space and time scheme, in the form [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF], satisfies discrete entropy inequalities (9), we get a vanishing perturbation, δ(w) = 0 for all w in Ω. As a consequence, inequalities (28) exactly coincide with the required discrete entropy inequalities [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. More generally, this means that, as long as the first-order scheme is entropy preserving (with δ(w n i ) = 0), then the time high-order Runge-Kutta scheme remains entropy preserving. Now, the situation turns out to be distinct whenever δ(w n i ) = 0, and the right hand side in (28) must be carefully studied.

Proof Let us introduce the intermediate states as follows:

w n,j i = w n,(j) i - β ℓ,j α ℓ,j ∆t ∆x f n,(j) i+1/2 -f n,(j) i-1/2 . Since β ℓ,j
α ℓ,j ≥ 0, the state w n,j i is nothing but the evolution state by a time first-order scheme. As a consequence of ( 27), the intermediate states w n,j i satisfies a discrete entropy inequality given by

1 ∆t S w n,j i -S w n,(j) i + β ℓ,j α ℓ,j ∆x G n,(j) i+1/2 -G n,(j) i-1/2 ≤ δ w n, (j) i 
.

From the equivalent formulation [START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF], let us notice that

w n,(ℓ) i = ℓ-1 j=1 α ℓ,j w n,j i .
Next, since S is a convex function, we obtain

S w n,(ℓ) i ≤ ℓ-1 j=0 α ℓ,j S w n,j i , International Journal on Finite Volumes to immediately deduce S w n,(ℓ) i ≤ ℓ-1 j=0 α ℓ,j S w n,(j) i -β ℓ,j ∆t ∆x G n,(j) i+1/2 -G n,(j) i-1/2 + ∆t ℓ-1 j=0 α ℓ,j δ w n,(j) i . (29) 
Now, involving a standard proof by induction, we establish the following inequality:

S w n,(ℓ) i ≤ S (w n i ) - ∆t ∆x ℓ-1 j=0 c ℓ,j G n,(j) i+1/2 -G n,(j) i-1/2 + ∆t ℓ-1 j=0 α ℓ,j δ w n,(j) i , 1 ≤ ℓ ≤ m. ( 30 
)
For ℓ = 1, we immediately have α 1,0 = 1 and c 1,0 = β 1,0 . Then ( 30) is deduced from [START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws: Exponential-fit, Well-balanced and Asymptotic-preserving[END_REF].

Next, let us assume that (30) holds true for all j such that 1 ≤ j ≤ ℓ -1 and let us establish the equality for ℓ. From ( 29) and substituting S w n,(j) i 1≤j≤ℓ-1 by the estimation [START_REF] Harten | Convex entropies and hyperbolicity for general Euler equations[END_REF], we obtain

S w n,(ℓ) i ≤ ℓ-1 j=0 α ℓ,j S (w n i ) - ∆t ∆x j-1 k=0 c j,k G n,(k) i+1/2 -G n,(k) i-1/2 - β ℓ,j ∆t ∆x G n,(j) i+1/2 -G n,(j) i-1/2 + ∆t ℓ-1 j=0 α ℓ,j δ w n,(j) i , ≤ S (w n i ) - ∆t ∆x ℓ-1 j=0   β ℓ,j + ℓ-1 k=j+1 α ℓ,k c k,j   G n,(j) i+1/2 -G n,(j) i-1/2 + ∆t ℓ-1 j=0 α ℓ,j δ w n,(j) i
, and ( 30) is stated. Since

w n+1 i = w n,(m) i
, by involving (2.3), the proof is achieved.

Equipped with the above result, we are now able to exhibit the discrete entropy inequalities associated with both space and time high-order accurate schemes ( 12)- [START_REF] Chalons | Godunovtype schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction[END_REF]. Indeed, since the associated time first-order scheme comes with discrete entropy inequalities given by [START_REF] Diperna | Convergence of approximate solutions to conservation laws[END_REF], we easily get discrete entropy perturbations given by

δ (w n i ) = 1 ∆t (P n i -S (w n i )) .
As a consequence, we are discussing about the following high-order discrete entropy inequalities:

1 ∆t S w n+1 i -S (w n i ) + m-1 j=0 c m,j ∆x G n,(j) i+1/2 -G n,(j) i-1/2 ≤ m-1 j=0 α m,j 1 ∆t P n,(j) i -S w n,(j) i . (31) 
Under the assumptions stated in Theorem 2.1, we easily obtain the weak convergence of the left-hand side to ∂ t S(w) + ∂ x G(w). Regarding the right-hand side, we set

a ∆ (x, t) = m-1 j=0 α m,j 1 ∆t P n,(j) i -S w n,(j) i , (x, t) ∈ [x i-1/2 , x i+1/2 ) × [t n , t n+1 ).
(32) Now, let us introduce the nonnegative measure δ defined as the weak-star limit of the sequence a ∆ . Hence, in the limit of ∆x and ∆t to zero with a constant ratio ∆t/∆x, the inequality (31) reads

∂ t S(w) + ∂ x G(w) ≤ δ.
We suggest to compare the measure δ to the entropy dissipation measure β, which is defined as the weak-star limit of the following sequence:

b ∆ (x, t) = m-1 j=0 α m,j 1 ∆x w n,(j) i -w n,(j) i-1 2 , (x, t) ∈ [x i-1/2 , x i+1/2 ) × [t n , t n+1 ).
The entropy dissipation measure β was studied by Hou and LeFloch [START_REF] Hou | Why nonconservative schemes converge to wrong solutions: error analysis[END_REF] (see also DiPerna [START_REF] Diperna | Convergence of approximate solutions to conservation laws[END_REF]) in the scalar case and with a first-order time scheme. They conjectured that this measure is concentrated on the curves of discontinuity of w.

In the following statement, we establish that both measure δ and β have the same behavior.

Theorem 2.3 The measure δ is absolutely continuous with respect to the entropy dissipation measure β.

Proof Let φ be a nonnegative test function with compact support K, and we set φ n i = φ(x i , t n ). Since P satisfies the property (25), we have

i,n P n,(j) i -S w n,(j) i φ n i ∆t ≤ C ∇ 2 S L ∞ (K) i,n µ n,(j) i 2 φ n i ∆t,
where ∇ 2 S is bounded over K, and µ n,(j) i denotes the reconstructed increments defined by [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF].

By involving [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF] and ( 19), we get

i,n P n,(j) i -S w n,(j) i φ n i ∆t ≤ O(1) i,n w n,(j) i -w n,(j) i-1 2 + w n,(j) i+1 -w n,(j) i 2 φ n i ∆t, ≤ O(1) i,n w n,(j) i -w n,(j) i-1 2 φ n i + φ n i-1 ∆t.
Since the ratio ∆t/∆x remains constant, we deduce

i,n m-1 j=0 α m,j P n,(j) i -S w n,(j) i φ n i ∆t ≤ O(1) i,n m-1 j=0 α m,j w n,(j) i -w n,(j) i-1 2 φ n i + φ n i-1 ∆x.
Passing to the limit, we get

φdδ ≤ O(1) φdβ,
and the proof is completed.

