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In the present work, we consider the numerical approximations of multi-fluid compressible fluctuating flows. Assuming that the flow is composed by non mixing compressible fluids, we derived a modelization that can be view as an extension of the standard compressible (k, ǫ). This model is fundamentally in non conservation form (the coupling between fluids and turbulence involves non conservative products) and the usual finite volume methods fail. The nonlinear projection scheme is used to preserve, at the discrete level, the main properties of the model. The numerical computations are performed on the Richtmeyer-Meshkov instability to validate the approach and to measure the influence of fluctuations.

Introduction

When modeling non mixing multi-fluid flow, one generally assume that, at a given point of the domain, only one component is present. Therefore, averaged variables are always associated to an unique component of the fluid. This ideal situation is well posed when the different interfaces are explicitly characterized and tracked. Based on this observation, some numerical methods have been developed [START_REF] Chern | Front tracking for gas dynamics[END_REF][START_REF] Declercq | An exact Riemann solver for multicomponent turbulent flow[END_REF][START_REF] Declercq | Comparison of numerical solvers for a multicomponent turbulent flow[END_REF][START_REF] Forestier | Solveur de type Godunov pour simuler les écoulements turbulents compressibles[END_REF][START_REF] Glimm | Threedimensional front tracking[END_REF][START_REF] Glimm | Front tracking for hyperbolic systems[END_REF][START_REF] Partom | Application of the VOF method to the sloshing of a fluid in a partially filled cylindrical container[END_REF][START_REF] Zhao | A high-resolution characteristicsbased implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids[END_REF]. The main difficulties in these approach are the computations of interfaces/interfaces and interfaces/waves interactions. The problem becomes crucial when there are many complex interfaces.

The numerical approach proposed in this paper does not explicitly characterize or track the interfaces. Interfaces are approximated by a set of characteristic volumes where the fluid components are supposed mixed. The physics in these volumes has to be defined in order to be able to reproduce coherent interfaces/interfaces and interfaces/waves interactions. Therefore, we consider a set of equations, derived from an ensemble averaging [START_REF] Drew | Theory of multicomponent fluids[END_REF], describing the behavior of a multi-component flow. The number of variables in these modelizations grows with the number of flow components [START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF]. This model is well posed in general, but turns out to be efficient only for flows with few components. Based on the assumption that pressure and velocity relaxations are instantaneous, some simplified models have been developed [START_REF] Abgrall | Efficient numerical approximation of compressible multi-material flow for unstructured meshes[END_REF][START_REF] Saurel | A simple method for compressible multifluid flows[END_REF][START_REF] Massoni | Proposition de methodes et modeles euleriens pour les problemes a interfaces entre fluides compressibles en presence de transfert de chaleur[END_REF][START_REF] Shyue | An efficient shock-capturing algorithm for compressible multicomponent problems[END_REF]. In these cases, the effects of velocity fluctuations are not considered.

The regime investigated in this paper is non mixed flow, at the physical model level and weakly mixed flow, at the numerical model level. In this context, some assumptions are introduced to derived a simplify well posed model containing all the main characteristics of the flow as the residual viscous effects. One of the main assumption is that, locally, all the components of the fluid have the same average velocity. However, the modelization takes into account the difference between the average velocity and the velocity of each components. Therefore, the modelization takes into account the velocity fluctuations and, under the Boussinesq approximation, the problem is well posed. Moreover, some entropy balance equations are obtained and they are still valid at the vanishing viscosity limit.

Numerical method is developed, in the finite volumes framework. The physical model used in the present work is governed by non-conservative equations and some non classical behaviors have to be considered [START_REF] Maso | Definition and weak stability of a non conservative product[END_REF][START_REF] Raviart | A nonconservative hyperbolic system modeling spray dynamics. I: Solution of the Riemann problem[END_REF]. At the discrete level these properties are preserved by a nonlinear projection formulation [START_REF] Berthon | Schéma nonlinéaire pour l'approximation numérique d'un système hyperbolique non conservatif[END_REF][START_REF] Berthon | Innovative methods for numerical solutions of partial differential equations[END_REF]. Sources terms are split and integrated analytically. The proposed numerical approach is validated with the computation of the Richtmeyer-Meshkov interface instability.

The paper is organized as follows. In the first section the derivation of physical model is proposed and the mathematical properties are established. The second section is devoted with the numerical approximation. Then, numerical results are presented and analyzed before the conclusion.

