
HAL Id: hal-01115318
https://hal.science/hal-01115318v2

Submitted on 4 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the Hybrid High-Order and Hybridizable
Discontinuous Galerkin Methods

Bernardo Cockburn, Daniele Di Pietro, Alexandre Ern

To cite this version:
Bernardo Cockburn, Daniele Di Pietro, Alexandre Ern. Bridging the Hybrid High-Order and Hy-
bridizable Discontinuous Galerkin Methods. ESAIM: Mathematical Modelling and Numerical Anal-
ysis, 2016, Polyhedral discretization for PDE, 50 (3), pp.635-650. �10.1051/m2an/2015051�. �hal-
01115318v2�

https://hal.science/hal-01115318v2
https://hal.archives-ouvertes.fr


Bridging the Hybrid High-Order and Hybridizable
Discontinuous Galerkin Methods

Bernardo Cockburn˚1, Daniele A. Di Pietro:2, and Alexandre Ern;3

1School of Mathematics, University of Minnesota
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Abstract

We build a bridge between the hybrid high-order (HHO) and the hybridizable
discontinuous Galerkin (HDG) methods in the setting of a model diffusion problem.
First, we briefly recall the construction of HHO methods and derive some new vari-
ants. Then, by casting the HHO method in mixed form, we identify the numerical flux
so that the HHO method can be compared to HDG methods. In turn, the incorpo-
ration of the HHO method into the HDG framework brings up new, efficient choices
of the local spaces and a new, subtle construction of the numerical flux ensuring
optimal orders of convergence on meshes made of general shape-regular polyhedral
elements. Numerical experiments comparing two of these methods are shown.

1 Introduction

The Hybrid High-Order (HHO) method has been recently introduced in [15] in the context
of quasi-incompressible linear elasticity. We consider here its application (studied in [16,
17]) to the numerical approximation of the model problem: Find u P H1

0 pΩq such that

ż

Ω

κ∇u¨∇v “

ż

Ω

fv @v P H1
0 pΩq, (1)

where Ω Ă Rd is a bounded, connected polyhedral domain and κ a bounded, symmetric,
uniformly positive-definite matrix-valued function. We assume, additionally, that κ is
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piecewise Lipschitz on a partition PΩ of Ω into polyhedra. An extension to more general
singularly-perturbed advection-diffusion problems can be found in [12].

The HHO method supports general polyhedral meshes and delivers an arbitrary-order
accurate approximation using face-based discrete unknowns that are polynomials of degree
at most k on each face. The method encompasses the case k “ 0, for which connections
exist with the Hybrid Finite Volume method of [22] (see also [20]), the Compatible Discrete
Operator framework of [3], and the Mimetic Finite Difference methods of [4, 5, 26]. The
HHO method is derived in terms of a primal formulation, and is designed from two key
ingredients:

(i) a potential reconstruction in each mesh cell and
(ii) a face-based stabilization consistent with the high-order provided by the reconstruc-

tion.

The design relies on intermediate cell-based discrete unknowns in addition to the face-
based ones (hence, the term hybrid). The cell-based unknowns can be eliminated by static
condensation, as already pointed out in [15, 17] (without giving details). In this work,
we derive some new variants of the HHO method resulting from the choice of cell-based
unknowns, allowing us to draw some connections with the recently derived High-Order
Mimetic (HOM) method introduced in [29] for general κ and analyzed for κ “ Id in [2].
We also describe in more details the static condensation since this operation is particularly
important in practice.

Our second important task is to recast the HHO method into an equivalent mixed formula-
tion. This allows us to identify the corresponding conservative numerical flux and compare
to Hybridizable Discontinuous Galerkin (HDG) methods within the general framework in-
troduced in [8]. Our approach in identifying the flux is different from the one proposed
in [14], where local conservativity was obtained for the HHO method by means of auxiliary
local Neumann problems. The HDG methods were originally devised as discrete versions
of a characterization of the exact solution in terms of solutions of local problems globally
matched through transmission conditions. Following ideas from [11] in the framework of
the Stokes equations, we show how the approximate solution provided by the HHO method
can also be characterized as the solution of local problems which are then matched by a
single global equation. We then provide an interpretation of such equation as a discrete
version of a transmission condition. This allows us to uncover the numerical trace of the
flux for the HHO method and then fit the HHO method in the HDG framework. We show
that both the local spaces and numerical trace of the flux are novel, distinctive choices
which enrich the family of HDG methods. In particular, the spaces for the flux are much
smaller than the ones previously known, and the stabilization function displays a rich struc-
ture that allows for optimal convergence of both the potential u and its flux q :“ ´κ∇u
on quite general meshes composed of polyhedral cells. We then use the HDG framework to
compare several methods including the LDG-H methods [8] (a subclass of the DG methods
proposed in [6]), the HDG methods introduced in [28] and analyzed in [30], and some new
methods. We end by comparing the actual performance of a couple of these methods.
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The organization of the paper is as follows. In Section 2, we recall the definition of the HHO
method, its main convergence properties, and present in more details the static condensa-
tion procedure. We also present some new variants of the HHO method resulting from the
choice of cell-based unknowns. In Section 3, we rewrite the method in the numerical-trace
formulation. In Section 4, we use this rewriting to compare it to other HDG methods
theoretically as well as numerically. We end in Section 5 with some concluding remarks.

2 The Hybrid High-Order method

In this section, we recall the definition of the HHO method and its convergence properties.
The exposition introduces a generalization of the original method proposed in [15, 17]
which allows us to cover two variants corresponding to different choices of the intermediate
cell-based unknowns.

2.1 Notation

Denote by H Ă R`˚ a countable set of meshsizes having 0 as its unique accumulation
point. Following [13, Chapter 4], we consider h-refined mesh sequences pThqhPH where, for
all h P H, Th is a finite collection of nonempty disjoint open polyhedral elements T of
boundary BT composed of planar faces, such that Ω “

Ť

TPTh T and h “ maxTPTh hT with
hT standing for the diameter of the element T .

A face F is defined as a hyperplanar closed connected subset of Ω with positive pd´1q-
dimensional Hausdorff measure and such that (i) either there exist T1, T2 P Th such that
F Ă BT1XBT2 and F is called an interface or (ii) there exists T P Th such that F Ă BTXBΩ
and F is called a boundary face. Interfaces are collected in the set F i

h, boundary faces in
Fb
h , and we let Fh :“ F i

h Y Fb
h . The diameter of a face F P Fh is denoted by hF . For

all T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces Ă BT and, for all F P FT ,
nTF is the unit normal to F pointing out of T . We also define the piecewise constant
vector-valued field nT on BT such that nT |F “ nTF for all F P FT .

We assume that, for all h P H, Th admits a matching simplicial submesh Th such that
any cell and any face in Th belongs to only one cell and face of Th, respectively, and
there exists a real number % ą 0 independent of h such that (i) for all simplex S P Th of
diameter hS and inradius rS, %hS ď rS and (ii) for all element T P Th, and all simplex
S P Th such that S Ă T , %hT ď hS. These assumptions allow one to derive local trace and
inverse inequalities (cf., e.g., [13, Chapter 1]) as well as optimal polynomial approximation
properties [21]. We emphasize that the simplicial submesh is a theoretical tool which is
not used in the constructions underlying both HHO and HDG methods. Additionally, we
suppose that, for all h P H, Th is compatible with κ, meaning that, for all T P Th, there
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exists a unique subdomain Ωi in PΩ containing T . As a result, jumps of κ can occur at
interfaces but not inside elements.