To conclude this section, let us emphasize that we have established the absolute continuity of the measure δ with respect to β, while one may expect the equivalence between these two measures. In fact, the numerical results presented in Section 2.4 will confirm such an assumption. Nowadays we are not able to establish the absolute continuity of β with respect to δ. Moreover, the discrete entropy inequalities [START_REF] Harten | On upstream differencing and Godunovtype schemes for hyperbolic conservation laws[END_REF] cannot ensure the required entropy stability.

Numerical tests

We turn considering the numerical illustration of the above results. More precisely, our objective is here to numerically evaluate the measure δ introduced previously. According to the work by Hou and LeFloch [START_REF] Hou | Why nonconservative schemes converge to wrong solutions: error analysis[END_REF], this measure must vanish as long as the solution is continuous. Reversely, whenever the solution admits shock discontinuities, the evaluation of δ must give δ > 0.

All the presented numerical experiments are based on the same strategy. We adopt a space first-order numerical flux function f ∆x (w L , w R ) given by the wellknown HLLC scheme [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF][START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF]. The benefit of such a numerical flux function is to exactly know the robustness and the discrete entropy inequalities [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Berthon | Numerical approximations of the 10-moment gaussian closure[END_REF][START_REF] Berthon | Inégalités d'entropie pour un schéma de relaxation[END_REF][START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. The space second-order accuracy is obtained by a MUSCL reconstruction [START_REF] Clain | L stability of the MUSCL methods[END_REF] where the limiter function [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF] is the minmod function, the van Albada 1 function, the van Leer function, the monotonized central-difference (MC) function or the Superbee function (see [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] where all the limiter functions are detailed). Concerning the time discretization, both first-and second-order accuracy are adopted.

According to [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF], the time increment ∆t is restricted by the following CFL condition:

∆t ∆x max i∈Z λ ± w - i+1/2 , w + i+1/2 , λ ± w + i-1/2 , w - i+1/2 ≤ 1 4 .
After [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF], this time restriction makes the considered scheme robust and preserves the discrete entropy inequalities [START_REF] Harten | On upstream differencing and Godunovtype schemes for hyperbolic conservation laws[END_REF].

The relevance of each compared scheme is evaluated by calculating the L 1 -error:

E ∆ = i∈Z ρ N i -ρ ex (x i , t N ) ∆x,
where w ex : R × R + → Ω denotes the exact solution. In addition, we evaluate the measure δ by computing its total mass:

I ∆ = N n=0 i∈Z a ∆ (x i , t n )∆x∆t.
Two numerical experiments are performed. Both are devoted to the approximation of the solution of Riemann problems. Hence, the initial data is made of two constant states separated by a discontinuity located at x = 0:

w 0 (x) = w L if x < 0, w R if x > 0. ( 33 
)
In the first test, left and right states are given by

ρ L = 1, ρ R = 0.1989, u L = -1, u R = 1, p L = 1.5, p R = 0.1564, (34) 
so that the exact solution is made of a continuous 1-rarefaction.

In Tables 1 and2, we give respectively the evaluation of E ∆ and I ∆ obtained by considering a time first-order scheme with several limiter functions. First of all, we note that van Leer, MC and Superbee are not stable enough and a numerical blowup appears with very fine mesh. Concerning minmod and van Albada 1 limiter functions, the behavior is better because both schemes seem to converge since E ∆ goes to zero as ∆x tends to zero. At this level, we may suspect that the blowups are consequences of some compression phenomena, while the minmod limiter and the van Albada 1 limiter seem diffusive enough to avoid such a failure. According to the work by Hou and LeFloch [START_REF] Hou | Why nonconservative schemes converge to wrong solutions: error analysis[END_REF], since the converged solution is continuous, the entropy dissipation measure I ∆ goes to zero and thus the measure δ is equal to zero. Figure 1 illustrates the results stated in Tables 1 and2.

Next, Tables 3 and4 and Figure 2 are devoted to the results obtained with a time second-order scheme. Excepted with the superbee limiter, all considered schemes seem to converge like the measure δ, which tends to zero. The second proposed numerical experiment is devoted to approximate shock solutions. Once again, we consider a Riemann Problem where the initial left and right states are defined as follows:

Nb cells minmod van

ρ L = 1, ρ R = 1, u L = 10, u R = -10, p L = 1, p R = 1, (35) 
to obtain an exact solution made of two shock discontinuities propagating with opposite velocities. The results obtained with a time first-order discretisation are reported Tables 5 and6 and Figure 3. We notice that van Leer, MC and Superbee limiter functions involve a numerical blowup. In fact, it seems that minmod and van Albada 1 limiters are also not stable but the blowup needs extremely fine meshes. Moreover, it is worth mentioning that the behavior of the measure δ, given by I ∆ , seems to coincide with a positive value (before a numerical blowup).

In Tables 7 and8 and Figure 4, we present the convergence behavior of the L 1 -error and the measure δ by considering time Runge-Kutta second-order schemes. Only superbee limiter involves a numerical blowup while the other schemes converge (or seem to converge). However, we remark that the measure δ does not converge to zero but to a positive value (according to [START_REF] Hou | Why nonconservative schemes converge to wrong solutions: error analysis[END_REF]). As a consequence, the known discrete entropy inequalities (31) (for instance, given by [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF][START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF]) turn out to be not sufficient to ensure that the converged solution is entropy preserving in the sense of the Lax-Wendroff Theorem (Theorem 2.1). To conclude these numerical illustrations, the discrete entropy inequalities [START_REF] Harten | On upstream differencing and Godunovtype schemes for hyperbolic conservation laws[END_REF] is clearly unsuitable since it does not prevent instabilities.

From one to all discrete entropy inequalities

From the above results, an entropy preserving high-order scheme must satisfy the entropy condition [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF] tive may introduce unsuitable entropy inequalities including a positive measure. In order to derive a high-order scheme able to restore (15), we will adopt an a posteriori technique based on the discrete entropy inequalities satisfaction. Let us recall that the expected stability inequalities (15) must be satisfied by all entropy pairs (ρF(ln(s)), ρF(ln(s))u) where F is a smooth function such that (6) holds true. A posteriori estimations are relevant whenever a finite number of estimations are considered, while we here have an infinite number of discrete entropy inequalities to be satisfied.

The purpose of the present section is to detail arguments to derive all the required discrete entropy inequalities from just one. To address such an issue, we first reformulate the entropy pairs as follows:

Lemma 3.1 The entropy pairs (S, G), defined by ( 4)-( 5), rewrites

S(w) = ρψ(r), G(w) = ρψ(r)u,
where we have set

r = - p 1/γ ρ , (36) 
and ψ denotes a smooth increasing convex function.

From now on, let us underline that this result is not essential in the sequel, but it makes easier several developments. Indeed, we will see that considering entropies S(w) parameterized by a monotone convex function ψ will be more convenient than considering entropies parameterized by a function F with the property [START_REF] Berthon | Numerical approximations of the 10-moment gaussian closure[END_REF]. However, we emphasize that all the following scheme derivations can be performed by adopting the usual entropy pairs given by ( 4)- [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF].