The physical model

Let us consider a multi-component flow and assume that heat effects, body forces and some dissipation terms can be neglected. Using ensemble averaging, Drew and Passman [START_REF] Drew | Theory of multicomponent fluids[END_REF] derived the following model for multi-component flow [START_REF] Drew | Theory of multicomponent fluids[END_REF](pages 126-130):

∂ t (α ℓ ρℓ ) + ∇ • (α ℓ ρℓ u ℓ ) = ρℓ , (1) 
∂ t (α ℓ ρℓ u ℓ ) + ∇ • (α ℓ ρℓ u ℓ ⊗ u ℓ ) = ∇ • (α ℓ (σ ℓ + σ ′ ℓ )) + uℓ , (2) 
∂ t (α ℓ ρℓ e ℓ ) + ∇ • (α ℓ ρℓ e ℓ u ℓ ) = α ℓ σ ℓ : ∇u ℓ + α ℓ ρℓ ǫ ℓ + ėℓ (3) 
and

α ℓ ρℓ ǫ ℓ = -∂ t (α ℓ ρℓ k ℓ ) -∇ • (α ℓ ρℓ k ℓ u ℓ ) + α ℓ σ ′ ℓ : ∇u ℓ + kℓ , (4) 
where α ℓ , ρℓ , u ℓ , e ℓ and σ ℓ are respectively the averaged volume fraction, density, velocity, internal energy and stress tensor of the fluid component. The kinetic turbulent energy of fluid components is denoted k ℓ while ǫ ℓ denotes its dissipation rate.

The mean density ρℓ is the mass of constituent ℓ per unit volume of constituent ℓ.

The notation ρℓ must not be confused with ρ ℓ that denotes the partial density (also called the effective density of the component ℓ).

The production of mass ρℓ , momentum uℓ , total energy ėℓ , and kinetic turbulent energy kℓ are defined by the transfer at the interfaces. Du to conservation properties, we have:

ℓ ρℓ = ℓ uℓ = ℓ ėℓ = ℓ kℓ = 0 ( 5 
)
When there is no phase transition or chemical reaction at interfaces we have ρℓ = 0. These equations are obtained by introducing a fluctuation velocity which is the difference u ′ ℓ between the complete field v and the mean field u ℓ in a representative volume:

u ′ ℓ = v -u ℓ , (6) 
where u ℓ is constant in the representative volume of the averaging approach. The fluctuation u ′ ℓ is defined only where the fluid component ℓ is present. Then, the Reynolds stress σ ′ ℓ and the fluctuation kinetic energy k ℓ are associated to u ′ ℓ . In order to derived a simplify model, we assume that relaxation processes are instantaneous, such that the averaged velocity is the same for all components:

u ℓ = u for all ℓ. (7) 
Therefore

u ′ ℓ = u ′ , k ℓ = k, ǫ ℓ = ǫ for all ℓ. (8) 
The mean stress tensors are defined by σ ℓ = -p ℓ Id + µ ℓ τ (u). Therefore, under the Boussinesq approximation, the Reynolds stress is put under the form:

σ ′ ℓ = -p ′ ℓ Id + µ ′ ℓ τ (u) with p ′ ℓ = (γ ′ -1)ρ ℓ k (9) 
where p ′ ℓ is the spherical part of the tensor, γ ′ is a constant ( γ ′ = 5 3 for frictionless collisions [START_REF] Drew | Theory of multicomponent fluids[END_REF]) and µ ′ ℓ is the coefficient of fluctuation viscosity. After [START_REF] Berthon | Innovative methods for numerical solutions of partial differential equations[END_REF] (see also [START_REF] Chalons | Bilans d'entropie discrets dans l'approximation numérique des chocs non classiques. Application aux équations de Navier-Stokes multipression 2D et à quelques systèmes visco-capillaires[END_REF]), we adopt the notation γ ′ , instead of 5/3, which makes more practical several computations (for instance, see the lemma 2.2).

Summing over all components the mass, the momentum and the fluctuation kinetic energy, we obtain:

∂ t ρ + ∇ • (ρu) = 0, ( 10 
)
∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇(p + p ′ ) = ∇ • ((µ + µ ′ )τ (u)) , (11) 
∂ t (ρk) + ∇ • (ρku) + p ′ ∇ • (u) = µ ′ τ (u) : ∇u -ρǫ, (12) 
where

ρ = ℓ α ℓ ρℓ , p = ℓ α ℓ p ℓ , p ′ = ℓ α ℓ p ′ ℓ , (13) µ 
= ℓ α ℓ µ ℓ , µ ′ = ℓ α ℓ µ ′ ℓ .
As in the turbulence modelization, the evolution of the dissipation rate ρǫ is approximated as follows:

∂ t (ρǫ) + ∇ • (ρǫu) + 2 3 C 1 ρǫ∇ • (u) = µ ′′ τ (u) : ∇u -R (14) 
where

µ ′′ = C 1 ǫ k µ ′ , R = C 2 ρ ǫ 2 k
where C 1 and C 2 are modeling constants. When the fluctuations are at the turbulence level, some numerical values of these constants can be found in [START_REF] Mohammadi | Analysis of the K-Epsilon Turbulence Model[END_REF]. In a representative volume of the model the components are isolated (even in a micro-scale description [START_REF] Drew | Theory of multicomponent fluids[END_REF](page 100)). Therefore, the mass fraction Y ℓ , the volume fraction α ℓ , the mean density ρℓ and the partial density ρ ℓ are related by the following relations:

Y ℓ = m ℓ m = ρℓ V ℓ ρV = ρℓ ρ α ℓ =⇒ ρ ℓ = ρY ℓ = ρℓ α ℓ (15) 
m and V are notations for mass and volume. We assume that the relaxation processes are instantaneous (the same mean velocity) and that there is no phase transition or chemical reactions. Therefore, we have ėℓ = 0 and the balance of internal energy of each component writes as:

∂ t (ρ ℓ e ℓ ) + ∇ • (ρ ℓ e ℓ u) + α ℓ p ℓ ∇ • (u) = α ℓ µ ℓ τ (u) : ∇u + ρ ℓ ǫ
The derived model is then described by the balance equations:

∂ t ρ + ∇ • (ρu) = 0, (16) 
∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇(p + p ′ ) = ∇ • ((µ + µ ′ )τ (u)) , (17) 
∂ t (ρ ℓ e ℓ ) + ∇ • (ρ ℓ e ℓ u) + α ℓ p ℓ ∇ • (u) = α ℓ µ ℓ τ (u) : ∇u + ρ ℓ ǫ, (18) 
∂ t (ρk) + ∇ • (ρku) + p ′ ∇ • (u) = µ ′ τ (u) : ∇u -ρǫ, (19) 
∂ t (ρǫ) + ∇ • (ρǫu) + 2 3 C 1 ρǫ∇ • (u) = C 1 ǫ k µ ′ τ (u) : ∇u -C 2 ρǫ 2 k ( 20 
)
where p ′ = (γ ′ -1)ρk. The model recovers the usual equation for the total energy

E = 1 2 ρu 2 + ρk + ℓ ρ ℓ e ℓ . Indeed, from (18) we deduce ∂ t ( ℓ ρ ℓ e ℓ ) + ∇ • ℓ ρ ℓ e ℓ u + p∇ • (u) = µτ (u) : ∇u + ρǫ. (21) 
Now, from [START_REF] Louis | Modélisation numérique de la turbulence compressible[END_REF] we compute the evolution law of the kinetic energy. We set

u • ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇(p + p ′ ) = u • ∇ • (µ + µ ′ )τ (u) . (22) 
Since we have

u • ∂ t ρu = ρ∂ t u 2 2 + u 2 ∂ t ρ, = ∂ t ρ u 2 2 -u 2 ∇ • (ρu) , and 
u • ∇ • (ρu ⊗ u) = ∇ • ρ u 2 2 u + u 2 2 ∇ • (ρu) ,
the equation ( 22) reads as follows:

∂ t ρ u 2 2 + ∇ • ρ u 2 2 u + u∇(p + p ′ ) = u • ∇ • (µ + µ ′ )τ (u) . (23) 
We sum ( 19), ( 21) and ( 23) to obtain

∂ t E + ∇ • (E + p + 2 3 ρk)u = u • ∇ • (µ + µ ′ )τ (u) + (µ + µ ′ )τ (u) : ∇u. Assume that τ (u) is symmetric to write u • ∇ • (µ + µ ′ )τ (u) + (µ + µ ′ )τ (u) : ∇u = ∇ • (µ + µ ′ )τ (u)u .
The usual conservation of the total energy is thus obtained:

∂ t E + ∇ • (E + p + 2 3 ρk)u = ∇ • (µ + µ ′ )τ (u)u (24) 
In order to obtain a well posed problem, we need more closure assumptions.

Closure assumptions and mathematical properties

Let us consider in this section the following 1D formulation of the previous system for a mixture of n p components:

           ∂ t ρ + ∂ x ρu = 0, ∂ t (ρu) + ∂ x (ρu 2 + p + 2 3 ρk) = ∂ x ((µ + µ ′ )∂ x u), ∂ t (ρ ℓ e ℓ ) + ∂ x (ρ ℓ e ℓ u) + pℓ ∂ x u = μℓ (∂ x u) 2 + ρ ℓ ǫ, 1 ≤ ℓ ≤ n p , ∂ t (ρk) + ∂ x (ρku) + 2 3 ρk∂ x u = µ ′ (∂ x u) 2 -ρǫ, ∂ t (ρǫ) + ∂ x (ρǫu) + 2 3 C 1 ρǫ∂ x u = C 1 ǫ k µ ′ (∂ x u) 2 -C 2 ρ ǫ 2 k , (25) 
where pℓ = α ℓ p ℓ and μℓ = α ℓ µ ℓ .

Let us denote by s ℓ the specific entropy of a given component. The second law of the thermodynamic laws, for each component of the fluid, is written as:

de ℓ = -T ℓ ds ℓ -p ℓ dv ℓ , (26) 
where T ℓ > 0 is the temperature and v ℓ is the specific volume. In the present work, s ℓ is the mathematical entropy instead of -s ℓ which denotes the physical entropy (see Godlewski and Raviart [15] to further details). As usual, the functions (v ℓ , s ℓ ) → e ℓ (v ℓ , s ℓ ) are assumed to be strictly convex and satisfy:

∂e ℓ ∂v ℓ (v ℓ , s ℓ ) = -p ℓ < 0 and ∂e ℓ ∂s ℓ (v ℓ , s ℓ ) = -T ℓ < 0. ( 27 
)
According to the modeling assumptions proposed in [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF], the thermodynamics are completed by the relations:

D t v ℓ = λ ℓ D t v D t λ ℓ = 0 ( 28 
)
where λ ℓ > 0 is a given set of parameters and D t φ = ∂ t φ + u∂ x φ is the material derivative of the quantity φ.