Let l ě 0. For all T P Th, PldpT q is composed of the d-variate polynomial functions of
degree ď l restricted to T , while, for all F P Fh, Pld´1pF q is composed of the pd´1q-variate
polynomial functions of degree ď l restricted to F . For all T P Th, we denote by πlT the
L2-orthogonal projector onto PldpT q.

In what follows, we often abbreviate a À b the inequality a ď Cb for positive real numbers
a and b and a generic constant C which can depend on %, d, and the considered polynomial
degree, but is independent of h.

For a subset X Ă Ω, we denote by p¨, ¨qX and }¨}X the usual L2pXq-inner product and
norm, with the convention that we omit the index if X “ Ω. The same notation is used
for the vector space L2pXqd.

2.2 Local construction

Let two integers k ě 0 and l P tk´ 1, k, k` 1u be fixed; in the case k “ 0, we only consider
for simplicity that l P tk, k` 1u and refer to Remark 1 for the modifications required when
k “ 0 and l “ k´1. The choice l “ k corresponds to the original HHO method introduced
in [15], whereas the choice l “ k ´ 1 essentially leads (up to an equivalent choice of the
stabilization) to the HOM method introduced in [29], see Section 2.4 below. The choice
l “ k ` 1 yields, in turn, a novel method (see also Remark 2 below). For all T P Th, we
define the local space of discrete potential unknowns as follows:

Uk,lT :“ UlT ˆ UkBT , UlT :“ PldpT q, UkBT :“
ą

FPFT

Pkd´1pF q. (2)

Elements of the local space Uk,lT are underlined, and a generic element of Uk,lT is denoted by
vT “

`

vT , pvF qFPFT
˘

or, in more compact form, as vT “ pvT , vBT q, where vBT is the piecewise
polynomial function such that vBT |F “ vF for all F P FT . We can define a higher-order

potential reconstruction operator pk`1
T : Uk,lT Ñ Pk`1

d pT q as follows: For a given vT P Uk,lT ,
pk`1
T vT solves the Neumann problem

pκ∇pk`1
T vT ,∇wqT “ pκ∇vT ,∇wqT ` pvBT ´ vT ,κ∇w¨nT qBT @w P Pk`1

d pT q, (3)

with closure condition given by ppk`1
T vT , 1qT “ pvT , 1qT . We next introduce the local

bilinear form aT : Uk,lT ˆ Uk,lT Ñ R such that

aT pwT , vT q :“ pκ∇pk`1
T wT ,∇pk`1

T vT qT ` sT pwT , vT q, (4)

where the stabilizing bilinear form sT : Uk,lT ˆ Uk,lT Ñ R is such that

sT pwT , vT q :“ pτBTπ
k
BT pP

k`1,l
T wT ´ wBT q, π

k
BT pP

k`1,l
T vT ´ vBT qqBT , (5)
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where τBT is a piecewise constant function on BT such that τBT |F “
κTF
hF

for all F P FT with

κTF “ nF ¨κ|T ¨nF , πkBT is the L2-orthogonal projector on UkBT , and P k`1,l
T : Uk,lT Ñ Pk`1

d pT q
is obtained adding to the function vT a high-order correction inferred from pk`1

T :

P k`1,l
T vT :“ vT ` pp

k`1
T vT ´ π

l
Tp

k`1
T vT q. (6)

Let Ik,lT : H1pT q Ñ Uk,lT be the reduction map such that, for all T P Th and all v P H1pT q,

Ik,lT v “ pπ
l
Tv, π

k
BTvq. (7)

The potential reconstruction operator pk`1
T and the bilinear form sT are conceived so that

they satisfy the following two key properties:

(i) Stability. There is a real number η ą 0 independent of T and of h such that, for all
vT P U

k,l
T ,

η}vT }
2
a,T ď }κ∇vT }

2
L2pT qd ` jT pvT , vT q ď η´1

}vT }
2
a,T , (8)

with local energy seminorm such that }vT }
2
a,T :“ aT pvT , vT q and boundary-jump bilinear

form jT : Uk,lT ˆ Uk,lT Ñ R defined as

jT pwT , vT q :“ pτBT pwT ´ wBT q, vT ´ vBT qBT . (9)

The dependence of η on κ is specified in [16, Lemma 3.1].

(ii) Approximation. For all v P Hk`2pT q,

!

}∇pv ´ pk`1
T Ik,lT vq}

2
T ` sT pI

k,l
T v, I

k,l
T vq

)1{2

À hk`1
T }v}Hk`2pT q. (10)

Unlike the bilinear form sT , the bilinear form jT only satisfies, for all v P Hk`1pT q,

jT pI
k,l
T v, I

k,l
T vq

1{2
À hk}v}Hk`1pT q.

For this reason, it has not been used in the formulation of the method (13). Some remarks
are of order.

Remark 1 (k “ 0 and l “ k ´ 1). In this case, the following conventions are adopted:
(i) in (2), element unknowns are not needed in the construction; (ii) the closure condition
for problem (3) is modified by prescribing that ppk`1

T vT , 1qT “
ř

FPFT ωTF vF with weights

pωTF qFPFT defined as in [29, Appendix A]. (iii) in (6), it is understood that πlTp
k`1
T vT “ 0.

This case is closely related (up to an equivalent choice of the stabilization) to Hybrid Finite
Volumes [22]. Recalling the equivalence result proved in [20] for Mixed [19] and Hybrid
Finite Volumes and Mimetic Finite Differences [4,5,26], the HHO methods with k “ 0 and
l “ ´1 or l “ 0 lead in fact to the same family of methods (up to equivalent choices of
stabilization).
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Remark 2 (l “ k`1). In this case, we have πk`1
T pk`1

T vT “ pk`1
T vT since pk`1

T vT P Pk`1
d pT q,

so that P k`1,k`1
T vT “ vT , and the stabilizing bilinear form sT simply writes

sT pwT , vT q :“ pτBTπ
k
BT pwT ´ wBT q, π

k
BT pvT ´ vBT qqBT . (11)

A similar stabilization was suggested in [28, Remark 1.2.4] in the context of HDG methods;
cf. Table 1 for further details.

2.3 Definition of the method and error estimates

We define the global spaces

Uk,lh :“ UlTh ˆ UkFh , UlTh :“
ą

TPTh

PldpT q, UkFh :“
ą

FPFh

Pkd´1pF q,

and we introduce a subspace of Uk,lh with strongly enforced boundary conditions:

Uk,lh,0 :“ UlTh ˆ UkFh,0, UkFh,0 :“
!

vh P U
k,l
h | vF ” 0 @F P Fb

h

)

.

For an element T P Th and a function vh “
`

vTh , vFh
˘

P Uk,lh , we denote by vT :“
`

vT , vBT
˘

its restriction to Uk,lT . The global bilinear form ah : Uk,lh ˆ Uk,lh is assembled elementwise
from the local contributions (4):

ahpwh, vhq :“
ÿ

TPTh

aT pwT , vT q. (12)

The discrete problem reads: Find uh P U
k,l
h,0 such that

ahpuh, vhq “
ÿ

TPTh

pf, vT qT @vh P U
k,l
h,0. (13)

We next recall the a priori error estimates obtained in [17] for the case l “ k. Minor varia-
tions in the proofs yield analogous results for the cases l “ k˘ 1. Our estimates are stated
in terms of quantities we define next. We denote by Ik,lh : H1pΩq Ñ Uk,lh the operator whose

restriction to H1pT q is Ik,lT (cf. (7)), and we define by pk`1
h uh the function whose restriction

to T is pk`1
T uT . We also define on Uk,lh,0 the global energy norm }vh}

2
a,h :“

ř

TPTh }vT }
2
a,T (the

fact that }¨}a,h defines a norm on Uk,lh,0 follows from the strong enforcement of boundary
conditions). We are now ready to state the result. For simplicity, we do not explicitate
the dependence of the constants on the diffusion tensor; see [16] for a more precise result.