Proof First, let us notice that the specific entropy, defined by (3), writes r = -s 1/γ . Now, let us consider two functions, S and G such that we have

S(w) = ρψ(r) and G(w) = ρψ(r)u,
where ψ is a smooth increasing convex function. By introducing

F(ln(s)) := ψ(-s 1/γ ), we get F(y) = ψ(-e y/γ ), ∀y ∈ R, to write F ′ (y) = - 1 γ ψ ′ -e y/γ < 0 and F ′ (y) -γF ′′ (y) = - 1 γ ψ ′ -e y/γ + ψ ′′ -e y/γ < 0.
As a consequence, the smooth function F satisfies ( 6) and the pair ( S, G) is thus an entropy pair.

Conversely, let us consider an entropy pair (S, G) = (ρF(ln(s)), ρF(ln(s))u), where F satisfies [START_REF] Berthon | Numerical approximations of the 10-moment gaussian closure[END_REF]. Since we have F(ln(s)) = F(γ ln(-r)), we set ψ(r) := F(γ ln(-r)), to write the following relations:

S(w) = ρψ(r) and G(w) = ρψ(r)u.
Since ( 6) is satisfied, we easily obtain

ψ ′ (r) = γ r F ′ (γ ln(-r)) > 0 and ψ ′′ (r) = - γ r 2 F ′ (γ ln(-r)) -γF ′′ (γ ln(-r)) > 0.
As expected, ψ is an increasing convex function, and the proof is completed.

Arguing the above result, we now establish conditions so that a finite volume method is entropy preserving as soon as just one relevant discrete entropy inequality is satisfied. Let us consider a conservative scheme given by

w n+1 i = w n i - ∆t ∆x f n i+1/2 -f n i+1/2 , ( 37 
)
where

f n i+1/2 = t f ρ i+1/2 , f ρu i+1/2 , f E i+1/2
stands for the consistent numerical flux function, according to [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF] or more generally to [START_REF] Chalons | Godunovtype schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction[END_REF]. Theorem 3.2 Under the CFL condition (8), assume the scheme [START_REF] Lax | Shock waves and entropy[END_REF] is Ωpreserving: for all w n i ∈ Ω, we have w n+1 i ∈ Ω, for all i ∈ Z. Assume the following specific discrete entropy inequality:

ρ n+1 i r n+1 i ≤ ρ n i r n i - ∆t ∆x f ρ i+1/2 r n i+1/2 -f ρ i-1/2 r n i-1/2 (38) 
is satisfied, where we have set

r n i = - (p n i ) -1/γ ρ n i and r n i+1/2 = r n i+1 if f ρ i+1/2 < 0, r n i if f ρ i+1/2 > 0. ( 39 
)
Moreover, assume the following additional CFL like condition holds:

∆t ∆x max 0, f ρ i+1/2 -min 0, f ρ i-1/2 ≤ ρ n i . ( 40 
)
Then the scheme ( 37) is entropy preserving: for all smooth increasing convex function ψ, we have

ρ n+1 i ψ r n+1 i ≤ ρ n i ψ (r n i ) - ∆t ∆x f ρ i+1/2 ψ n i+1/2 -f ρ i-1/2 ψ n i-1/2 ,
with ψ n i+1/2 defined as follows:

ψ n i+1/2 = ψ r n i+1 if f ρ i+1/2 < 0, ψ (r n i ) if f ρ i+1/2 > 0. ( 41 
)
From now on, let us emphasize the particular form of the numerical entropy flux function involved in [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF]. In fact, we impose to the entropy r to satisfy a transport like property. Such a condition is clearly more restrictive than usual. For instance, the HLL scheme is an entropy preserving scheme (see [START_REF] Harten | On upstream differencing and Godunovtype schemes for hyperbolic conservation laws[END_REF]) which does not satisfy [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF]. But there exists schemes preserving this restriction, like the Suliciu relaxation scheme [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF] or equivalently the HLLC scheme [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF], which are firstorder entropy preserving schemes involving entropy numerical flux function given by

f ρ i+1/2 F ln s n i+1/2
where

s n i+1/2 = p n i+1 /(ρ n i+1 ) γ if f ρ i+1/2 < 0, p n i /(ρ n i ) γ if f ρ i+1/2 > 0.
As a consequence, by introducing r n i = -(s n i ) 1/γ , such schemes are able to preserve the inequalities ( 38)- [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF].

Proof By definition of the numerical entropy flux function coming from [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF], and arguing the definition of r i+1/2 given by ( 39), the following relation easily holds:

f ρ i+1/2 r i+1/2 = f ρ i+1/2 r n i + r n i+1 2 -f ρ i+1/2 r n i+1 -r n i 2 .
We plug this relation into [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF] to get

r n+1 i ≤ a ρ n+1 i r n i-1 + b ρ n+1 i r n i + c ρ n+1 i r n i+1 , (42) 
where we have set

a = ∆t 2∆x f ρ i-1/2 + f ρ i-1/2 , b = ρ n i - ∆t 2∆x f ρ i+1/2 + f ρ i+1/2 -f ρ i-1/2 + f ρ i-1/2 , c = ∆t 2∆x f ρ i+1/2 -f ρ i+1/2 . ( 43 
)
Now, let us notice that

a + b + c = ρ n i - ∆t ∆x f ρ i+1/2 -f ρ i-1/2 , = ρ n+1 i > 0.
We easily see that a and c are nonnegative. Moreover, the additional CFL like condition [START_REF] Perthame | Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions[END_REF] enforces the coefficient b to be nonnegative. As a consequence, we have established that the right-hand side of ( 42) is nothing but a convex combination of r n i-1 , r n i and r n i+1 .

According to Lemma 3.1, let us now consider an entropy pair given by (S, G) = (ρψ(r), ρuψ(r)), with ψ a smooth increasing convex function. The function ψ being increasing, from the inequality (42) we get

ψ r n+1 i ≤ ψ a ρ n+1 i r n i-1 + b ρ n+1 i r n i + c ρ n+1 i r n i+1 .
By arguing the well-known discrete Jensen inequality, we deduce

ψ r n+1 i ≤ a ρ n+1 i ψ r n i-1 + b ρ n+1 i ψ (r n i ) + c ρ n+1 i ψ r n i+1 .
Next, by substituting the coefficients a, b and c by their exact value given by ( 43), we obtain

ρ n+1 i ψ(r n+1 i ) ≤ ρ n i ψ(r n i )- ∆t 2∆x f ρ i+1/2 (ψ(r n i ) + ψ(r n i+1 )) -|f ρ i+1/2 |(ψ(r n i+1 ) -ψ(r n i )) -f ρ i-1/2 (ψ(r n i-1 ) + ψ(r n i )) + |f ρ i-1/2 |(ψ(r n i ) -ψ(r n i-1 )) ,
which can rewrite as follows:

ρ n+1 i ψ(r n+1 i ) ≤ ρ n i ψ(r n i ) - ∆t ∆x f ρ i+1/2 ψ n i+1/2 -f ρ i-1/2 ψ n i-1/2 ,
where ψ i+1/2 . is defined by [START_REF] Perthame | On positivity preserving finite volume schemes for Euler equations[END_REF]. The proof is thus achieved.