Lemma 2.1 When the assumptions (28) are considered with λ ℓ = ρ ρℓ = α ℓ Y ℓ , smooth solutions of ( 25)-(28) satisfy the following entropy inequalities:

∂ t ρs ℓ + ∂ x ρs ℓ u = - λ ℓ µ ℓ T ℓ (∂ x u) 2 - ρǫ T ℓ ≤ 0, ℓ = 1, n p . ( 29 
)
As a consequence, the following entropy balance equations are obtained

β np T np {∂ t ρs ℓ + ∂ x ρs ℓ u} - β ℓ T ℓ ∂ t ρs np + ∂ x ρs np u = ρǫ T ℓ T np β ℓ -β np , (30) 
for 1 ≤ ℓ ≤ n p -1, with β ℓ = λ ℓ µ ℓ k λ k µ k .
Proof. The identity (29) is obtained from the relation:

ρY ℓ D t e ℓ + α ℓ p ℓ ∂ x u = α ℓ µ ℓ (∂ x u) 2 + ρ ℓ ǫ.
Using ( 27) and [START_REF] Godlewski | Numerical approximation of hyperbilic systems of conservation law[END_REF], this relation writes as:

-ρY ℓ p ℓ D t v ℓ -ρY ℓ T ℓ D t s ℓ + λ ℓ Y ℓ p ℓ ∂ x u = λ ℓ Y ℓ µ ℓ (∂ x u) 2 + ρ ℓ ǫ.
By the assumptions, we have

D t v ℓ = λ ℓ D t (1/ρ) = λ ℓ ρ ∂ x u. Therefore -ρY ℓ T ℓ D t s ℓ = λ ℓ Y ℓ µ ℓ (∂ x u) 2 + ρY ℓ ǫ.
Then, (29) is proved and (30) follows.

The entropy balance equations, we have established in the above result, are devoted to each fluid. In fact, a similar result holds true concerning the turbulence [START_REF] Berthon | Innovative methods for numerical solutions of partial differential equations[END_REF][START_REF] Chalons | Bilans d'entropie discrets dans l'approximation numérique des chocs non classiques. Application aux équations de Navier-Stokes multipression 2D et à quelques systèmes visco-capillaires[END_REF]. Indeed, we have:

Lemma 2.2
The smooth solutions of ( 25)-(28) satisfy the following turbulent entropy relation

∂ t ρs ′ + ∂ x ρs ′ u = γ ′ -1 ρ γ ′ -1 µ ′ (∂ x u) 2 -ρǫ with s ′ = (γ ′ -1)ρk ρ γ ′ (31)
As a consequence, the following entropy balance equations are obtained:

µ ′ γ ′ -1 ρ γ ′ -1 ∂ t ρs np + ∂ x ρs np u - λ np µ np T np ∂ t ρs ′ + ∂ x ρs ′ u = ρǫ T np γ ′ -1 ρ γ ′ -1 (µ ′ -λ np µ np ). ( 32 
)
Proof. To obtain the identity (31), let us rewrite the evolution law of ρk as follows:

(γ ′ -1) ρ γ ′ ∂ t (ρk) + u∂ x (ρk) + γ ′ ρk∂ x u = (γ ′ -1) ρ γ ′ µ ′ (∂ x u) 2 -ρǫ . (33) 
Now, from the continuity law, we have:

(γ ′ -1)ρk ∂ t 1 ρ γ ′ + u∂ x 1 ρ γ ′ - γ ′ ρ γ ′ ∂ x u = 0. ( 34 
)
Then, (33) and (34) give

∂ t s ′ + u∂ x s ′ = γ ′ -1 ρ γ ′ µ ′ (∂ x u) 2 -ρǫ .
Using the relation ρ ∂ t s ′ + u∂ x s ′ = ∂ t ρs ′ + ∂ x ρs ′ u, the relation (31) is obtained. The equation ( 32) is obtained by combining (29) and (31).

From the system (25), it is very easy to derive the following equation:

∂ t k C 1 ǫ + u∂ x k C 1 ǫ = (C 2 -C 1 )k C 1 -1 . ( 35 
)
In the sequel, the variable k C 1 ǫ will be used instead of ρǫ. To summarize, the energy and the entropy balance equations (see Lemma 2.1), but also the additional turbulent evolution laws (see Lemma 2.2), are used to reformulate the non conservative system (25) under the following equivalent form:

                         ∂ t ρ + ∂ x ρu = 0, ∂ t ρu + ∂ x (ρu 2 + p + 2 3 ρk) = ∂ x ((µ + µ ′ )∂ x u), ∂ t E + ∂ x (E + p + 2 3 ρk)u = ∂ x ((µ + µ ′ )u∂ x u), βn p Tn p {∂ t ρs ℓ + ∂ x ρs ℓ u} -β ℓ T ℓ ∂ t ρs np + ∂ x ρs np u = ρǫ T ℓ Tn p (β ℓ -β np ), λn p µn p Tn p {∂ t ρs ′ + ∂ x ρs ′ u} -µ ′ γ ′ -1 ρ γ ′ -1 ∂ t ρs np + ∂ x ρs np u = ρǫ Tn p γ ′ -1 ρ γ ′ -1 (λ np µ np -µ ′ ), ∂ t ρ k C 1 ǫ + ∂ x ρ k C 1 ǫ u = (C 2 -C 1 )ρk C 1 -1 , (36) 
with 1 ≤ ℓ ≤ n p -1. According to the entropy balance equation, let us just emphasize that s np is not an unknown of (36) but turns out to be a function of the unknowns:

s np := s np (ρ, ρu, E, ρs 1 , ..., ρs np-1 , ρs ′ , ρk C 1 ǫ).
Let us assume here that the viscosity functions are a product of the characteristic viscosity of the phase by a function of the partial temperature. We consider the following arbitrary choice:

λ np µ ℓ = (Y ℓ T ℓ ) m ℓ μℓ 1 ≤ ℓ ≤ n p ,
where m ℓ > 0 are real constants to be fixed. Then, when the partial temperatures are given ( Tℓ = Y ℓ T ℓ = pℓ v/(γ ℓ -1)), the variables β ℓ can be computed as follows:

β ℓ = ( Tℓ ) m ℓ μℓ 1≤l≤np ( Tl ) m l μl . ( 37 
)
Each β ℓ turns out to be a level set function characterizing material interfaces.

The conservative variable w C , the associated flux f (w), the diffusion D(w) and the source S C terms are defined by:

w C =       ρ ρu E ρY 1 ρk C 1 ǫ       , f (w) =       ρu ρu 2 + p + p ′ (E + p + p ′ )u ρY 1 u ρk C 1 ǫ u       , D(w) =       0 ∂ x ((µ + µ ′ )∂ x u) ∂ x ((µ + µ ′ )u∂ x u) 0 0       , S C (w) =       0 0 0 0 (C 2 -C 1 )ρk C 1 -1      
, where w = t (w C , w N C ). The vector of non conservative variables w N C and the associated flux g(w), the source term S N C (w, ρs np ) and a vector Q(w, ρs np ) are defined by:

w N C =      ρs 1 . . . ρs np-1 ρs ′      , g(w) =      ρs 1 u . . . ρs np-1 u ρs ′ u      , Q(w, ρs np ) =         β 1 Tn p T 1 βn p . . . β np-1 Tn p T np -1 βn p µ ′ Tn p (γ ′ -1) λn p µn p ρ γ ′ -1         , S N C (w, ρs np ) =        ρǫ(β 1 -βn p ) T 1 βn p . . . ρǫ(β np-1 -βn p ) T np -1 βn p ρǫ λn p µn p (λn p µn p -µ ′ ) γ ′ -1 ρ γ ′ -1        .
Therefore the model rewrites as:

∂ t w C + ∂ x f (w) = D(w) + S C (w), ∂ t w N C + ∂ x g(w) = S N C (w, ρs np ) + Q(w, ρs np ) ∂ t ρs np + ∂ x ρs np u . ( 38 
)
Let us note that the first order extracted system, given by

∂ t w C + ∂ x f (w) = 0 ∂ t w N C + ∂ x g(w) = Q(w, ρs np ) ∂ t ρs np + ∂ x ρs np u , is hyperbolic. The eigenvalues are u ± c, u, with c 2 = γp + γ ′ p ′ ρ .
The eigenvalues u ± c are one order of multiplicity while the eigenvalue u is n p + 3 order of multiplicity. According to the works [START_REF] Berthon | Travelling wave solutions of a convective diffusive system with first and second order terms in nonconservation form[END_REF][START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF], one can prove the existence of traveling wave solutions. These solutions are useful to propose a definition of shock wave solutions of the non-conservative hyperbolic system (see [START_REF] Maso | Definition and weak stability of a non conservative product[END_REF] or [START_REF] Berthon | Travelling wave solutions of a convective diffusive system with first and second order terms in nonconservation form[END_REF][START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF]). This is not the purpose of the present work and we focus our attention on the numerical approximate solutions.

Numerical approximation

This section is devoted to a nonstandard finite volume method to approximate the solutions of the non-conservative system (38). The principle of this method, called "nonlinear projection method", is described in [START_REF] Berthon | Innovative methods for numerical solutions of partial differential equations[END_REF] (see also [START_REF] Chalons | Bilans d'entropie discrets dans l'approximation numérique des chocs non classiques. Application aux équations de Navier-Stokes multipression 2D et à quelques systèmes visco-capillaires[END_REF]). For the sake of simplicity, this method is presented in this section in the context of the bi-fluid model. The usual numerical methods are based on a two steps splitting method :

Convection is defined by the system:

     ∂ t w C + ∂ x f (w) = 0, ∂ t w N C + ∂ x g(w) = Q(w, ρs np ) ∂ t ρs np + ∂ x ρs np u , w(t = 0, .) = w n . (39) 
It is solved by a nonlinear projection method. It is important to note that this nonlinear projection procedure can be applied to any hyperbolic system in the form (39). The principle of this method is based on a two steps splitting technique:

• Time evolution. For given w n , the following conservative system is approximated with w n as initial data:

   ∂ t w C + ∂ x f (w) = 0, ∂ t w N C + ∂ x g(w) = 0, w(t = 0, .) = w n . (40) 
At the end of this first step, we obtain a prediction, denoted w n+ 1 3 .