Theorem 3 (Error estimate for HHO). Let u P H1
0 pΩq and uh P Uk,lh,0 denote the unique

solutions to (1) and (13), respectively, and assume the additional regularity u P Hk`2pΩq.
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Then, there exists a real number C ą 0 depending on %, k, d, and κ, but independent of
h, such that

max
`

}pk`1
h uh ´ u}, }uh ´ π

l
hu}, }uh ´ Ik,lh u}a,h

˘

ď Chk`1
}u}Hk`2pΩq,

where uh is the broken polynomial function such that uh|T “ uT for all T P Th and πlh the L2-
orthogonal projector onto the space of broken polynomials of total degree ď l. Additionally,
if elliptic regularity holds, and further assuming f P H1pΩq if k “ 0, we have the improved
L2-error estimate

max
`

}pk`1
h uh ´ u}, }uh ´ π

l
hu}

˘

ď Chk`2
p}u}Hk`2pΩq ` }f}Hk`δpΩqq,

with δ “ 1 if k “ 0 and δ “ 0 if k ě 1.

2.4 Link with HOM

It is possible to devise a (minor) extension of the setting considered in [2] for the conver-
gence analysis of the HOM method in the case κ “ Id. This extension, which consists in
considering two, possibly different, polynomial degrees in the virtual space of [2], allows us
to bridge the actual HOM method to HHO with l “ k ´ 1 where the difference appears in
an equivalent choice of stabilization, and to offer the possibility of devising new variants
of HOM which can be bridged to the HHO method for l P tk, k ` 1u. Another benefit of
this extension is to provide a convergence analysis of HOM in the variable-diffusion case.

Assume κ “ Id and define, for all T P Th, the local space

V k,l
T :“

 

ϕ P H1
pT q |∇ϕ|BT ¨nT P U

k
BT and 4ϕ P PldpT q

(

. (14)

The difference with respect to [2] consists in the choice of the space for 4ϕ, which now
accounts for all the possible values for the polynomial degree l. It is useful to note, at this
point, that the expression of functions in V k,l

T is, in general, not available.

Consider the map ΦT : Uk,lT Ñ V k,l
T defined such that, for all vT P U

k,l
T , ϕ :“ ΦT pvT q solves

4ϕ “ vT ´ |T |
´1
d tpvT , 1qT ´ pvBT , 1qBT u in T ,

∇ϕ|BT ¨nT “ vBT on BT ,

pϕ, 1qT “ pvT , 1qT ,

(or with closure condition pϕ, 1qT “
ř

FPFT ωTF vF when k “ 0 and l “ k´1, see Remark 1).
Clearly, ΦT is well-defined and injective. Moreover, a straightforward extension of [2,
Lemma 3.1] shows that Ik,lT : V k,l

T Ñ Uk,lT is injective. Thus, Ik,lT is an isomorphism between
the space of Uk,lT considered in the HHO method and the space of virtual functions V k,l

T .

Define now the projection Πk`1
T : V k,l

T Ñ Pk`1
d pT q such that

Πk`1
T ϕ :“ pk`1

T Ik,lT ϕ. (15)
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Clearly, for any ϕ P V k,l
T , Πk`1

T ϕ is computable from the function Ik,lT ϕ P U
k,l
T . To reformulate

the penalty term, we introduce the map δkT : V k,l
T Ñ UkBT such that

δkTϕ :“ πkBTϕ´ π
k
BTπ

l
Tϕ. (16)

When l ď k, we simply have δkTϕ “ πkBTϕ´ π
l
Tϕ. For all ϕ P V k,l

T , we infer that

πkBT pP
k`1,l
T Ik,lT ϕ´ pI

k,l
T ϕqBT q “ πkBT pπ

l
Tϕ` p

k`1
T Ik,lT ϕ´ π

l
Tp

k`1
T Ik,lT ϕ´ π

k
BTϕq

“ πkBT pp
k`1
T Ik,lT ϕ´ ϕ´ π

l
T pp

k`1
T Ik,lT ϕ´ ϕqq

“ δkT pΠ
k`1
T ϕ´ ϕq,

where we have used the definition (6) of P k`1,l
T in the first line, the fact that πkBT pπ

k
BTϕq “

πkBTϕ in the second line, and the definitions (15) and (16) of the maps Πk`1
T and δkT to

conclude. Then, setting τBT |F “ h´1
F for all F P FT and defining the following bilinear

forms on V k,l
T ˆ V k,l

T :

raT pψ, ϕq “ p∇Πk`1
T ψ,∇Πk`1

T ϕqT ` rsT pψ, ϕq,

rsT pψ, ϕq “ pτBT δ
k
T pΠ

k`1
T ψ ´ ψq, δkT pΠ

k`1
T ϕ´ ϕqqBT ,

it is a simple matter to realize that

raT pψ, ϕq “ aT pI
k,l
T ψ, I

k,l
T ϕq and rsT pψ, ϕq “ sT pI

k,l
T ψ, I

k,l
T ϕq.

We can observe, at this point, that, when l “ k ´ 1, the consistent contribution in raT is
analogous to [2, eq. (3.17)], whereas the stabilization rsT is a special instance of the one
appearing in the right-hand side of [2, eq. (3.21)], and can be interpreted as a (computable)
least-squares penalty of the difference between a function ϕ in the space V k,l

T and its
computable projection Πk`1

T ϕ defined by (15).

2.5 Static condensation

We characterize the solution provided by the HHO method by that of a static condensation
technique which allows for an efficient implementation of the method. We use a notation
inspired from [8].

We start by noting that the equations (13) defining the HHO method can be rewritten as

@T P Th, aT puT , pvT , 0qq “ pf, vT qT @vT P U
l
T , (17a)

ahpuh, p0, vFhqq “ 0 @vFh P U
k
Fh,0. (17b)

Then, we show that the first set of equations define local problems which allow us to express
uT in terms of uBT and fT :“ f |T for all cells T P Th. Finally, we show that the second

8



equation defines a single global problem whose solution is uFh . We conclude by providing
a characterization of the approximate solution in terms of these problems.

Let us first introduce the so-called local problems. Given λ P UkBT , define UλT P UlT as the
solution of the local problem

aT ppU
λ
T , 0q, pvT , 0qq “ ´aT pp0, λq, pvT , 0qq @vT P U

l
T ,

which, letting UλT :“ pUλT , λq P U
k,l
T and using linearity, rewrites

aT pU
λ
T , pvT , 0qq “ 0 @vT P U

l
T . (18)

Similarly, given φ P L2pT q, define UφT P U
l
T as the solution of the local problem

aT ppU
φ
T , 0q, pvT , 0qq “ pφ, vT qT @vT P U

l
T . (19)

Clearly, by the stability property (8), both (18) and (19) are well-posed since }¨}a,T is a

norm on the zero-trace subspace of Uk,lT . Moreover, by linearity, we can express in each
mesh cell T P Th the solution uT in terms of the local datum fT and of the local face-based
components uBT . Indeed, in view of (18) with λ “ uBT and (19) with φ “ fT , (17a) yields

uT “ pU
uBT
T ` UfTT , uBT q @T P Th,

With obvious notation, we infer that uh “ pU
uFh
h ` Ufh, uFhq, which we rewrite in the form

uh “ U
uFh
h ` Ufh, U

uFh
h :“ pU

uFh
h , uFhq, Ufh :“ pUfh, 0q. (20)

Now we turn to the global problem defining uFh . In view of (17b) and (20), we have that,
for all vFh P U

k
Fh,0, setting U

vFh
h :“ pU

vFh
h , vFhq P U

k,l
h,0,

0 “ ahpuh, p0, vFhqq

“ ahpuh,U
vFh
h q ´ ahpuh, pU

vFh
h , 0qq

“ ahpuh,U
vFh
h q ´ ahpU

uFh
h , pU

vFh
h , 0qq ´ ahpU

f
h, pU

vFh
h , 0qq.