4 The e-MOOD scheme for the Euler equations

In this section, we derive space high-order numerical schemes, given by [START_REF] Bouchut | A MUSCL method satisfying all the numerical entropy inequalities[END_REF], which satisfy the required discrete entropy inequalities [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. For the sake of simplicity in the forthcoming theoretical developments, we restrict ourselves to time first-order numerical methods. However, after Lemma 2.2, the space high-order scheme, now detailed, will easily extend by Runge-Kutta procedure to obtain time high-order schemes, which remain entropy preserving. Time high-order extensions will be used to perform numerical experiments.

To impose the expected inequalities [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF], we now suggest to introduce an additional a posteriori limitation when reconstructing both states w + i-1/2 and w - i+1/2 on the cell (x i-1/2 , x i+1/2 ). This a posteriori limitation technique was recently introduced by Clain et al. [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF], the so-called MOOD schemes.

The MOOD technique allows to extend any first-order scheme, which satisfies some required properties, to get space high-order scheme preserving the same properties. It is based on an iterative process to determine, locally on each cell, the better reconstruction according to the imposed properties (here, robustness and stability).

Let us consider a first-order conservative scheme given by [START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF]. Under a standard CFL-like condition [START_REF] Berthon | A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes[END_REF], we assume that this first-order scheme satisfies the needed robustness and stability properties:

Robustness If all the initial states w n i are in Ω then the evolved states w n+1 i remain in Ω.

Stability For all i ∈ Z, the following discrete entropy inequality is satisfied:

ρ n+1 i r n+1 i ≤ ρ n i r n i - ∆t ∆x f ρ ∆x w n i , w n i+1 r n i+1/2 -f ρ ∆x w n i-1 , w n i r n i-1/2 , (44) 
with r n i+1/2 defined as follows

r n i+1/2 = r n i+1 if f ρ ∆x w n i , w n i+1 < 0, r n i if f ρ ∆x w n i , w n i+1 > 0. (45) 
Once again, let us emphasize that such a first-order scheme exists. For instance, the reader is referred to the HLLC scheme or the Suliciu relaxation scheme [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF][START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF].

Next, we adopt a reconstruction procedure given by ( 16). If the increment reconstruction µ n i , is defined by ( 17), we stay within the standard MUSCL procedure, but µ n i can be associated to higher accurate reconstruction approaches. In the sequel, the reconstruction is imposed to be Ω-preserving:

w + i-1/2 = w n i - 1 2 µ n i ∈ Ω and w - i+1/2 = w n i + 1 2 µ n i ∈ Ω for all i ∈ Z.
We notice that the reconstruction satisfies the following property:

w n i = 1 2 w + i-1/2 + 1 2 w - i+1/2 . (46) 
It is possible to avoid this restriction on the reconstruction. Indeed, invoking arguments stated in [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF], we can consider a reconstruction such that w n i is not a convex combination of w + i-1/2 and w - i+1/2 :

w n i = αw + i-1/2 + (1 -α)w - i+1/2 , α ∈ (0, 1).
However, the relation ( 46) makes easier to obtain the robustness requirements. As a consequence, for the sake of simplicity, we adopt the relation [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF].

We are now able to present the suggested e-MOOD scheme.

1. Reconstruction step: For all i in Z, on each side of the interface x i+1/2 , we evaluate high-order states, given by

w - i+1/2 = w n i + 1 2 µ n i ∈ Ω and w + i+1/2 = w n i+1 - 1 2 µ n i+1 ∈ Ω. (47) 
2. Evolution step: The reconstructed approximate solution is evolved as follows:

w n+1,⋆ i = w n i - ∆t ∆x f ∆x w - i+1/2 , w + i+1/2 -f ∆x w - i-1/2 , w + i-1/2 . (48) 
3. A posteriori limitation step: We have the following alternative.

• If for all i ∈ Z, we have

ρ n+1,⋆ r n+1,⋆ i ≤ ρ n i r(w n i ) - ∆t ∆x f ρ ∆x w - i+1/2 , w + i+1/2 r n i+1/2 -f ρ ∆x w - i-1/2 , w + i-1/2 r n i-1/2 , ( 49 
)
where r n i+1/2 is defined by [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF], then the solution is valid and the updated approximation at time t n + ∆t is defined by

w n+1 i = w n+1,⋆ i , ∀i ∈ Z.
• Otherwise, for all i ∈ Z such that ( 49) is not satisfied, we set

w + i-1/2 = w n i and w - i+1/2 = w n i ,
and we go back to step 2.

Before we establish the robustness and stability properties satisfied by the above e-MOOD scheme, we underline several important points coming with this numerical procedure beside the initial MOOD introduced in [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF].

First of all, we recall that the initial MOOD schemes consider an iterative procedure over the order of accuracy involved in the reconstruction step. In [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF], the authors adopt a sequence of reconstructions indexed by the degree 0 ≤ d i ≤ d max of the polynomial reconstruction, where µ n i = 0 as soon as d i = 0. It is worth noticing that the degree d i is locally defined over the cell (x i-1/2 , x i+1/2 ). Next, during the a posteriori limitation step, if the property (here, entropy preserving property) is not satisfied, the order of accuracy is decreased and the MOOD technique is once again performed but for a smaller value of d i . This iterative procedure on d i stops with d i = 0 since a first-order scheme is recovered, and by assumption, this first-order scheme must preserve the expected property.

For the sake of simplicity in the e-MOOD presentation, we have stopped the iterative procedure at the end of the first iteration. Of course, it is possible to adopt a procedure made of several iteration from d i = d max to d i = 0. The robustness and stability results, stated below, will be preserved.

The second point to be emphasized concerns the effective order of accuracy. Indeed, the e-MOOD scheme, but also the initial MOOD scheme, substitutes the high-order scheme by a first-order method as soon as the required properties are not satisfied. Clearly, if the imposed property is too strong, the limitation will be active over the whole domain of computation and the resulting approximation will turn out to be first-order accurate. In practice, we have considered a reconstruction step given by a usual MUSCL approach and the resulting numerical improvements are obvious. However, it seems impossible to rigorously prove the order of accuracy (excepted first-order). From our point of view, the derived e-MOOD scheme must be understood as a stabilization technique and not only as a space high-order procedure.

The last concern is devoted to the choice of the a posteriori limitation and its practical consequence. Indeed, the initial MOOD scheme [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF][START_REF] Diot | Improved detection criteria for the multidimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials[END_REF] considers an a posteriori limitation based on the robustness and on a maximum principle. In fact, considering a maximum principle, several difficulties arise (see [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF][START_REF] Berthon | Robustness of MUSCL schemes for 2D unstructured meshes[END_REF][START_REF] Zhang | Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes[END_REF][START_REF] Zhang | Positivity-preserving high order finite difference WENO schemes for compressible Euler equations[END_REF]) associated to detection of local extrema. Here, the entropy a posteriori limitation turns out to be very easily implemented.