• Nonlinear projection. In this correction step, the variables w n+ 2 3 computed in the previous step are preserved and the entropy balance equations are enforced:

     ∂ t w C = 0, ∂ t w N C + ∂ x g(w) = Q(w, ρs np ) ∂ t ρs np + ∂ x ρs np u , w(t = 0, .) = w n+ 1 3 .
Let us emphasize that the nonlinear projection procedure enforces the consistency between the non-conservative terms and the numerical approximations. The numerical approximation of the non-conservative products is thus free from the numerical viscosity and the discrete form of the diffusion.

Diffusion and source terms are taken into account by solving the system:

   ∂ t w C = D(w) + S C (w), ∂ t w N C = S N C (w, ρs np ), w C (t = 0, .) = w n+ 2 3 , (41) 
where w n+ 2 3 is the solution after the nonlinear projection. At the end of this step we have computed w n+1 .

In the next sections we will give details for the different steps of the numerical approximation.

Convection step: The 1-D case

In order to solve the system (39), one can use an exact or an approximated Godunov solver [START_REF] Berthon | Innovative methods for numerical solutions of partial differential equations[END_REF], a relaxation scheme [START_REF] Chalons | Bilans d'entropie discrets dans l'approximation numérique des chocs non classiques. Application aux équations de Navier-Stokes multipression 2D et à quelques systèmes visco-capillaires[END_REF] or any other numerical solver. In the present analysis, the entropy inequalities are obtained in the case of an exact Godunov scheme for a bi-fluid mixture.

We consider a structured mesh in space and time, defined by the cells

I i = (x i-1 2 , x i+ 1 2
) and the time intervals [t n , t n+1 ):

t n = n∆t and x i+ 1 2 = (i + 1 2 )∆x,
where ∆t is the time step and ∆x the cells length. The approximated solution, at time t n , will be constant in each cells I i . We denote by w n i the approximate value at time t n in cell I i of the variable w. The numerical solution w n h (x) = w h (x, t n ) is then defined by:

w n h (x) = w n i when x ∈ I i .
Under the CFL like condition:

∆t ∆x max |λ i (w)| ≤ 1 2 , ( 42 
)
the solution of the Cauchy problem of the system (40), with the initial data w n h (x), is composed by the solutions of non interacting elementary Riemann problems at the cells interfaces. Let us denote by w i+ 1 2 (ξ) the exact solution of the elementary Riemann problem centered at x i+ 1 2 :

w i+ 1 2 (ξ) = W ξ, w n i , w n i+1 with ξ = x -x i+ 1 2 t -t n .
The Godunov method is obtained by the projection of the solution composed of elementary Riemann problems on the space of piecewise constant functions on the cells. This is achieved by an averaging over each cell [START_REF] Godlewski | Numerical approximation of hyperbilic systems of conservation law[END_REF]. Let us define the numerical flux by: φ w

i+ 1 2 = t f (w i+ 1 2 (0)), g(w i+ 1 2 (0)) ,
Then the numerical scheme in the conservative first step is:

w n+ 1 3 i = w n i - ∆t ∆x φ w i+ 1 2 -φ w i-1 2 . ( 43 
)
The convex entropy of the system (40), {ρs 2 }(w

n+ 1 3 i
) satisfies a discrete entropy inequality:

{ρs 2 }(w n+ 1 3 i ) -(ρs 2 ) n i + ∆t ∆x φ ρs 2 i+ 1 2 -φ ρs 2 i-1 2 ≤ 0, (44) 
where

φ ρs 2 i+ 1 2 = φ ρ i+ 1 2 s2 (w i+ 1 2 (0)).
Moreover, the positiveness of (e 1 ) is positive. In general, the rate of the entropy dissipation associated to ρs 2 is strictly negative. By the Jensen inequality, we have:

{ρs 2 }(w n+ 1 3 i ) ≤ 1 ∆x x i+1/2 x i-1/2 {ρs 2 }(w)(x, t n+1 )dx. (45) 
This means that the dissipation of the entropy {ρs 2 } is strictly negative. On the other hand, the specific entropies s 1 and s ′ are simply advected by the flow and therefore, are preserved by the classical (L 2 ) projection step. At the discrete level, these discrepancy results cause the failure of the entropy balance equations (30) and (32). In the second step, the entropy dissipation is redistribute in order to enforce the balance (30) and (32). Therefore, (ρs 1 ) 