(21)

But, using the definition (12) of ah followed by the local problems (18) with λ “ uBT and
vT “ UvBT

T and (19) with φ “ fT and vT “ UvBT
T , we infer that

ahpU
uFh
h , pU

vFh
h , 0qq “

ÿ

TPTh

aT pU
uBT
T , pUvBT

T , 0qq “ 0,

ahpU
f
h, pU

vFh
h , 0qq “

ÿ

TPTh

aT ppU
fT
T , 0q, pU

vBT
T , 0qq “

ÿ

TPTh

pf,UvBT
T qT .

(22)

Moreover, exploiting the symmetry of the bilinear form ah, recalling (12), and using the
local problem (18) with λ “ vBT and vT “ UfTT , we infer that

ahpU
f
h,U

vFh
h q “ ahpU

vFh
h ,Ufhq “

ÿ

TPTh

aT pU
vBT
T , pUfTT , 0qq “ 0,

9



so that, recalling the decomposition (20) of uh, we conclude that

ahpuh,U
vFh
h q “ ahpU

uFh
h ` Ufh,U

vFh
h q “ ahpU

uFh
h ,U

vFh
h q. (23)

Plugging (22) and (23) into the last line of (21), the global problem (17b) rewrites: Find
uFh P U

k
Fh,0 such that

ahppU
uFh
h , uFhq, pU

vFh
h , vFhqq “

ÿ

TPTh

pf,UvBT
T qT @vFh P U

k
Fh,0. (24)

The well-posedness of this problem follows from the stability of ah together with the well-
posedness of the local problems (18). We can now summarize our results on the static
condensation procedure.

Proposition 4 (Characterization of the approximate solution). The solution uh P Uk,lh
given by the HHO method (13) can be expressed as (20), where U

uFh
h and Ufh are defined

cellwise as the solutions of the local problems (18) and (19), and uFh P UkFh,0 is the only
solution of the problem (24).

3 Numerical-trace formulation of HHO method

In this section, we provide a reinterpretation of the global problem

ahpuh, p0, vFhqq “ 0 @vFh P U
k
Fh,0.

as a transmission condition. In this way, we identify the numerical trace of the flux and
show, in a different way from the one proposed in [14], that the method is locally conser-
vative. Finally, we use this information to suitably rewrite the equations defining the local
problems, namely,

aT puT , pvT , 0qq “ pf, vT qT @vT P U
l
T , @T P Th.

3.1 The global problem as a transmission condition

Our goal is to rewrite the bilinear form of the global problem in such a way that the
numerical traces can be easily identified. Since ah is assembled cellwise, see (12), we can
work on a single mesh cell T P Th. Thus we have, using the definition (4) of aT and (3) of
pk`1
T vT with vT “ p0, vBT q,

aT puT , p0, vBT qq

“ pκ∇pk`1
T uT ,∇pk`1

T p0, vBT qqT ` pτBTπ
k
BT pP

k`1,l
T uT ´ uBT q, π

k
BT pP

k`1,l
T p0, vBT q ´ vBT qqBT

“ pκ∇pk`1
T uT ¨nT , vBT qBT ` pτBTπ

k
BT pP

k`1,l
T uT ´ uBT q, π

k
BT pP

k`1,l
T p0, vBT q ´ vBT qqBT .

(25)

10



Next, we note that, by definition of P k`1,l
T , we have that

P k`1,l
T uT ´ uBT “ uT ` p

k`1
T uT ´ π

l
Tp

k`1
T uT ´ uBT

“ uT ` p
k`1
T puT , uBT q ´ π

l
Tp

k`1
T puT , uBT q ´ uBT

“ uT ` p
k`1
T puT , uT q ` p

k`1
T p0, uBT ´ uT q

´ πlTp
k`1
T puT , uT q ´ π

l
Tp

k`1
T p0, uBT ´ uT q ´ uBT

“ uT ` p
k`1
T p0, uBT ´ uT q ´ π

l
Tp

k`1
T p0, uBT ´ uT q ´ uBT

“ uT ´ uBT ` p
k`1
T p0, uBT ´ uT q ´ π

l
Tp

k`1
T p0, uBT ´ uT q,

(26)

where, to pass to the fourth line, we have used the fact that pk`1
T puT , uT q “ πlTp

k`1
T puT , uT q

(cf. (3) and Remark 1 for the case k “ 0 and l “ k ´ 1). Then for any λ P UkBT , we define
rkBT pλq as the element of UkBT such that

rkBT pλq :“ πkBT pλ´ p
k`1
T p0, λq ` πlTp

k`1
T p0, λqq.

In this way, accounting for (26), we can write

πkBT pP
k`1,l
T uT ´ uBT q “ rkBT puT ´ uBT q, (27)

and so, plugging this expression into (25), we obtain

aT puT , p0, vBT qq “ pκ∇pk`1
T uT ¨nT , vBT qBT ´ pτBT r

k
BT puT ´ uBT q, r

k
BT pvBT qqBT . (28)

Defining the adjoint rk ˚BT of rkBT , as the unique element of UkBT such that

@λ P UkBT , prk ˚BT pλq, µqBT “ pλ, r
k
BT pµqqBT @µ P UkBT , (29)

we finally obtain from (28),

aT puT , p0, vBT qq “ pκ∇pk`1
T uT ¨nT ´ r

k ˚
BT pτBT r

k
BT puT ´ uBT qq, vBT qBT ,

so that the global problem can be expressed as follows:

ÿ

TPTh

ppquT ¨nT , vFhqBT “ 0 @vFh P U
k
Fh,0,

where
pquT ¨nT :“ ´κ∇pk`1

T uT ¨nT ` r
k ˚
BT pτBT r

k
BT puT ´ uBT qq,

is nothing but the numerical approximation of the normal trace of the exact flux q :“
´κ∇u we sought. The global problem can thus be interpreted as a discrete version of a
transmission condition since it enforces the single-valuedness of the normal component of
the numerical trace of the flux.
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3.2 Rewriting the equations defining the local problems

We can now rewrite the equation (17a) by using the numerical trace just uncovered. Indeed,
for all T P Th, using the definition (4) of aT , accounting for (27) and (29), and concluding
with the definition (3) of pk`1

T with vT “ pvT , 0q and w “ pk`1
T uT , we have

aT puT , pvT , 0qq “ pκ∇pk`1
T uT ,∇pk`1

T pvT , 0qqT ` pτBTπ
k
BT pP

k`1,l
T uT ´ uBT q, π

k
BT pP

k`1,l
T pvT , 0qqqBT

“ pκ∇pk`1
T uT ,∇pk`1

T pvT , 0qqT ` pr
k ˚
BT pτBT r

k
BT puT ´ uBT qq, vT qBT

“ pκ∇pk`1
T uT ,∇vT qT ` p´κ∇pk`1

T uT ¨nT ` r
k ˚
BT pτBT r

k
BT puT ´ uBT qq, vT qBT .