In addition, it is important to notice that in the original MOOD method, enforcing a constant reconstruction on a cell (x i-1/2 , x i+1/2 ) (i.e. d i = 0) is not sufficient to ensure that the maximum principle is satisfied on this cell. Indeed, all the states involved in the evolution step [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF] have to be constant reconstructions. This includes the states w - i-1/2 and w + i+1/2 which have respectively to be equal to w n i-1 and w n i+1 . In practice, this implies that the original MOOD method needs two different reconstructions on each cell: one for each interface. This is not the case for the e-MOOD scheme, since as soon as the a posteriori limitation procedure has been activated on a cell, the evolved state on this cell satisfies the required robustness and stability properties, regardless of the reconstruction used on the neighbouring cells. Indeed, inside a cell (x i-1/2 , x i+1/2 ) where the a posteriori limitation procedure has been activated, the e-MOOD scheme rewrites

w n+1 i = w n i - ∆t ∆x (f ∆x (w n i , w R ) -f ∆x (w L , w n i )) .
We underline that this first-order scheme satisfies ( 44)-( 45), independently of the definition of w L and w R . This remark is essential since it makes the method very attractive and computationally costless when compared to the initial MOOD scheme. Now, we are able to state the robustness and the stability properties satisfied by the e-MOOD scheme.

Theorem 4.1 Assume the time step ∆t satisfies the two following CFL like conditions:

∆t ∆x max i∈Z λ ± w + i+1/2 , w - i+1/2 , λ ± w + i-1/2 , w - i+1/2 ≤ 1 4 , (50) 
∆t ∆x max(0, f ρ i+1/2 ) -min(0,

f ρ i-1/2 ) ≤ ρ n i . (51) 
Assume that w n i and all the reconstructed states w ± i+1/2 , defined by [START_REF] Tadmor | A minimum entropy principle in the gas dynamics equations[END_REF], belong to Ω for all i in Z. Then the updated state w n+1 i , given by the e-MOOD belongs to Ω for all i in Z. Moreover, for all smooth increasing convex function ψ, the e-MOOD scheme satisfies

1 ∆t ρ n+1 i ψ(r n+1 i ) -ρ n i ψ(r n i ) + 1 ∆x f ρ ∆x (w - i+1/2 , w + i+1/2 )ψ(r n i+1/2 ) -f ρ ∆x (w - i-1/2 , w + i-1/2 )ψ(r n i-1/2 ) ≤ 0, ( 52 
) where r n i+1/2 is defined by [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF]. As a consequence the e-MOOD scheme is entropy preserving.

Proof First, we establish the robustness of the e-MOOD scheme. Since no a posteriori limitation is devoted to enforce w n+1 i to stay in Ω, we have to prove that w n+1,⋆ i , defined by [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF], belongs to Ω for all i in Z. If the limitation was activated International Journal on Finite Volumes on the cell (x i-1/2 , x i+1/2 ), then we have w + i-1/2 = w n i and w - i+1/2 = w n i , so the reconstructed states are in Ω. If the limitation was not activated, then the states w + i-1/2 and w - i+1/2 are obtained by the reconstruction procedure which is assumed to preserve Ω. In both cases, the states w + i-1/2 and w - i+1/2 are in Ω. Let us define the two following intermediate states:

w n+1,+ i-1/2 = w + i-1/2 - ∆t ∆x/2 f ∆x w + i-1/2 , w - i+1/2 -f ∆x w - i-1/2 , w + i-1/2 , w n+1,- i+1/2 = w - i+1/2 - ∆t ∆x/2 f ∆x w - i+1/2 , w + i+1/2 -f ∆x w + i-1/2 , w - i+1/2
.

In fact, we notice that both intermediate updated states, w n+1,+ i-1/2 and w n+1,- i+1/2 , are evaluated by involving a first-order scheme with a mesh size given by ∆x/2. Since the first-order scheme is Ω-preserving, we immediately get w n+1,+ i-1/2 and w n+1,- i+1/2 in Ω as long as the CFL-like condition ( 50) is satisfied. Now, by involving [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF], we have

w n+1,⋆ i = 1 2 w n+1,+ i-1/2 + 1 2 w n+1,- i+1/2 ,
to immediately deduce that w n+1.⋆ i belongs to the convex set Ω. Next, by definition of the e-MOOD scheme, the following discrete entropy inequality is satisfied for all i ∈ Z:

1 ∆t ρ n+1 i r n+1 i -ρ n i r n i + 1 ∆x f ρ ∆x (w - i+1/2 , w + i+1/2 )r n i+1/2 -f ρ ∆x (w - i-1/2 , w + i-1/2 )r n i-1/2 ≤ 0, (53) 
where r n i+1/2 is defined by [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF]. Under the CFL condition [START_REF] Van Leer | A historical oversight: Vladimir P. Kolgan and his high-resolution scheme[END_REF], we can apply Theorem 3.2 and the e-MOOD scheme satisfy all the required entropy inequalities [START_REF] Woodward | The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations[END_REF]. The proof is thus achieved.

To conclude this section, let us underline that the robustness of the e-MOOD schemes comes from the CFL condition [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF] and the relation [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF]. In fact, if [START_REF] Shu | Efficient implementation of essentially nonoscillatory shock-capturing schemes[END_REF] is not satisfied, after [START_REF] Berthon | Stability of the MUSCL schemes for the Euler equations[END_REF], additional CFL restrictions and reconstruction limitations can be imposed to enforce the required robustness. This Ω-preserving property, naturally satisfied by the e-MOOD scheme, is another understanding of the initial MOOD method [START_REF] Clain | A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)[END_REF] where an additional a posteriori limitation is imposed to satisfy the expected robustness property.

Numerical experiments

For the sake of consistency, the numerical experiments now detailed follow the same strategy as imposed in Section 2.4. To validate the e-MOOD scheme, we adopt a numerical flux function involved in [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF] given by the HLLC scheme [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics[END_REF][START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF]. Concerning the e-MOOD reconstruction step [START_REF] Tadmor | A minimum entropy principle in the gas dynamics equations[END_REF], MUSCL limiters are considered. Here, we only deal with minmod and superbee limiter functions. Indeed, after Tables 1-8, the minmod function gives relevant approximations while the superbee limiter develops numerical blowup. Time first-and second-order are systematically compared. Regarding the CFL condition, we adopt the restrictions ( 50)- [START_REF] Van Leer | A historical oversight: Vladimir P. Kolgan and his high-resolution scheme[END_REF].

The first numerical test is devoted to illustrate the relevance of the e-MOOD procedure by approximating a smooth periodic solution of (1). Over a periodic domain of computation (0, 1), the initial data is given by

ρ 0 (x) = 1 if x < 0.2 or x > 0.8, 1 + exp (x-0.5) 2 (x-0.2)(x-0.8) if 0.2 < x < 0.8. u 0 (x) = 1, p 0 (x) = 1.
The exact solution is given by w(x, t) = w 0 (x -at), with a = 1 and is displayed Figure 5 9 and Figure 6 give the L 1 -errors obtained by the minmod and the superbee limiters with a time second-order Runge-Kutta technique. Concerning the minmod results, we notice that both MUSCL and e-MOOD approximations give the same error. In fact, in this numerical test, the minmod MUSCL scheme turns out to be positive entropy preserving. As a consequence, e-MOOD procedure stays inactivated and we get the same results. Now, concerning the superbee function, the e-MOOD procedure enforces some numerical regularizations and no blowup appears at the discrepancy with the superbee MUSCL scheme. To complete this validation benchmark, we also give the results obtained by involving a fourth-order minmod technique [START_REF] Berthon | A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes[END_REF][START_REF] Yamamoto | Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations[END_REF]. It is worth noticing that both MUSCL and e-MOOD schemes give similar results. As a consequence, we claim that the presented e-MOOD technique does not turn out to be too diffusive and it preserves the order of accuracy satisfied Next, we consider the approximation of the solution of Riemann problems with an initial data given by [START_REF] Hu | Positivity-preserving method for high-order conservative schemes solving compressible Euler equations[END_REF]. In Table 10 and Figure 7, we present the numerical results obtained by simulating a 1-rarefaction with an initial data given by [START_REF] Keen | A second order kinetic scheme for gas dynamics on arbitrary grids[END_REF]. We immediately remark that there is no longer any numerical blow-up. But the e-MOOD scheme preserves the required order of accuracy. In Table 11 and Figure 8, similar results are obtained by simulating a 1-shock with an initial data defined by [START_REF] Khobalatte | Maximum principle on the entropy and secondorder kinetic schemes[END_REF]. and is lower than ǫ, so is the last integral of ( 54), thanks to the definition of ψ.

