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Abstract

The development of post-processing reconstruction techniques has opened new possibilities for the study of in utero fetal
brain MRI data. Recent cortical surface analysis have led to the computation of quantitative maps characterizing brain
folding of the developing brain. In this paper, we describe a novel feature selection-based approach that can be used
for studying the most discriminative brain folding patterns using in utero reconstructed fetal MR data. Results show
that this temporal process related to brain maturation can be characterized by a small set of points, located in the main
sulci.
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1. Introduction1

Development of the central nervous system (CNS) is2

governed by a complex set of several spatio-temporal mech-3

anisms. Understanding this sequence is fundamental for4

understanding perinatal neurology (Volpe, 2008). Many5

processes are involved in brain development at fetal and6

neonatal stages. These are asynchronous processes tak-7

ing place at different locations in the brain. For instance,8

the main period of neural migration is 5 to 25 week post-9

menstrual age (PMA). Once neurons have been generated,10

they migrate through two different mechanisms (passive11

cell displacement and active cell migration). Axon and12

dendrite sprouting starts around 25 weeks PMA and de-13

clines around 1 year. The brain is also the scene of other14

major events such as synapse formation, glial cell prolifera-15

tion, myelination, etc. (see de Graaf-Peters and Hadders-16

Algra (2006) for a recent review of the ontogeny of the17

human CNS).18

As highlighted by de Graaf-Peters and Hadders-Algra19

(2006), the knowledge on the exact timeline of ontoge-20

netic events occurring during human brain development21

will provide new insights on the influence of injuries ap-22

pearing at a specific point in time during this important23

period of brain building. The modeling of this process24

timeline from in vivo data is of great importance for im-25

proving, for instance, neonatal care services. It is clear26

that fetal and neonatal periods are key steps of brain devel-27
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opment and a better understanding of the involved mech-28