Thus, (17a) is equivalent to

@T P Th, pκ∇pk`1
T uT ,∇vT qT ` ppquT ¨nT , vT qBT “ pf, vT qT @vT P U

l
T ,

which, since the numerical trace of the flux is single-valued, expresses a local conserva-
tion condition. We have thus proven that the HHO method has the following equivalent
formulation.

Proposition 5 (Numerical-trace formulation). The solution uh P Uk,lh,0 provided by the
HHO method (13) satisfies the following local problems: For all T P Th,

pκ∇pk`1
T uT ,∇wqT ` puT ,∇¨pκ∇wqqT “ puBT ,κ∇w¨nT qBT @w P Pk`1

d pT q,

pκ∇pk`1
T uT ,∇vT qT ` ppquT ¨nT , vT qBT “ pf, vT qT @vT P U

l
T ,

where the numerical trace of the flux is given by

pquT ¨nT :“ ´κ∇pk`1
T uT ¨nT ` r

k ˚
BT pτBT r

k
BT puT ´ uBT qq,

and satisfies the transmission condition

ÿ

TPTh

ppquT ¨nT , vFhqBT “ 0 @vFh P U
k
Fh,0.

4 Comparison with HDG methods

In this section, we show that the numerical-trace formulation of the HHO methods fits in
the framework of HDG methods introduced in [8]. This allows us to compare the HHO
method with other HDG methods. It also allows us to incorporate into the family of HDG
method the subtle way of defining the HHO numerical trace for the flux, giving thus rise
to new HDG methods.
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4.1 The HDG framework

We begin by recalling the general framework defining the HDG methods. We define the
spaces

Vh :“
ą

TPTh

VpT q, Wh ˆMh :“

#

ą

TPTh

W pT q

+

ˆ

#

ą

FPFh

MpF q

+

, (30)

and Mh,0 :“ t pw P Mh : pw “ 0 on BΩu. The HDG discretization of problem (1) consists in
seeking pqh, uh, puhq P Vh ˆWh ˆMh,0 as the solution of the local problems

pκ´1qh, vqT ´ puh,∇¨vqT ` ppuh, v¨nT qBT “ 0 @ v P VpT q,

´pqh,∇wqT ` ppqh¨nT , wqBT “ pf, wqT @w P W pT q,

pqh¨nT :“ qh¨nT ` αpuh ´ puhq on BT ,
ÿ

TPTh

ppqh¨nT , pwqBT “ 0 @ pw PMh,0,

(31)

where the last equation is the transmission condition. To complete this framework, a new
approximation of the potential, u˚h, is defined in a suitable manner; see the examples in [9]
and [10].

The above formulation is usually considered to be a mixed formulation. A small variation,
which has been called the extended form of the mixed formulation, see [1, 7, 25], can be
trivially used to define HDG methods. Roughly speaking, it avoids using the tensor κ´1

and only uses the tensor κ by discretizing the equation q “ ´κ∇u instead of the equation
κ´1q “ ´∇u. In linear elasticity, κ corresponds to the standard constitutive tensor
whereas κ´1 to the so-called compliance tensor. To work with the constitutive tensor is
usually preferred in the case of nonlinear elasticity. This formulation has been used, for
example, for the HDG method for linear and nonlinear elasticity in [24,33,34].

The local spaces VpT q, W pT q, MpF q and the stabilization function α, as well as the post-
processing u˚h, determine the different HDG methods. In particular, the HHO methods of
Section 2.2 are obtained for the choice

V pT q :“ κ∇Pk`1
d pT q, W pT q :“ PldpT q, MpF q :“ Pkd´1pF q and α :“ rk,˚BT pτBT r

k
BT q,

and the postprocessing u˚h :“ pk`1
h puh, puhq, in the HDG notation.

4.2 Comparison with other HDG methods

We compare several HDG methods with the HHO method in Table 1, where we display
the local spaces, the numerical trace of the flux and the theoretical orders of convergence
of error in the flux, }q´ qh}, and in the potential, }u´ u˚h}. The orders of convergence for
the methods (B), (C), and HHO(l) with l P tk ´ 1, k ` 1u can be established by (minor)
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Ref. VpT q W pT q u˚h τBT |F flux potential

LDG-H [6,8] PkdpT qd PkdpT q uh

#

κTF {h

κTF

k

k ` 1{2

k ` 1

k ` 1

(A) [28,30] PkdpT qd Pk`1
d pT q uh κTF {h k ` 1 k ` 2

(B) new PkdpT qd PkdpT q pk`1
h puh, puhq κTF {h k ` 1 k ` 2

(C) new PkdpT qd Pk´1
d pT q pk`1

h puh, puhq κTF {h k ` 1 k ` 2

HHO(k ` 1) new κ∇Pk`1
d pT q Pk`1

d pT q pk`1
h puh, puhq κTF {h k ` 1 k ` 2

HHO(k) [15,17] κ∇Pk`1
d pT q PkdpT q pk`1

h puh, puhq κTF {h k ` 1 k ` 2

HHO(k ´ 1) [29] κ∇Pk`1
d pT q Pk´1

d pT q pk`1
h puh, puhq κTF {h k ` 1 k ` 2

Table 1: Comparison of various methods fitting in the HDG framework (31) with MpF q :“
Pkd´1pF q. The methods are defined by the local spaces VpT q, W pT q (cf. (30)), and u˚h which
determines the numerical trace of the flux which is of the form (32). The notation HHO(l)
corresponds to the value of the integer l in (2). The corresponding orders of convergence are
provided for the L2pΩq-norm of the error in the approximate flux qh and in the approximate
potential u˚h.

adaptations of the proofs for the HHO(k) variant; cf. [16, 17]. Details are omitted for the
sake of conciseness. In all the cases considered the numerical flux is of the form

pqh¨n :“ qh¨n` r
k˚
BT pτBT r

k
BT puh ´ puhqq,

rkBT puh ´ puhq :“ πkBT
`

uh ` u
˚
h ´ πW pT qu

˚
h ´ puh

˘

,
(32)

where πW pT q denotes is the L2-orthogonal projection onto W pT q.

For the methods (B) and (C), the post-processing u˚h is given by the function pk`1
h puh, puhq P

Pk`1
d pT q defined as the solution of

p∇pk`1
h puh, puhq,∇zqT “ ´puh,∆zqT ` ppuh,∇z¨nqBT @z P Pk`1

d pT qK, (33a)

ppk`1
h puh, puhq, wqT “ puh, wqT @w P W pT q. (33b)

where Pk`1
d pT qK :“ tz P Pk`1

d pT q | pz, wqT “ 0 @w P W pT qu. Note that the operator pk`1
h is

a small variation of the post-processings used in [9,10], where a proper subspace of W pT q is
used instead of W pT q. Note also that, for the method (A), we have that W pT q “ Pk`1

d pT q
so that Pk`1

d pT qK “ t0u and, therefore, u˚h :“ pk`1
h puh, puhq “ uh.

For the methods (A), (B) and (C), we have πW pT qu
˚
h “ πW pT qp

k`1
h puh, puhq “ uh, and so

rkBT puh ´ puhq “ πkBT pu
˚
h ´ puhq “ πkBTu

˚
h ´ puh.