Finally, the second integral of (54) converges to 0 by continuity of ψ. We have thus I ∆ 2 → 0 and so I ∆ → 0. This means that x → u ∆ (x + ξ∆x) converges in L 1 loc to u. As a consequence, u ∆ (x + ξ∆x) converges to u(x) for a.e. x ∈ R.

Lemma A.2 Under the hypotheses of Theorem 2.1, if w ∆,(j) converges in L 1 loc (R × R + ; Ω) to w, then f ∆,(j) converges a.e. to f (w).

Proof We first notice that if x ∈ R n i+1/2 , then x + (k -1/2)∆x ∈ R n i+k . As a consequence, we can rewrite equation ( 14) into f ∆,(j) (x, t) = F w ∆,(j) (x -(s -1/2)∆x, t) , • • • , w ∆,(j) (x + (s -1/2)∆x, t) .

The sequence of functions x → w ∆,(j) (x, t) satisfies the hypotheses of Lemma A.1 for a.e. t ∈ R + . So for all ξ ∈ R, w ∆,(j) (x + ξ∆x, t) converges to w(x, t) for a.e. (x, t) ∈ R × R + . Thanks to the continuity and the consistency of F , we deduce that f ∆,(j) converges to f (w) a.e. Proof We are going to prove this result by induction on ℓ. The result is true by hypothesis for ℓ = 0, since w ∆,(0) = w ∆ . Let us assume that w ∆,(j) converges in L 1 loc (R × R + ; Ω) to w, for j = 0, • • • , ℓ -1. Lemma A.2 ensures that f ∆,(j) converges a.e. to f (w), for j = 0, • • • , ℓ -1. Besides f ∆,(j) is valued in the compact F (K, • • • , K), so Lemma A.1 ensures that (x, t) → f ∆,(j) (x + ∆x/2, t) and (x, t) → f ∆,(j) (x -∆x/2) both converges to f (w) a.e. Equation ( 12) rewrites w ∆,(ℓ) (x, t) = w ∆ (x, t) -∆t ∆x ℓ-1 j=0 c ℓ,j f ∆,(j) (x + ∆x/2, t) -f ∆,(j) (x -∆x/2) .

Each term of the sum converges to 0 a.e. and w ∆ converges to w a.e., so w ∆,(ℓ) converges to w a.e. The sequence w ∆,(ℓ) being uniformly bounded, the dominated convergence theorem ensures that w ∆,(ℓ) converges to w in L 1 loc (R × R + ; Ω). We can now prove the Theorem 2. The function φ being smooth, φ ∆ uniformly converges to φ and since w 0 is essentially bounded, we have

R w 0 (x) • φ ∆ (x, 0)dx → R w 0 (x) • φ(x, 0)dx. ( 57 
)
We denote respectively by I ∆ 1 and I ∆ 2 the first integral of (56) which corresponds to the time derivative and the third integral of (56) which corresponds to the space derivative.

Convergence of the time discretization I ∆ 1

The integral I ∆ 1 writes

I ∆ 1 = R×R +
w ∆ (x, t) • 1 R×[∆t,+∞) (x, t) φ ∆ (x, t) -φ ∆ (x, t -∆t) ∆t dxdt.

The function (x, t) → 1 R×[∆t,+∞) (x, t) φ ∆ (x,t)-φ ∆ (x,t-∆t) ∆t uniformly converges to ∂ t φ and the functions w ∆ are uniformly essentially bounded, so we have c m,j f ∆,(j) (x, t)dxdt → 0.

(59)

Combining Lemma A.3 and Lemma A.2, we get that f ∆,(j) converges a.e. to f (w), for j = 0, • • • , m -1. Using [START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF], we deduce that m-1 j=0 c m,j f ∆,(j) converges a.e. to f (w).

The dominated convergence theorem ensures that

R×R + ∂ x φ(x, t) • m-1 j=0 c m,j f ∆,(j) (x, t)dxdt → R×R + f (w(x, t)) • ∂ x φ(x, t)dxdt. ( 60 
)
From ( 59) and (60), we deduce

I ∆ 2 → R×R + f (w(x, t)) • ∂ x φ(x, t)dxdt. (61) 
The three limits (57), (58), (61) are true up to a subsequence. Obviously we can find a joint subsequence that satisfy both three limits. Taking the limit for this subsequence in equation (56) prove that w is a weak solution of [START_REF] Bourgeade | Approximate solution of the generalized Riemann problem and applications[END_REF].

The proof for the entropy part is almost the same and present no additional difficulty.
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 11 Figure 1: 1-rarefaction with first-order time scheme: L 1 error (left) and total mass I ∆ of the right-hand side of the proven entropy inequality (right)

Figure 2 : 1 -

 21 Figure 2: 1-rarefaction with second-order Runge-Kutta time scheme: L 1 error (left) and total mass I ∆ of the right-hand side of the proven entropy inequality (right)
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 3 Figure 3: Shock-shock with first-order time scheme: L 1 error (left) and total mass I ∆ of the right-hand side of the proven entropy inequality (right)

Figure 4 :

 4 Figure 4: Shock-shock with second-order Runge-Kutta time scheme: L 1 error (left) and total mass I ∆ of the right-hand side of the proven entropy inequality (right)
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 5 Figure 5: Initial and final density solution for the smooth problem Table9and Figure6give the L 1 -errors obtained by the minmod and the superbee limiters with a time second-order Runge-Kutta technique. Concerning the minmod results, we notice that both MUSCL and e-MOOD approximations give the same error. In fact, in this numerical test, the minmod MUSCL scheme turns out to be positive entropy preserving. As a consequence, e-MOOD procedure stays inactivated and we get the same results. Now, concerning the superbee function, the e-MOOD procedure enforces some numerical regularizations and no blowup appears at the discrepancy with the superbee MUSCL scheme. To complete this validation benchmark, we also give the results obtained by involving a fourth-order minmod technique[START_REF] Berthon | A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes[END_REF][START_REF] Yamamoto | Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations[END_REF]. It is worth noticing that both MUSCL and e-MOOD schemes give similar results. As a consequence, we claim that the presented e-MOOD technique does not turn out to be too diffusive and it preserves the order of accuracy satisfied
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 6 Figure 6: Comparison between MUSCL scheme and e-MOOD scheme -L 1 error for the smooth problem
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 7 Figure 7: Comparison between MUSCL scheme and e-MOOD scheme -L 1 error for the 1-rarefaction -Left: first-order time scheme. Right: second-order time scheme
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 8 Figure 8: Comparison between MUSCL scheme and e-MOOD scheme -L 1 error for the shock-shock -Left: first-order time scheme. Right: second-order time scheme

Lemma A. 3

 3 Under the hypotheses of Theorem 2.1, w ∆,(ℓ) converges to w in L 1 loc (R× R + ; Ω), for ℓ = 0, • • • , m -1.

1 .