anisms is a corner stone in perinatal care.29

Recent advances in ultrafast MRI sequences (such as30

half-Fourier turbo spin echo (HASTE) (Yamashita et al.,31

1997) or single shot fast spin echo (SSFSE) (Busse et al.,32

2000)) associated with the development of new techniques33

of image processing for retrospective motion correction34

(Rousseau et al., 2005) enabled to study in vivo fetal brain35

development. Since 2005, several two-step registration-36

based reconstruction techniques have been proposed to es-37

timate a 3D high resolution image from sets of scattered38

T2-weighted slices (Jiang et al., 2007, Kim et al., 2010,39

Limperopoulos and Clouchoux, 2009, Rousseau et al., 2006).40

These reconstruction techniques have been further enhanced41

by including super-resolution framework (Gholipour et al.,42

2010, Kuklisova-Murgasova et al., 2012, Rousseau et al.,43

2010). Following these works on 3D fetal brain image44

reconstruction, several dedicated segmentation methods45

have been proposed (Caldairou et al., 2011, Dittrich et al.,46

2014, Gholipour et al., 2012, Habas et al., 2010b). See the47

work of Studholme (2011) for further reading on fetal MRI48

reconstruction and segmentation.49

The development of these post-processing techniques50

had led to new ways to perform structural development51

studies of the fetal brain. Based on local volume changes52

using tensor-based morphometry techniques, maps of fe-53

tal brain growth patterns have been estimated leading to54

the detection of the emergence of sulci and gyri by dif-55

ferentiating between the changes in the cortical plate and56

the underlying cerebral mantle (Rajagopalan et al., 2011).57

This work has been extended to examine not only scalar58

expansion of tissue but the directional components of that59

Preprint submitted to Elsevier January 27, 2015



expansion (Rajagopalan et al., 2012). The availability of1

high resolution 3D images of the fetal brain with tissue2

labelling enables also studies of tissue boundary shape3

changes. This has led to the computation of quantita-4

tive maps of brain folding further used for statistical de-5

tection of sulci and brain asymmetry emergence (Habas6

et al., 2012). Cortical folding analysis has been also used7

to predict physiological age (Wright et al., 2014). Such8

brain folding studies are of great importance to improve9

our understanding of malformation of the cortex.10

In this work, we focus on the study of the evolution of11

brain folding during later stages of intrauterine life. In-12

stead of computing scalar features such as surface curva-13

ture to provide global markers of brain development, we14

have chosen to investigate the use of a data driven ap-15

proach. The underlying question is: what is the smallest16

most discriminative set of features reflecting fetal brain17

folding? Following the work of Rajagopalan et al. (2012),18

a deformation based morphometry approach is adopted to19

capture directional growth information on the white mat-20

ter / cortex interface. However, the voxel-based statistical21

testing method applied in (Rajagopalan et al., 2012) does22

not lead to easily interpretable results of growth patterns.23

In this study, we have considered the use of feature selec-24

tion techniques in order to extract the sparsest set of de-25

formation fields describing the brain folding process. By26

studying brain development as a shape modeling problem,27

we are able to extract the most discriminative set of points28

related to brain folding during in utero development.29

2. Materials and Methods30

2.1. Subjects and fetal MRI acquisition31

This study has been conducted on a population of 2232

fetus aged from 26 to 34 weeks of gestational age at scan33

time. The data set includes 23 MRI T2 weighted images.34

Fetal MRI images have been obtained on a 1.5 T Siemens35

Avanto MRI Scanner (SIEMENS, Erlangen, Germany) us-36

ing a 6-channel phased array coil combined to the spine37

array positioned around the mother abdomen. The res-38

olution of the T2 weighted HASTE sequence (TE/TR =39

147/3190 ms) is: 0.74 × 0.74 × 3.45mm.40

2.2. Image reconstruction and segmentation41

Raw dataset has been preprocessed using the ”Baby42

Brain Toolkit” (BTK) in order to increase image quality43

without modifying the acquisition protocol used in rou-44

tine (Rousseau et al., 2013). The retrospective motion45

correction method is based on a registration refined com-46

pounding of multiple sets of orthogonal fast 2D MRI slices47

to address the problem of fetal motion. This is achieved48

by first globally registering the low resolution images, and49

then applying an iterative slice alignment scheme which50

seeks to refine the 3D positioning of each slice to the cur-51

rent combined high resolution volume. This is driven by52

normalized mutual information to provide robustness to53

contrast variation induced by motion of the fetal brain54

with respect to the imaging coil in the magnet. More-55

over, a super-resolution technique is applied in order to56

remove the effects of the blurring convolution and to in-57

crease the voxel grid density. The resolution of the recon-58

structed images is: 0.74 × 0.74 × 0.74mm. A topological59

based clustering technique is then applied on the motion-60

compensated high-resolution images to provide segmen-61

tation maps (ventricles, CSF, cortical plate, non-cortical62

plate -including white matter, subplate, intermediate zone63

and deep gray nuclei) (Caldairou et al., 2011).64

2.3. Brain image normalization65

Adopting a standard approach for deformation based66

morphometry to compare anatomies at different stages of67

brain development, a mapping is estimated to bring every68

subject’s anatomy into correspondence within a common69

coordinate system. This common space corresponds to70

the average space of the subjects’s anatomies. For this71