For the methods (A) and HHO(k ` 1), we have, on the other hand, that u˚h P W pT q “
Pk`1
d pT q, and so the penalty term in (32) takes a simpler expression (cf. also Remark 2):

rkBT puh ´ puhq “ πkBT puh ´ puhq “ πkBTuh ´ puh.
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As defined in [8], the LDG-H methods are the HDG methods obtained when the local
discontinuous Galerkin (LDG) method is used to define the local problems. It is actually
the particular case of discontinuous Galerkin methods proposed in [6] for which we have,
at each interior face F P F i

h such that F “ BT` X BT´, letting τ˘F :“ τBT˘ |F ,

puh “

ˆ

τ`F
τ´F ` τ

`
F

˙

u`h `

ˆ

τ´F
τ´F ` τ

`
F

˙

u´h `

ˆ

1

τ`F ` τ
´
F

˙

pq`h ¨n
`
` q´h ¨n

´
q,

pqh “

ˆ

τ´F
τ´F ` τ

`
F

˙

q`h `

ˆ

τ`F
τ´F ` τ

`
F

˙

q´h `

ˆ

τ`F τ
´
F

τ´F ` τ
`
F

˙

pu`hn
`
` u´hn

´
q.

Here the superscript ˘ indicates the traces from both sides of the face. For this choice of
numerical traces, we have that

pqh¨n
˘
“ q˘h ¨n` τ

˘
F pu

˘
h ´ puhq.

The orders of convergence of this method were obtained in [6] for general, shape-regular
polygonal meshes. The suboptimal order of k` 1{2 is obtained for the approximate flux for
τF of order one.

The method (A) was suggested in [28, Remark 1.2.4] and was recently analyzed in [30].
Extensions to convection-diffusion and linear elasticity can be found in [32] and [31], re-
spectively. This method uses polynomials of one higher degree for uh, and achieves optimal
order for the approximate flux, k`1, and for the potential, k`2, by stabilizing using only
the lowest-order part of the difference between cell and face unknowns. The methods (B)
and (C) can be considered as novel HHO-inspired variations of this method.

The HHO(k) method uses the same space for uh as the LDG-H method, but is built upon
a reconstruction u˚h which uses polynomials of one higher degree. The method achieves
optimal orders of convergence for the approximate flux and potential with significantly
smaller spaces for the fluxes, namely, κ∇Pk`1

d pT q instead of PkdpT qd. The order of the
matrix we need to invert to eliminate the flux variable (when solving the local problems)
is only

`

k`1`d
d

˘

´ 1 instead of d
`

k`d
d

˘

, cf. Table 2. Similar considerations apply for the
methods HHO(k ˘ 1).

4.3 Numerical experiments

Here, we compare the original HHO(k) method of (13) with the novel HHO(k`1) variant,
cf. Table 1. As pointed out in Remark 2, the stabilizing bilinear form takes a very simple
expression for HHO(k` 1), cf. (11), although this comes at the price of slightly increasing
the cost of both the potential reconstruction (3) (the number of right-hand sides increases)
and of the local problems to be solved for static condensation. For Ω “ p0, 1q2, we consider
the Dirichlet problem corresponding to the exact solution u “ sinpπx1q sinpπx2q for two
values of the diffusion tensors

κ1 “ Id, κ2 “

ˆ

px2 ´ x2q
2 ` εpx1 ´ x1q

2 ´p1´ εqpx1 ´ x1qpx2 ´ x2q

´p1´ εqpx1 ´ x1qpx2 ´ x2q px1 ´ x1q
2 ` εpx2 ´ x2q

2

˙

,
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k d “ 1 d “ 2 d “ 3

0 1 2 3
1 2 6 12
2 3 12 30
3 4 20 60

(a) HDG methods

k d “ 1 d “ 2 d “ 3

0 1 2 3
1 2 5 9
2 3 9 19
3 4 14 34

(b) HHO methods

Table 2: Size of the local problem to solve to locally eliminate the flux variable for the
HDG (rows 1–4) and HHO (rows 5–7) methods listed in Table 1.

Figure 1: Triangular and (predominantly) hexagonal meshes.

with px1, x2q “ ´p0.1, 0.1q, ε “ 1 ¨ 10´2, and right-hand side f computed accordingly. The
choice κ “ κ1 corresponds to an isotropic problem and is used to assess the performance
of the method in the simplest possible setting. The choice κ “ κ2, originally proposed by
Le Potier [27], corresponds to an anisotropic, heterogeneous problem where the principal
axes of the diffusion tensor vary at each point of the domain. For both choices, we solve
the corresponding problem on both the triangular and (predominantly) hexagonal mesh
families depicted in Figure 1 which correspond, respectively, to the mesh family 1 of the
FVCA5 benchmark [23], and to the mesh used in the numerical examples of [18]. The
convergence results are reported in Tables 3–6. There, we show the history of convergence
of }q ´ qh}, see the label H1, and of }u ´ u˚h}, see the label L2, and provide the corre-
sponding estimated convergence rate (ECR). The error is normalized with respect to the
corresponding norm of the exact solution. We can observe that both methods yield very
similar results for the homogeneous isotropic test case (cf. Tables 3 and 4), whereas a clear
advantage of the HHO(k ` 1) method is observed in the anisotropic, heterogeneous test
case (cf. Tables 5 and 6) when it comes to the H1 norm. The difference is less pronounced
on the hexagonal mesh than on the triangular mesh.
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Table 3: Triangular mesh family (isotropic homogeneous test case κ “ κ1)

HHO(k) HHO(k ` 1)
h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

3.07 ¨ 10´2 0.14 — 0.11 — 0.14 — 0.15 —
1.54 ¨ 10´2 7.06 ¨ 10´2 1.00 2.84 ¨ 10´2 2.01 7.04 ¨ 10´2 0.99 3.67 ¨ 10´2 2.00
7.68 ¨ 10´3 3.53 ¨ 10´2 1.00 7.10 ¨ 10´3 1.99 3.53 ¨ 10´2 0.99 9.19 ¨ 10´3 1.99
3.84 ¨ 10´3 1.77 ¨ 10´2 1.00 1.78 ¨ 10´3 2.00 1.77 ¨ 10´2 1.00 2.30 ¨ 10´3 2.00
1.92 ¨ 10´3 8.83 ¨ 10´3 1.00 4.44 ¨ 10´4 2.00 8.83 ¨ 10´3 1.00 5.75 ¨ 10´4 2.00

k “ 1

3.07 ¨ 10´2 1.36 ¨ 10´2 — 1.16 ¨ 10´2 — 1.40 ¨ 10´2 — 1.21 ¨ 10´2 —
1.54 ¨ 10´2 3.28 ¨ 10´3 2.06 1.46 ¨ 10´3 3.00 3.40 ¨ 10´3 2.05 1.52 ¨ 10´3 3.01
7.68 ¨ 10´3 8.10 ¨ 10´4 2.01 1.83 ¨ 10´4 2.98 8.40 ¨ 10´4 2.01 1.90 ¨ 10´4 2.99
3.84 ¨ 10´3 2.02 ¨ 10´4 2.00 2.28 ¨ 10´5 3.00 2.09 ¨ 10´4 2.01 2.37 ¨ 10´5 3.00
1.92 ¨ 10´3 5.04 ¨ 10´5 2.00 2.86 ¨ 10´6 2.99 5.23 ¨ 10´5 2.00 2.97 ¨ 10´6 3.00

k “ 2

3.07 ¨ 10´2 1.01 ¨ 10´3 — 9.53 ¨ 10´4 — 1.04 ¨ 10´3 — 1.02 ¨ 10´3 —
1.54 ¨ 10´2 1.22 ¨ 10´4 3.06 6.03 ¨ 10´5 4.00 1.27 ¨ 10´4 3.05 6.48 ¨ 10´5 4.00
7.68 ¨ 10´3 1.50 ¨ 10´5 3.01 3.78 ¨ 10´6 3.98 1.57 ¨ 10´5 3.00 4.06 ¨ 10´6 3.98
3.84 ¨ 10´3 1.87 ¨ 10´6 3.00 2.37 ¨ 10´7 4.00 1.95 ¨ 10´6 3.01 2.54 ¨ 10´7 4.00
1.92 ¨ 10´3 2.33 ¨ 10´7 3.00 1.48 ¨ 10´8 4.00 2.42 ¨ 10´7 3.01 1.59 ¨ 10´8 4.00