 1 Proof [Proof of Theorem 2.1] Let φ ∈ C 1 c (R × R + ; R d )be a compactly supported smooth function. For i ∈ Z and n ∈ N, we define φ n i = φ(x i , t n ). Multiplying the last iteration (ℓ = m) of the scheme (12) by ∆xφ n i and summing over i and n, we get ∆x define the piecewise constant function φ ∆ (x, t) = φ n i = φ(x i , t n ) for (x, t) ∈ R n i . We can then put equation (55) into an integral formR×[∆t,+∞) w ∆ (x, t) • φ ∆ (x, t) -φ ∆ (x, t -∆t) ∆t dxdt + R w 0 (x) • φ ∆ (x, 0)dx = 0 + R×R + φ ∆ (x + ∆x/2, t) -φ ∆ (x -∆x/2, t) ∆x • m-1 j=0c m,j f ∆,(j) (x, t)dxdt. (56)

Table 1 :

 1 L 1 error E ∆ for the 1-rarefaction using first-order time discretisation

			Albada van Leer	MC	superbee
	125	7.54E-3	9.98E-3	1.09E-2 1.34E-2 3.42E-2
	250	5.19E-3	6.64E-3	7.40E-3 1.06E-2 3.00E-2
	500	3.12E-3	4.17E-3	5.00E-3 9.38E-3 2.35E-2
	1000	1.84E-3	2.72E-3	3.70E-3 8.77E-3 1.88E-2
	2000	1.07E-3	2.01E-3	2.82E-3 8.58E-3 2.48E-2
	4000	6.13E-4	1.37E-3	2.35E-3 9.28E-3 9.98E-2
	8000	3.63E-4	1.19E-3	2.44E-3 3.84E-2 1.21E-1
	16000	2.41E-4	1.24E-3	3.51E-3 5.34E-2
	32000	1.80E-4	1.26E-3	
	Nb cells minmod van Albada van Leer	MC	superbee
	125	1.48E-2	1.79E-2	2.00E-2 2.27E-2 4.39E-2
	250	9.36E-3	1.12E-2	1.25E-2 1.52E-2 3.22E-2
	500	5.70E-3	6.81E-3	7.81E-3 1.01E-2 2.35E-2
	1000	3.38E-3	4.10E-3	4.96E-3 8.53E-3 1.84E-2
	2000	1.96E-3	2.51E-3	3.24E-3 7.12E-3 3.03E-2
	4000	1.12E-3	1.55E-3	2.26E-3 6.38E-3 7.50E-1
	8000	6.30E-4	1.02E-3	1.74E-3 8.04E-2 1.48E+1
	16000	3.53E-4	7.54E-4	2.18E-3 1.42E-0
	32000	1.99E-4	6.18E-4	

Table 2 :

 2 Total mass I ∆ of the right-hand side of the proven entropy inequality for the 1-rarefaction using first-order time discretisation

Table 3 :

 3 L 1 error E ∆ for the 1-rarefaction using second-order time discretisation

	Nb cells minmod van Albada van Leer	MC	superbee
	125	6.82E-3	5.41E-3	4.55E-3 3.87E-3 4.93E-3
	250	5.38E-3	4.37E-3	3.86E-3 3.46E-3 2.37E-3
	500	2.72E-3	2.19E-3	1.94E-3 1.74E-3 1.16E-3
	1000	1.36E-3	1.10E-3	9.68E-4 8.69E-4 5.74E-4
	2000	6.82E-4	5.49E-4	4.84E-4 4.35E-4 2.89E-4
	4000	3.41E-4	2.74E-4	2.42E-4 2.17E-4 1.48E-4
	8000	1.71E-4	1.37E-4	1.21E-4 1.09E-4 7.68E-5
	16000	8.54E-5	6.86E-5	6.05E-5 5.43E-5 4.12E-5
	32000	4.27E-5	3.43E-5	3.03E-5 2.72E-5 4.92E-5
	64000				1.36E-5 8.39E-3
	Nb cells minmod van Albada van Leer	MC	superbee
	125	1.44E-2	1.67E-2	1.81E-2 1.93E-2 2.32E-2
	250	9.08E-3	1.03E-2	1.10E-2 1.16E-2 1.38E-2
	500	5.51E-3	6.17E-3	6.54E-3 6.85E-3 8.01E-3
	1000	3.25E-3	3.60E-3	3.79E-3 3.96E-3 4.61E-3
	2000	1.88E-3	2.06E-3	2.16E-3 2.25E-3 2.63E-3
	4000	1.07E-3	1.16E-3	1.16E-3 1.27E-3 1.51E-3
	8000	5.98E-4	6.50E-4	6.77E-4 7.03E-4 8.94E-4
	16000	3.31E-4	3.59E-4	3.73E-4 3.88E-4 5.66E-4
	32000	1.82E-4	1.97E-4	2.04E-4 2.12E-4 5.16E-4
	64000				1.15E-4 1.03E-0

Table 4 :

 4 Total mass I ∆ of the right-hand side of the proven entropy inequality for the 1-rarefaction using second-order time discretisation

Table 5 :

 5 , while non-standard discrete formulation of the time deriva-L 1 error E ∆ for the shock-shock using first-order time discretisation

	Nb cells minmod van Albada van Leer	MC	superbee
	125	2.85E-2	2.84E-2	2.78E-2 2.74E-2 2.81E-2
	250	8.79E-3	8.42E-3	7.99E-3 8.36E-3 9.96E-3
	500	3.47E-3	3.33E-3	3.34E-3 3.42E-3 5.35E-2
	1000	1.18E-3	1.14E-3	1.36E-3 1.59E-3 2.06E-2
	2000	1.74E-3	1.70E-3	1.86E-3 2.14E-3 4.54E-2
	4000	1.07E-3	1.05E-3	1.29E-3 3.97E-3
	8000	7.62E-4	7.53E-4	1.04E-3 1.89E-2
	16000	1.56E-4	1.69E-4	7.78E-3 2.18E-2
	32000	9.59E-5	4.23E-4	1.31E-2
	64000	1.46E-3		
	Nb cells minmod van Albada van Leer	MC	superbee
	125	1.19093	1.50166	3.69771 6.60340 7.39416
	250	1.19348	1.50362	3.69027 6.57974 7.47961
	500	1.19438	1.50505	3.67345 6.63387 7.59467
	1000	1.19488	1.50596	3.66646 6.55043 7.95907
	2000	1.19502	1.50636	3.66594 6.61186 10.0619
	4000	1.19521	1.50650	3.66420 6.62561
	8000	1.19529	1.50648	3.66326 7.68269
	16000	1.19531	1.50625	3.93815 10.3855
	32000	1.19545	1.50600	5.40179
	64000	1.21136		

Table 6 :