purpose, an iterative registration approach proposed by72

Guimond et al. (Guimond et al., 2000) has been used in73

this work. The procedure to estimate a common space is74

as following. First, a reference image is chosen among the75

dataset and the non linear transformations from this refer-76

ence to the remaining images of the dataset are estimated77

using ANTS diffeomorphic registration technique (Avants78

and Gee, 2004). Then, the choice of a reference induces79

a bias that is corrected by using the average of all trans-80

formations. Finally, this average transformation maps the81

chosen reference to a new space which corresponds to the82

average space of the subject’s anatomies. The reference for83

the next iteration will be this new space. These steps are84

repeated iteratively, until convergence of the algorithm,85

which usually occurs within a few iterations (Guimond86

et al., 2000).87

Parameters for ANTS registration are: cross correla-88

tion as similarity measure, gaussian regularization with a89

symmetric diffeomorphic transformation model. To avoid90

any possibility of mis-registration due to brain tissue con-91

trast changes, the similarity criterion used during the reg-92

istration process is a weighted combination of image inten-93

sities and tissue label maps (a similar strategy has been94

proposed by Habas et al. (2010a)). Weights have been set95

to 0.5 for each feature.96

To assess the quality of the atlas building step based on97

image registration, we have computed the average DICE98

coefficient of the white matter maps between the estimated99

template and the population. This average DICE coeffi-100

cient is equal to 0.95 ± 0.06, showing the validity of the101

approach.102

2.4. Feature selection103

Our objective concerns the selection of the most dis-104

criminative deformation-based features reflecting fetal brain105

development. Please note that although we focus in this106

work on brain folding, the proposed approach is versatile107
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and it could be used with any other kind of relevant fea-1

tures dedicated to brain anatomy study.2

Let be P = {I1, I2, . . . , IN} a set of N images. The-3

ses images are normalized in an average space I computed4

as described previously in section 2.3. The transforma-5

tion Ti that maps the average space I to the image Ii is a6

composition of an affine transform and a non-linear defor-7

mation field. In order to capture local shape changes, we8

only consider the non linear components of the mappings9

{Ti}i=1,...,N .10

Each of the N non linear deformation fields that maps
voxels from average space to population space consists of
M vectors of R3 (where M is the number of voxels con-
sidered in the region of interest). These 3D vectors are
further arranged in a matrix Y ∈ MM×N (R3) where the
rows and columns correspond respectively to the features
and the samples:

Y =







~p1,1 · · · ~p1,N
...

. . .
...

~pM,1 · · · ~pM,N






, (1)

where ~pi,j is the 3D displacement vector of the voxel i in11

the deformation field of subject j. Since we focus in this12

study on brain folding, the analysis is restricted to the13

displacement vectors belonging to the cortical plate. The14

matrix Y is the full set of features from which a sparse15

representation of brain folding is estimated. Instead of16

adopting a voxel-based approach, that is to say applying17

a statistical testing method to detect the most significant18

folding patterns, we propose a data driven approach aim-19

ing at extracting from the matrix Y a small set of discrim-20

inative features.21

Such a dimension reduction issue can be tackled with22

either feature extraction or feature selection techniques.23

Feature extraction methods transform the high-dimensional24

data into a space of fewer dimensions. The main lin-25

ear technique is the principal component analysis (PCA)26

which performs a linear mapping of the data to a lower-27

dimensional space in such a way that the variance in the28

low-dimensional representation is maximized and the co-29

variance is minimized. Although PCA may be applied30

to study affine deformation, the linear assumption makes31

it less adapted for non linear deformations. Non-linear32

feature extraction techniques have been proposed by pre-33

serving local data structures. An important example of34

such non linear techniques is Isomap (Tenenbaum et al.,35

2000) (see Gerber et al. (2010) for an example of Isomap36

application to manifold modeling for MRI dataset anal-37

ysis). However, the lower-dimensional space may not be38

easily interpretable, meaning that in our context, the ex-39

tracted patterns do not correspond to displacement fields40

anymore. In this work, we investigate an alternate method41

by relying on a feature selection approach, aiming at com-42

puting a subset of the original variables.43

Let Yj be the jth column of the matrix Y and Xj a
subset vector of Yj (Xj ⊂ Yj) of size M ′ ≤ M . The key

assumption here is that the entire set of non linear defor-
mations can be reconstructed using only a very small set of
3D displacement vectors. Within such a sparse framework,
Yj and Xj are linked by a reconstruction function f :

Yj = f(Xj). (2)

In this work, we chose to formulate the reconstruction
function f using a Nadarya-Watson kernel regression func-
tion (Nadaraya, 1964):

f̂(X,h) =

N
∑

j=1

wj(X,h)Yj (3)

where the weighting function wj is written as

wj(X,h) =
Kh(X −Xj)

∑N

k=1 Kh(X −Xk)
. (4)

The parameter h is the bandwidth of the kernel Kh acting
on the subset X . The proposed sparsity-based approach
relies on the assumption of redundant information in the
original sample Y . Therefore, the relevant information is
carried by a subset of parameters. Such a subset of M ′

parameters should minimize the following criterion:

{γ̂, ĥ} = argmin
γ,h

J(γ, h) s.t. ‖γ‖0 ≤ M ′ , (5)

where γ ∈ Mp×1({0, 1}) is a binary vector used to define
the activated parameters and J is the reconstruction error
defined as follows:

J(γ, h) =

N
∑

j=1

∥

∥

∥Yj − f̂(diag(γ) · Yj , h)
∥

∥

∥

2
. (6)

Optimization problems such as defined by equation (5)44

are NP-hard problems because of the use of L0 norm (Elad,45

2010). In this work, we used an alternate optimization46

scheme, i.e. the two parameters of interest {γ, h} are es-47

timated alternatively. The estimation of the bandwidth48

parameter h is performed using a gradient descent tech-49

nique within a leave-one-out strategy (Wand and Jones,50

1995). The estimation of the activation vector γ is ob-51

tained using a greedy algorithm (Pudil et al., 1994) with52

a complexity of O(pM ′) cost function evaluations. The53

vector γ is first initialized to the null vector. Then, M ′
54

features at most are added iteratively. At each step, the55

feature added is the feature that maximizes the decrease56

of the reconstruction error. This procedure is detailed in57

algorithm 1.58

The following convergence criterion have been defined59

for the proposed algorithm:60

1. the maximal number of parameter to select M ′ is61

reached;62

2. no parameter can be added without increasing the63

cost function;64
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3. the reconstruction error is lower than a predefined1

error threshold E .2

The error criterion is the mean reconstruction error of pa-
rameters and is then expressed in mm:

Ē(γ, h) =
1

Np

N
∑

j=1

p
∑

i=1

∥

∥

∥Yi,i − f̂(diag(γ) · Yj , h)i

∥

∥

∥

2
, (7)

where f̂(diag(γ) · Yj , h)i is the reconstruction of the ith3

displacement vector of the jth subject.4

Algorithm 1: Feature selection algorithm

Input:
Y Set of deformation fields
P Maximum number of parameters to select
E Error threshold

Output:
X Selected features

γ := (0 · · · 0)T

Estimate parameter h

J0 := J(γ, ĥ)
k := 1

while k ≤ M ′ and J(γ, ĥ) ≤ E do

Jk := Jk−1

foreach feature i such that γ(i) = 0 do

γ(i) := 1

if J(γ, ĥ) < Jk then

Jk := J(γ, ĥ)

i
(+)
k := i

end

γ(i) := 0

end

if one parameter to add is found then

γ
(

i
(+)
k

)

:= 1

Estimate parameter h

k := k + 1

else

Stop the loop

end

end

X := diag(γ) · Y

3. Results5

Experiments have been conducted on both synthetic6

and real datasets. In the first part, the behavior and the7

performance of the algorithm are studied on the synthetic8

dataset. Then, in a second part, the proposed method is9

applied on in vivo fetal brain dataset.10

(a) Selected points

0 1 2
2
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Number of selected parameters
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g 

J

(b) Cost function evolution

Figure 2: Selected points and cost function evolution of the proposed
algorithm on a synthetic dataset. The colors reflect the energy of the
parameters as a log scale. The first selected parameter (in red) is
located on the border of the ellipse and on the varying axe of the
dataset. The cost function decreases dramatically after one selected
parameter and no parameter can be added without increasing the
cost function after 2 iterations.