β n+ 1 3 i (T 2 ) n+ 1 3 i {ρs 1 }(w n+ 2 3 i ) -(ρs 1 ) n+ 1 3 i - 1 -β n+ 1 3 i (T 1 ) n+ 1 3 i (ρs 2 ) n+ 2 3 i -(ρs 2 ) n+ 1 3 i = 0, (46) 
(λ 2 µ 2 )

n+ 1 3 i (T 2 ) n+ 1 3 i {ρs ′ }(w n+ 2 3 i ) -(ρs ′ ) n+ 1 3 i - (µ ′ ) n+ 1 3 i γ ′ -1 (ρ n+ 1 3 i ) γ ′ -1 (ρs 2 ) n+ 2 3 i -(ρs 2 ) n+ 1 3 i = 0, (47) 
where (ρs 2 )

n+ 1 3 i = (ρs 2 ) n i - ∆t ∆x φ ρs 2 i+ 1 2 -φ ρs 2 i-1 2 .
The above nonlinear problem in the unknown (w N C )

n+ 2 3 i
can be shown to admit a unique solution as soon as the approximate Riemann solver involved in the first step obeys discrete entropy inequality for the Lax pair (ρs 2 , ρs 2 u). This in turn uniquely defines (ρs 2 )

n+ 2 3 i according to: (ρs 2 ) n+ 2 3 i = {ρs 2 } w n+ 2 3 i .
In addition, we have (see [START_REF] Berthon | Innovative methods for numerical solutions of partial differential equations[END_REF] for the proof): Theorem 3.1 Let us consider the scheme (43). Under the CFL restriction (42), the following discrete entropy inequalities are satisfied:

{ρΨ ℓ (s ℓ )}(w n+ 2 3 i ) -(ρΨ ℓ (s ℓ )) n i + ∆t ∆x {ρΨ ℓ (s ℓ )u} n i+1/2 -{ρΨ ℓ (s ℓ )u} n i-1/2 ≤ 0, ℓ = 1, 2,
for any strictly increasing functions Ψ ℓ assumed to satisfy the convexity of the maps w → ρΨ 1 (s 1 ) and w → ρΨ 2 (s 2 (w)). The following maximum principles for the specific entropies are met:

(s ℓ ) n+ 2 3 i ≤ max((s ℓ ) n i-1 , (s ℓ ) n i , (s ℓ ) n i+1 ), ℓ = 1, 2. (48) 
The partial specific internal energies (e 1 ) For the multidimensional cases, only the time evolution step is different from the 1D case. However, the numerical flux is obtained by a extended 1D flux at interfaces between cells.

Diffusion and source terms

In the present paper, we do not develop the discrete formulation of the diffusive operator and we refer the reader to [START_REF] Berthon | An approximate nonlinear projection scheme for a combustion model[END_REF][START_REF] Mohammadi | Analysis of the K-Epsilon Turbulence Model[END_REF] (and the references therein) where several numerical methods are proposed. Concerning the source terms, we assume that the size of source terms is small compared to dynamic of the flow (governed by the hyperbolic system). Therefore, the numerical approximation is achieved by a splitting technique. The Cauchy problem solved in the additional step is :

           ∂ t ρ = 0, ∂ t ρu = 0, ∂ t ρY = 0, ∂ t ρ ℓ e ℓ = ρ ℓ ǫ, ∂ t ρk = -ρǫ, ∂ t ρǫ = -C 2 ρ ǫ 2 k .
This system is integrated analytically with the initial value w n+ 2 3 to obtain:

                     ρ n+1 = ρ n+ 2 3 , u n+1 = u n+ 2 3 , Y n+1 = Y n+ 2 3 , k n+1 = (k n+ 2 3 ) C 2 (C 2 -1)ǫ n+ 2 3 ∆t + k n+ 2 3 1 C 2 -1 , ǫ n+1 = ǫ n+ 2 3 k n+1 (C 2 -1)ǫ n+ 2 3 ∆t + k n+ 2 3 , e n+1 ℓ = e n+ 2 3 ℓ + (k n+ 2 3 -k n+1 ), 1 ≤ ℓ ≤ n p .
Therefore the numerical time step is completely defined.

The 2-D extension

The multidimensional extension does not involve large difficulties excepted the standard problems meet when approximating Euler or Navier-Stokes equations. The 2-D system is given by

∂ t w C + ∂ x F 1 (w) + ∂ y F 2 (w) = D(w) + S C (w), ∂ t w N C +∇ • (G(w)) = S N C (w, ρs np )+ Q(w, ρs np ) ∂ t ρs np + ∇ • ρs np u ,
where Once again, we adopt a splitting technique. We do not detail the numerical approximation of the diffusion operator and the source terms which meet a usual form (see [START_REF] Mohammadi | Analysis of the K-Epsilon Turbulence Model[END_REF]). Following the 1-D case, we focus our attention on the convection step. The updating formula (43) to evolve in time the unknown vector w, is now given by

w C =       ρ ρu E ρY 1 ρk C 1 ǫ       , F 1 (w) =          ρu 1 ρu 2 1 + p + p ′ ρu 1 u1 2 (E + p + p ′ )u 1 ρY 1 u 1 ρk C 1 ǫ u 1          , F 2 (w) =          ρu 2 ρu 1 u1 2 ρu 2 2 + p + p ′ (E + p + p ′ )u 2 ρY 1 u 2 ρk C 1 ǫ u 2          , and u = u 1 u 2 , G(w) =      ρs 1 u . . .
w n+ 1 3 i = w n i - ∆t a i j∈V(i) φ w ij ,
where a i is the area of the control volume, V(i) denotes the set of the neighboring cells to cell i. The numerical flux function φ w ij is computed from the exact or approximate solution of the elementary Riemann problem stated at the cell interface

φ w ij = φ w (n ij , w n i , w n j ),
where n ij is the outer unit normal to the cell interface between cells i and j. The second step of the splitting, namely the nonlinear projection, remains given by ( 46)-(47) but for the following definition of (ρs 2 )

n+ 1 3 i : (ρs 2 ) n+ 1 3 i = (ρs 2 ) n i - ∆t a i j∈V(i) φ ρs 2 ij .
The extension of the scheme to multi-dimension is thus achieved.