 6 Total mass I ∆ of the right-hand side of the proven entropy inequality for the shock-shock using first-order time discretisation

	Nb cells minmod van Albada van Leer	MC	superbee
	125	2.87E-2	2.85E-2	2.80E-2 2.86E-2 2.96E-2
	250	9.05E-3	8.63E-3	8.24E-3 8.22E-3 8.79E-3
	500	3.60E-3	3.43E-3	3.55E-3 3.39E-3 4.20E-3
	1000	1.23E-3	1.18E-3	1.57E-3 1.35E-3 1.97E-3
	2000	1.77E-3	1.72E-3	2.06E-3 1.71E-3 2.85E-3
	4000	1.08E-3	1.06E-3	1.47E-3 1.12E-3 3.21E-3
	8000	7.59E-4	7.46E-4	1.21E-3 8.41E-4 1.92E-2
	16000	1.50E-4	1.38E-4	6.19E-4 2.28E-4 2.36E-2
	32000	6.52E-5	5.64E-5	5.45E-4 1.49E-4 3.22E-2
	64000	2.84E-5		5.14E-4 1.13E-4

Table 7 :

 7 L 1 error E ∆ for the shock-shock using second-order time discretisation
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Table 8 :

 8 Total mass I

∆ of the right-hand side of the proven entropy inequality for the shock-shock using second-order time discretisation

  at time t = 1.
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	1										
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Table 9 :

 9 L 1 error for the smooth problem using the MUSCL scheme and the e-MOOD scheme

	Nb of	MUSCL scheme	e-MOOD scheme
	cells	minmod superbee minmod4 minmod superbee minmod4
	125	3.75E-3	7.62E-4	1.22E-4	3.75E-3	7.62e-4	1.24e-4
	250	1.43E-3	4.98E-4	4.80E-5	1.43E-3	4.98e-4	4.81e-5
	500	4.94E-4	2.41E-4	7.16E-6	4.94E-4	2.41e-4	7.18e-6
	1000	1.46E-4	7.73E-5	4.92E-7	1.49E-4	7.70e-5	4.93e-7
	2000	3.91E-5	2.13E-5	1.48E-8	3.91E-5	2.11e-5	1.49e-8
	4000	9.60E-6	5.44E-6	3.11E-10	9.60E-6	5.49e-5	3.17e-10
	8000	2.40E-6	1.47E-6	1.89E-11	2.40E-6	1.67e-6	1.92e-11
	16000 6.02E-7	2.55E-2	3.39E-12	6.02E-7	1.12e-6	3.40e-12
	32000 1.51E-7			1.51E-7	1.55e-6	

Table 10 :

 10 L 1 error for the 1-rarefaction using the e-MOOD scheme

	Nb of	first-order time	second-order time
	cells	minmod superbee minmod superbee
	125	2.33E-2	3.17E-2	1.53E-2	2.05E-2
	250	1.51E-2	1.99E-2	1.10E-2	1.20E-3
	500	9.26E-3	1.23E-2	6.30E-3	7.18E-3
	1000	5.63E-3	7.45E-3	3.70E-3	4.23E-3
	2000	3.33E-3	4.44E-3	2.13E-3	2.44E-3
	4000	1.93E-3	2.66E-3	1.22E-3	1.40E-3
	8000	1.11E-3	1.71E-3	6.88E-4	7.89E-4
	16000 6.34E-4	1.14E-3	3.84E-4	4.39E-4
	32000 3.62E-4	8.14E-4	2.16E-4	2.43E-4

Table 11 :

 11 L 1 error for the shock-shock using the e-MOOD scheme

	Nb of	first-order time	second-order time
	cells	minmod superbee minmod superbee
	125	4.05E-2	3.99E-2	4.12E-2	4.12E-2
	250	1.63E-2	1.60E-2	1.66E-2	1.67E-3
	500	6.98E-3	7.17E-3	7.16E-3	7.31E-3
	1000	2.74E-3	2.77E-3	2.82E-3	2.80E-3
	2000	2.60E-3	2.57E-3	2.65E-3	2.63E-3
	4000	1.51E-3	1.49E-3	1.53E-3	1.52E-3
	8000	9.43E-4	9.45E-4	9.59E-4	9.58E-4
	16000 2.60E-4	2.53E-4	2.68E-4	2.56E-4
	32000 1.14E-5	1.17E-4	1.19E-4	1.16E-4

  R×R + w ∆ (x, t) • 1 [∆t,+∞) φ ∆ (x, t) -φ ∆ (x, t -∆t) ∆t -∂ t φ(x, t) dxdt → 0. Since w ∆ converges in L 1 loc (R × R + ) to w, we have R×R + w ∆ (x, t) • ∂ t φ(x, t)dxdt → R×R + w(x, t) • ∂ t φ(x, t)dxdt.Convergence of the space discretization I ∆

	The last two limits imply			
	I ∆ 1 →	R×R +	w(x, t) • ∂ t φ(x, t)dxdt.	(58)
			m-1	
			j=0	

2

Arguing again the smoothness of the function φ, the sequence

(x, t) → φ ∆ (x + ∆x/2, t) -φ ∆ (x -∆x/2, t) ∆x uniformly converges to ∂ x φ.

Moreover the functions f ∆,(j) are all uniformly bounded since they are valued in the compact F (K, • • • , K). As a consequence, we have

R×R + φ ∆ (x + ∆x/2, t) -φ ∆ (x -∆x/2, t) ∆x -∂ x φ(x, t) •
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A Proof of the Lax-Wendroff Theorem

For the sake of completeness of the present paper, we now give the proof of the Lax-Wendroff Theorem 2.1. In fact, from [START_REF] Lax | Systems of conservation laws[END_REF] (see also [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF][START_REF] Eymard | Finite volume methods[END_REF]), we have the required proof with space high-order numerical flux functions. We here give a direct extension by considering time high-order discretization with approximation in a convex set.

We define two kinds of rectangular cells in the (x, t) plane:

). Arguing this notation, we introduce the piecewise constant functions

In the sequel, convergences are implicitly considered up to a subsequence. With some abuse, we state that convergence in L 1 loc implies convergence a.e. We shall see at the end of the proof of Theorem 2.1 that it is not a restriction.

The proof is organized as follows: Lemma A.1 is a technical result about the convergence of a shifted sequence. In Lemma A.2, we prove that the convergence of w ∆,(j) to w in L 1 loc implies the convergence a.e. of f ∆,(j) to f (w). From this result, we deduce in Lemma A.3 that all the w ∆,(j) converge to w in L 1 loc . Finally, thanks to Lemma A.2 and Lemma A.3, we can achieve the proof of Theorem 2.1.

Lemma A.1 We consider a sequence of functions u ∆ : R → Ω satisfying the following hypotheses:

(i) there exists a compact K ⊂ Ω such that u ∆ is valued in K;

Then for all ξ ∈ R, the quantity u ∆ (x + ξ∆x) converges to u(x) for a.e. x ∈ R.

Proof Let a < b be two reals. We define I ∆ = b a u ∆ (x + ξ∆x) -u(x) dx. A triangle inequality gives

We denote respectively by I ∆ 1 and I ∆ 2 the two integrals in the last inequality. We are going to show that both these integrals converge to 0. International Journal on Finite Volumes