In each experiment, a Gaussian kernel is used within11

the reconstruction function (see equation (3)) and the max-12

imum number of parameter is set to M ′ = 100. The mean13

parameter error threshold is set to E = 0.1 mm for ex-14

periments on brain MR images. For synthetic experiment15

only, the threshold is set to E = 0 mm in order to study16

the convergence of the algorithm.17

3.1. Synthetic dataset experiments18

The synthetic dataset is composed of 20 two-dimensional19

ellipses (rasterized to images of size 64× 64 pixels) whose20

shape varies according to the vertical axis (see Figure 1).21

The first image of this dataset is then an elongated ellipse22

while the last image is a circle. This dataset has been gen-23

erated using only one degree of freedom (i.e. the length of24

the vertical axis). On the first image, the vertical axis is25

four times smaller than the horizontal one.26

The results of the proposed algorithm on synthetic27

dataset are depicted in Figure 2(a). Convergence is reached28

in this experiment when only 2 features have been selected.29

Indeed, adding more features do not make the cost func-30

tion decrease. The evolution of the cost function is shown31

in Figure 2(b) and suggests that the first selected point32

captures the main variability of the dataset. Moreover,33

it has to be noticed that the two selected points are lo-34

cated on the vertical axis where the shape variability is35

high. Due to the symmetric experimental setup, only one36

selected point location should be necessary to describe the37

growth pattern. This is confirmed by looking at the resid-38

ual reconstruction error shown in Figure 3. The residual39

errors (displayed in log scale) decrease dramatically after40

the selection of the first parameter and are mainly located41

on the borders of the vertical axis. Then, the decrease of42

residual errors after the selection of the second point is43

negligible.44

The selected parameters are supposed to represent the45

variability of the shapes. The set of 20 shapes shown in46

figure 1 can be seen in two different ways: 1) as a set47

4



Figure 1: Dataset used in the synthetic experiment, composed of 20 images of size 64 × 64 pixels. The 2D shapes are varying according to
the vertical axis.

(a) p′ = 0 (b) p′ = 1 (c) p′ = 2

Figure 3: Residuals visualization on the synthetic dataset for 0, 1
and 2 selected parameters (displayed with a log scale). After one
selected parameter, the residuals decrease dramatically.

of 20 different shapes (reflecting shape variability), or 2)1

as a set of an evolving shape over time (i.e. temporal2

evolution of a shape). In later case, it is interesting to3

study time varying features that could reflect the growth4

rate for instance, such as length of the vertical axis.5

Given the half-size d of the ellipse on the vertical axis6

and at t = 1, the half-size of the ellipse on the same axis7

and at t = 20 should be equal to 4d − d = 3d, because8

the vertical axis on the first image is four time smaller9

than the same axis on the last image. Since there are 2010

images sampled over time, the growth rate should be equal11

to 3d
20 = 0.15d. In our case, the half-size of the vertical axis12

on the first image is 5.5 pixels. Therefore, the theoretical13

growth rate of the simulated dataset is 0.825 pixels per14

time unit.15

Figure 4 shows the mean magnitude of vectors over16

time in the reference space of the first image (t = 1). The17

linear function fitted to the data has a slope of 0.812, which18

is close to the theoretical growth rate.19

3.2. Application on fetal brain MRI dataset20

Since our first objective is to study the geometrical21

changes of the cortical folding through in utero brain mat-22

uration, we define as region of interest the cortical gray23

matter. Moreover, average deformation fields (computed24

in the orthogonal direction of brain surface) along the cor-25

tical gray matter have been used in order to reduce the26

initial parameter set to a smaller set of 3D displacement27

vectors (Rajagopalan et al., 2012). Figure 5 shows five28

examples of deformation fields considered in this study.29
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Figure 4: Analysis of the growth rate on the synthetical dataset. The
plot shows the mean magnitude of selected vectors across time (in
the reference space of the first image, t = 1). By studying the fit of
a linear function, the growth rate can be estimated with the slope of
the function. In this case, the estimated growth rate (0.812) is close
the theoretical one (0.825).