Numerical results

We consider in this section the numerical computation of a 2D Richtmeyer-Meshkov instability. This instability is developed by the interaction of a shock wave with a material interface between two non mixing fluids. We assume that the fluid components are perfect gas and that the fluctuations are at the turbulence scale. Therefore, we can use the following modeling constants: C 1 = 1.4 and C 2 = 1.9 (see [START_REF] Mohammadi | Analysis of the K-Epsilon Turbulence Model[END_REF]).

The discrete scheme is formulated on unstructured triangular meshes, and the control volumes are of cell vertex type (see Nkonga [START_REF] Nkonga | On the conservative and accurate CFD approximations for moving meshes and moving boundaries[END_REF]). The numerical fluxes at cells interfaces are computed by the relaxation scheme proposed in [START_REF] Chalons | Bilans d'entropie discrets dans l'approximation numérique des chocs non classiques. Application aux équations de Navier-Stokes multipression 2D et à quelques systèmes visco-capillaires[END_REF]. The accuracy of x=0 y=0 x= 14 cm y= 3.6 cm the approximation is improved by a Runge-Kutta second order time approximations and second order space approximations based on a MUSCL type technique. The computational domain is [0, 0.14m] × [0, 0.036m] recovered by an unstructured triangulation made of 80000 triangles with 40501 vertices. The characteristic sizes of the mesh are ∆x ≃ 0.14 400 and ∆y ≃ 0.036 100 , the CFL number is fixed to 0.5 for all the computations.

k = 0 µ ′ µ = 0 ǫ = ǫ 0 k = k * µ ′ µ = 10 3 ǫ = ǫ * k = 0 µ ′ µ = 0 ǫ = ǫ 0 d
Initially, the two components of the fluid are separated by a oscillating curve interface located at x = 0.12 and of size 0.005, defined by (see [START_REF] Lagoutière | Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants[END_REF]):

x -0.12 = 0.005 cos 2π(y -0.018) 0.036 This interface will be crossed by a shock, initially located at x = 0.07m, associated to the left state given by ρ = 7.89 kg/m 3 , P = 683652 P a, u = 55.5 m/s and the shock wave velocity σ = 213.5 m/s. The reader is also referred to the work of Louis [START_REF] Louis | Modélisation numérique de la turbulence compressible[END_REF] where The numerical interface is obtained by the fraction β defined by (37). Numerical results give a behavior of the Richtmeyer-Meshkov instability that is accelerated and more developed when fluctuations are considered (figure 4). Indeed, the profile at the time t = 2.0 ms when there is no fluctuation is comparable to the profile obtained at the time t = 1.61 ms with an initial fluctuating zone around the material interface (see figure 3). This modification slowly depends on the initial fluctuations zone size or the fluctuation level. The computations obtained for the test cases A, B and C are very close (see figure 5). 
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Figure 1 :

 1 Figure 1: Initialization of the non fluctuating variables.

Figure 2 :

 2 Figure 2: Initialization of the fluctuating variables.

  similar numerical experiments are performed. Computations are performed for different sizes (d) of the fluctuating zone around the interface and for different values of the fluctuating kinetic energy (k * ). The different tests case performed here are defined by: Test case 0 d = 0 Test case A k * = 10 P a ǫ * = 18 d = 5mm Test case B k * = 10 P a ǫ * = 18 d = 30mm Test case C k * = 30000 P a ǫ * = 16200000 d = 5mm

5 Conclusion

 5 Under some physical assumptions, we have derived a simplify model for multi-fluid flow, taking into account the influence of velocity fluctuations. The model is close to the classical turbulence model. It is fundamentally non conservative but is associated to some entropy inequalities. Based on the nonlinear projection, we have developed a numerical approximation consistent with the main properties of the model. Numerical computations have point out the importance of the velocity fluctuations on the development of the Richtmeyer-Meshkov instability. Very different behaviors are obtained when fluctuations are considered. However, the global behavior is slowly dependent on the size of the initial fluctuating zone and the level of fluctuations control the velocity of the instabilities. Initial interface Test case 0 t = 1.05 ms Test case A t = 1.30 ms t = 1.61 ms t = 2.00 ms t = 2.33 ms

Figure 3 :

 3 Figure 3: Influence of the fluctuations on the behavior of the Richtmeyer-Meshkov instability. Time evolution of a color function solution with (right) and without (left) an initial fluctuating zone around the material interface. Profiles (defined by the same color function) at the times t = 0, t = 1.05 ms, t = 1.3 ms, t = 1.61 ms, t = 2.0 ms, t = 2.33 ms.
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