k “ 3

3.07 ¨ 10´2 8.49 ¨ 10´5 — 5.91 ¨ 10´5 — 8.95 ¨ 10´5 — 6.49 ¨ 10´5 —
1.54 ¨ 10´2 5.39 ¨ 10´6 4.00 1.87 ¨ 10´6 5.01 5.70 ¨ 10´6 3.99 2.05 ¨ 10´6 5.01
7.68 ¨ 10´3 3.38 ¨ 10´7 3.98 5.85 ¨ 10´8 4.98 3.58 ¨ 10´7 3.98 6.41 ¨ 10´8 4.98
3.84 ¨ 10´3 2.11 ¨ 10´8 4.00 1.83 ¨ 10´9 5.00 2.24 ¨ 10´8 4.00 2.01 ¨ 10´9 5.00
1.92 ¨ 10´3 1.33 ¨ 10´9 3.99 5.73 ¨ 10´11 5.00 1.40 ¨ 10´9 4.00 6.29 ¨ 10´11 5.00
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Table 4: Hexagonal mesh family (isotropic homogeneous test case κ “ κ1)

HHO(k) HHO(k ` 1)
h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

6.30 ¨ 10´2 0.16 — 0.18 — 0.16 — 0.25 —
3.42 ¨ 10´2 8.83 ¨ 10´2 1.00 5.36 ¨ 10´2 2.01 8.98 ¨ 10´2 0.97 7.49 ¨ 10´2 1.95
1.72 ¨ 10´2 3.68 ¨ 10´2 1.27 1.46 ¨ 10´2 1.89 3.72 ¨ 10´2 1.28 2.05 ¨ 10´2 1.89
8.59 ¨ 10´3 1.38 ¨ 10´2 1.41 3.82 ¨ 10´3 1.93 1.40 ¨ 10´2 1.41 5.36 ¨ 10´3 1.93
4.30 ¨ 10´3 5.00 ¨ 10´3 1.47 9.72 ¨ 10´4 1.98 5.04 ¨ 10´3 1.48 1.37 ¨ 10´3 1.97

k “ 1

6.30 ¨ 10´2 3.99 ¨ 10´2 — 3.27 ¨ 10´2 — 4.31 ¨ 10´2 — 3.66 ¨ 10´2 —
3.42 ¨ 10´2 6.53 ¨ 10´3 2.96 4.59 ¨ 10´3 3.21 6.82 ¨ 10´3 3.02 4.74 ¨ 10´3 3.35
1.72 ¨ 10´2 1.11 ¨ 10´3 2.58 6.11 ¨ 10´4 2.93 1.13 ¨ 10´3 2.62 6.12 ¨ 10´4 2.98
8.59 ¨ 10´3 1.90 ¨ 10´4 2.54 7.85 ¨ 10´5 2.96 1.91 ¨ 10´4 2.56 7.75 ¨ 10´5 2.98
4.30 ¨ 10´3 3.28 ¨ 10´5 2.54 9.93 ¨ 10´6 2.99 3.28 ¨ 10´5 2.55 9.74 ¨ 10´6 3.00

k “ 2

6.30 ¨ 10´2 3.26 ¨ 10´3 — 4.02 ¨ 10´3 — 3.26 ¨ 10´3 — 4.06 ¨ 10´3 —
3.42 ¨ 10´2 4.35 ¨ 10´4 3.30 2.86 ¨ 10´4 4.33 4.31 ¨ 10´4 3.31 2.88 ¨ 10´4 4.33
1.72 ¨ 10´2 5.15 ¨ 10´5 3.10 1.89 ¨ 10´5 3.95 5.14 ¨ 10´5 3.09 1.89 ¨ 10´5 3.96
8.59 ¨ 10´3 6.20 ¨ 10´6 3.05 1.22 ¨ 10´6 3.95 6.19 ¨ 10´6 3.05 1.21 ¨ 10´6 3.96
4.30 ¨ 10´3 7.61 ¨ 10´7 3.03 7.70 ¨ 10´8 3.99 7.60 ¨ 10´7 3.03 7.63 ¨ 10´8 3.99

k “ 3

6.30 ¨ 10´2 5.69 ¨ 10´4 — 4.26 ¨ 10´4 — 5.89 ¨ 10´4 — 4.42 ¨ 10´4 —
3.42 ¨ 10´2 3.46 ¨ 10´5 4.58 1.73 ¨ 10´5 5.24 3.47 ¨ 10´5 4.64 1.74 ¨ 10´5 5.30
1.72 ¨ 10´2 2.22 ¨ 10´6 4.00 5.90 ¨ 10´7 4.92 2.23 ¨ 10´6 3.99 5.89 ¨ 10´7 4.93
8.59 ¨ 10´3 1.41 ¨ 10´7 3.97 1.91 ¨ 10´8 4.94 1.41 ¨ 10´7 3.98 1.90 ¨ 10´8 4.95
4.30 ¨ 10´3 8.88 ¨ 10´9 4.00 6.09 ¨ 10´10 4.98 8.89 ¨ 10´9 3.99 6.05 ¨ 10´10 4.98
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Table 5: Triangular mesh family (anisotropic, heterogeneous test case κ “ κ2)

HHO(k) HHO(k ` 1)
h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

3.07 ¨ 10´2 3.68 — 0.75 — 0.14 — 0.15 —
1.54 ¨ 10´2 2.12 0.80 0.17 2.19 7.04 ¨ 10´2 0.99 3.67 ¨ 10´2 2.00
7.68 ¨ 10´3 1.41 0.59 6.21 ¨ 10´2 1.40 3.53 ¨ 10´2 0.99 9.19 ¨ 10´3 1.99
3.84 ¨ 10´3 0.85 0.73 2.10 ¨ 10´2 1.56 1.77 ¨ 10´2 1.00 2.30 ¨ 10´3 2.00
1.92 ¨ 10´3 0.46 0.89 6.09 ¨ 10´3 1.79 8.83 ¨ 10´3 1.00 5.75 ¨ 10´4 2.00

k “ 1

3.07 ¨ 10´2 0.26 — 2.37 ¨ 10´2 — 1.40 ¨ 10´2 — 1.21 ¨ 10´2 —
1.54 ¨ 10´2 7.48 ¨ 10´2 1.80 4.33 ¨ 10´3 2.46 3.40 ¨ 10´3 2.05 1.52 ¨ 10´3 3.01
7.68 ¨ 10´3 1.79 ¨ 10´2 2.06 6.71 ¨ 10´4 2.68 8.40 ¨ 10´4 2.01 1.90 ¨ 10´4 2.99
3.84 ¨ 10´3 4.30 ¨ 10´3 2.06 9.43 ¨ 10´5 2.83 2.09 ¨ 10´4 2.01 2.37 ¨ 10´5 3.00
1.92 ¨ 10´3 1.06 ¨ 10´3 2.02 1.24 ¨ 10´5 2.93 5.23 ¨ 10´5 2.00 2.97 ¨ 10´6 3.00