3.2.1. Influence of the bandwidth parameter h30

In this experiment, we evaluate the influence of the31

bandwidth parameter h over the selected points. Here, we32

applied the selection algorithm by setting manually this33

parameter h ∈ {0.5, 1, 1.5, 2, 3}. The results obtained ap-34

plying the algorithm on the temporal lobe for different35

values for h are displayed in figure 6. First, it can be36

easily seen that increasing the value of h makes the num-37

ber of selected points increase. Please note that h is a38

parameter that controls the smoothness of the non para-39

metric regression and therefore the value of h is related40

to the sparsity of the solution. Second, this experiment41

also shows the location stability of the selected features.42

It appears that the selected points are located in the main43

sulci (superior temporal sulcus, inferior temporal sulcus,44

lateral sulcus) in this region of interest, appearing during45

the considered period of age. This is a key point since it46

means that modifications of the bandwidth only influence47

the number of selected points, not their locations (i.e. the48

estimated growth pattern). The value of the bandwidth h49

does not modify the spatial pattern of the most discrim-50

inative selected points. Third, the experiment, restricted51

on the temporal lobe area, shows that growth variability52

5



Figure 5: Five instances of the dataset used. The selection algorithm is applied on the cortical deformation fields mapping the reference space
to population.

Figure 7: The regions of interest used with the feature selection
algorithm. These regions corresponds approximately to the frontal
(red), temporal (blue), parietal (green) and occipital (yellow) lobes.