k “ 2

3.07 ¨ 10´2 1.76 ¨ 10´2 — 1.39 ¨ 10´3 — 1.04 ¨ 10´3 — 1.02 ¨ 10´3 —
1.54 ¨ 10´2 2.24 ¨ 10´3 2.99 1.11 ¨ 10´4 3.66 1.27 ¨ 10´4 3.05 6.48 ¨ 10´5 4.00
7.68 ¨ 10´3 2.68 ¨ 10´4 3.05 7.89 ¨ 10´6 3.80 1.57 ¨ 10´5 3.00 4.06 ¨ 10´6 3.98
3.84 ¨ 10´3 3.28 ¨ 10´5 3.03 5.38 ¨ 10´7 3.87 1.95 ¨ 10´6 3.01 2.54 ¨ 10´7 4.00
1.92 ¨ 10´3 4.10 ¨ 10´6 3.00 3.49 ¨ 10´8 3.95 2.42 ¨ 10´7 3.01 1.59 ¨ 10´8 4.00

k “ 3

3.07 ¨ 10´2 6.16 ¨ 10´4 — 6.85 ¨ 10´5 — 8.95 ¨ 10´5 — 6.49 ¨ 10´5 —
1.54 ¨ 10´2 4.66 ¨ 10´5 3.74 2.75 ¨ 10´6 4.66 5.70 ¨ 10´6 3.99 2.05 ¨ 10´6 5.01
7.68 ¨ 10´3 2.84 ¨ 10´6 4.02 9.73 ¨ 10´8 4.80 3.58 ¨ 10´7 3.98 6.41 ¨ 10´8 4.98
3.84 ¨ 10´3 1.77 ¨ 10´7 4.00 3.21 ¨ 10´9 4.92 2.24 ¨ 10´8 4.00 2.01 ¨ 10´9 5.00
1.92 ¨ 10´3 1.11 ¨ 10´8 4.00 1.03 ¨ 10´10 4.96 1.40 ¨ 10´9 4.00 6.29 ¨ 10´11 5.00
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Table 6: Hexagonal mesh family (anisotropic, heterogeneous test case κ “ κ2)

HHO(k) HHO(k ` 1)
h H1 ECR L2 ECR H1 ECR L2 ECR

k “ 0

6.30 ¨ 10´2 1.26 — 0.18 — 0.16 — 0.25 —
3.42 ¨ 10´2 0.58 1.26 5.80 ¨ 10´2 1.86 8.98 ¨ 10´2 0.97 7.49 ¨ 10´2 1.95
1.72 ¨ 10´2 0.22 1.40 1.84 ¨ 10´2 1.67 3.72 ¨ 10´2 1.28 2.05 ¨ 10´2 1.89
8.59 ¨ 10´3 8.34 ¨ 10´2 1.41 4.98 ¨ 10´3 1.88 1.40 ¨ 10´2 1.41 5.36 ¨ 10´3 1.93
4.30 ¨ 10´3 3.09 ¨ 10´2 1.43 1.35 ¨ 10´3 1.89 5.04 ¨ 10´3 1.48 1.37 ¨ 10´3 1.97

k “ 1

6.30 ¨ 10´2 0.15 — 2.56 ¨ 10´2 — 4.31 ¨ 10´2 — 3.66 ¨ 10´2 —
3.42 ¨ 10´2 3.65 ¨ 10´2 2.30 4.98 ¨ 10´3 2.68 6.82 ¨ 10´3 3.02 4.74 ¨ 10´3 3.35
1.72 ¨ 10´2 8.30 ¨ 10´3 2.15 6.68 ¨ 10´4 2.92 1.13 ¨ 10´3 2.62 6.12 ¨ 10´4 2.98
8.59 ¨ 10´3 1.63 ¨ 10´3 2.34 8.54 ¨ 10´5 2.96 1.91 ¨ 10´4 2.56 7.75 ¨ 10´5 2.98
4.30 ¨ 10´3 2.82 ¨ 10´4 2.54 1.09 ¨ 10´5 2.97 3.28 ¨ 10´5 2.55 9.74 ¨ 10´6 3.00

k “ 2

6.30 ¨ 10´2 2.13 ¨ 10´2 — 4.02 ¨ 10´3 — 3.26 ¨ 10´3 — 4.06 ¨ 10´3 —
3.42 ¨ 10´2 2.09 ¨ 10´3 3.80 3.09 ¨ 10´4 4.20 4.31 ¨ 10´4 3.31 2.88 ¨ 10´4 4.33
1.72 ¨ 10´2 2.08 ¨ 10´4 3.36 2.15 ¨ 10´5 3.88 5.14 ¨ 10´5 3.09 1.89 ¨ 10´5 3.96
8.59 ¨ 10´3 2.26 ¨ 10´5 3.20 1.40 ¨ 10´6 3.93 6.19 ¨ 10´6 3.05 1.21 ¨ 10´6 3.96
4.30 ¨ 10´3 2.55 ¨ 10´6 3.15 8.91 ¨ 10´8 3.98 7.60 ¨ 10´7 3.03 7.63 ¨ 10´8 3.99

k “ 3

6.30 ¨ 10´2 4.59 ¨ 10´3 — 4.29 ¨ 10´4 — 5.89 ¨ 10´4 — 4.42 ¨ 10´4 —
3.42 ¨ 10´2 1.43 ¨ 10´4 5.68 1.70 ¨ 10´5 5.28 3.47 ¨ 10´5 4.64 1.74 ¨ 10´5 5.30
1.72 ¨ 10´2 8.77 ¨ 10´6 4.06 6.01 ¨ 10´7 4.86 2.23 ¨ 10´6 3.99 5.89 ¨ 10´7 4.93
8.59 ¨ 10´3 4.82 ¨ 10´7 4.18 1.95 ¨ 10´8 4.94 1.41 ¨ 10´7 3.98 1.90 ¨ 10´8 4.95
4.30 ¨ 10´3 2.52 ¨ 10´8 4.26 6.13 ¨ 10´10 5.00 8.89 ¨ 10´9 3.99 6.05 ¨ 10´10 4.98
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5 Concluding remarks

We have established a bridge between the HHO method and the general framework of HDG
methods where the key step has been the identification of the numerical trace associated
with HHO methods. The bridge between HHO and HDG methods has allowed us to
incorporate into the HDG methods the new, subtle way of defining the numerical trace for
the flux in HHO methods. The present approach can be carried out for many other partial
differential equations for which HDG methods have been already defined.

Acknowledgements. The first author would like to thank Guosheng Fu for fruitful
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here. The third author acknowledges partial support from CEA/DAM.
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Mathématiques & Applications. Springer-Verlag, Berlin, 2012.

[14] D. A. Di Pietro and A. Ern. Equilibrated tractions for the Hybrid High-Order method. C. R. Acad.
Sci Paris, Ser. I, 353:279–282, 2015.

[15] D. A. Di Pietro and A. Ern. A hybrid high-order locking-free method for linear elasticity on general
meshes. Comput. Meth. Appl. Mech. Engrg., 283:1–21, 2015.

[16] D. A. Di Pietro and A. Ern. Hybrid high-order methods for variable-diffusion problems on general
meshes. C. R. Acad. Sci Paris, Ser. I, 353:31–34, 2015.

[17] D. A. Di Pietro, A. Ern, and S. Lemaire. An arbitrary-order and compact-stencil discretization of
diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math.,
14(4):461–472, 2014.

[18] D. A. Di Pietro and S. Lemaire. An extension of the Crouzeix–Raviart space to general meshes with
application to quasi-incompressible linear elasticity and Stokes flow. Math. Comp., 84(291):1–31,
2015.

[19] J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any
grid. Numer. Math., 105:35–71, 2006.
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