can be captured by few points in the sulci of interest.1

Please note that in the proposed algorithm, the band-2

width parameter h is estimated at each iteration using a3

leave-one-out strategy in order to minimize the variance4

of the regression function. For the next experiments, h is5

then computed automatically.6

3.2.2. Points selection on fetal brain lobes7

In this section, we propose to apply the feature selec-8

tion algorithm onto 8 regions of interest (ROI) correspond-9

ing approximately to the frontal, temporal, parietal and10

occipital lobes of each hemisphere (see figure 7) in order11

to characterize spatial pattern of cortical folding for the12

considered period of age (26 to 34 weeks). Each of these13

ROI have been considered independently.14

Experiments previously described have shown that the15

selected points tend to be in sulci valleys. Thus, the ROI16

defined here do not exactly match the anatomical lobes to17

avoid any bias of selected sulci. For instance, the central18

sulcus should define the boundary between the frontal and19

parietal lobes. However, we chose to associate the central20

sulcus with the parietal lobe, in order to give a chance to21

the algorithm to select cortical points of this sulcus.22

The results of the selection algorithm on brain lobes are23

displayed in figures 8 and 9 respectively for lobes in left and24

right hemispheres. For each considered ROI, four types of25

results are provided : (a) selected points when the band-26

width h is set to 2, (b) selected points when h is automati-27

cally estimated, (c) a coronal view showing the location of28

selected points and (d) the evolution of the cost function.29

While the first visualization (using h = 2) provides the30

main patterns of selected features, the second visualiza-31

tion (using automatic bandwidth computation) shows the32

sparsity of the reached solution of the algorithm. Only33

few features (up to 6) are required to discriminate the sets34

of images for each ROI. The coronal view confirms pre-35

vious experiments (see Section 3.2.1): the selected points36

are located into sulci valleys.37

3.2.3. Evolution of deformation vector magnitude38

We examine in this section the temporal evolution of39

magnitudes of selected deformation vectors. Once the40

most discriminant points are selected for each region of41

interest, we compute the set V of deformation fields be-42

tween each subject and the mean image estimated at 2643

weeks: V = {~vx(ti)} where x is the location of each se-44

lected point and ti is the time difference between the age45

of the subject i and 26 weeks. The evolution of the mag-46

nitudes of computed deformation fields at selected point47

locations is estimated using a temporal polynomial of de-48

gree 3 regression approach (see figure 10 for an instance49

of regression over time for one vector). Figure 11 shows50

(a) the time evolution of the mean magnitude for the eight51

considered ROI (corresponding to the left-right lobes), (b)52

the mean magnitude for the 4 ROI by fusing data from53

left and right hemispheres, and (c) the mean magnitude54

by considering only left vs right. It can be seen that mean55

magnitude at occipital lobe has a different temporal evo-56

lution from the three other anatomical regions. Moreover,57

temporal differences in left and right temporal evolution58

are also observed. Statistical testing on larger dataset has59

to be conducted in order to verify the significance of these60

observations.61

3.3. Discussion62

In this paper, we have shown that early cortical fold-63

ing patterns occurring during fetal brain development can64

be expressed by a sparse representation using a feature se-65

lection approach. By using sparse non linear deformation66

fields, we have highlighted major cortical surface changes67

in the considered age interval. Such information extrac-68

tion is important since sulci can be used to discriminate69

brain development stages. The period of age considered70

6



(a) h = 0.5 (b) h = 1 (c) h = 1.5 (d) h = 2 (e) h = 3

Figure 6: Study of the influence of the choice of the bandwidth parameter of the proposed algorithm. As the bandwidth increases, the number
of selected parameters increases as well. An important property is the location stability of the solution with various bandwidth values.
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Figure 8: Selected cortical points on four lobe regions of the left hemisphere using the proposed algorithm. The left column shows the solution
for a fixed bandwidth (h = 2). The other columns show the results for the optimal bandwidth. Top row: frontal lobe; second row: temporal
lobe; third row: parietal lobe; last row: occipital lobe. The selected cortical points are depicted as red spheres. The color code in 3D mesh
views maps the curvature of the cortical plate from blue color (positive curvature) to red color (negative curvature).
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Figure 9: Selected cortical points of four lobe regions of the right hemisphere using the proposed algorithm. The left column shows the
solution for a fixed bandwidth (h = 2). The other columns show the results for the optimal bandwidth. Top row: frontal lobe; second row:
temporal lobe; third row: parietal lobe; last row: occipital lobe. The selected cortical points are depicted as red spheres. The color code in
3D mesh views maps the curvature of the cortical plate from blue color (positive curvature) to red color (negative curvature).

8



(a) First component (right to left) (b) Second component (anterior to poste-
rior)

(c) Third component (inferior to superior)

Figure 10: Example of polynomial regression over time (degree 3) for one selected vector of the right temporal lobe.
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Figure 11: Mean magnitude of selected deformation vectors of lobes over time.
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in this work (26 to 34 weeks) corresponds to a linear evo-1

lution of the surface curvature observed by Wright et al.2

(2014). Our experiments performed on mean magnitudes3

of deformation vectors tend to show the same trend.4

In this work, we have considered non linear deforma-5

tion fields providing voxel correspondence between each6

subject. Feature selection technique has been applied on7

these dense deformation fields in order to compute the8

smallest discriminative set of features characterizing the9

cortical folding process during fetal brain development. In10

this study, the registration step and the feature selection11

are independent. An alternative approach could have been12

to develop a registration technique incorporating a spar-13

sity prior on the deformation fields. This kind of gener-14

ative approach is related to the work of Durrleman et al.15

(Durrleman et al., 2012) in which a new parametrization16

of deformations is proposed in order to capture the vari-17

ability in image ensembles. The key idea in their work is18

to select the most relevant control points and to estimate19

their positions in a template domain. A major difference20

between these two works is that control points may not21

belong to the shape under study. Thus, measuring the22

variability through the distribution of control points may23

not be easily interpretable with respect to the studied tem-24

poral process. By separating the registration step and the25

shape variability study, we can focus on shape deformation26

locally related to cortical folding.27

Our work is also related to the recent study of growth28

seeds performed by Lefèvre et al. (2009), where an analysis29

of depth maps of cortical surface based on the Helmholtz30

decomposition of the deformation fields. In the work of31

Lefèvre et al. (2009), which is also related to the works of32

Cuzol et al. (2005) and Grenander et al. (2007), the main33

idea relies in that a decomposition is used to make the34

physical interpretation of the deformation fields (captur-35

ing the brain maturation process) easier. Our approach36

is complementary to these techniques in the sense that37

the relevant (i.e. most discriminative) displacement vec-38

tors are selected using a non-parametric approach. Further39

work would consist in analyzing the impact of the defor-40

mation model on the selected features.41

As shown in our experiments, the most discriminative42

points lie in deep sulcal regions. These specific locations43

could be used as consistent shape features in further stud-44

ies. Future work will consist in analyzing these patterns45

with regard to previous related works on sulcal root (Régis46

et al., 2005) and sulcal pit (Lohmann et al., 2008). It has47

been shown that deepest parts of sulci generally show less48

interindividual variability than superficial parts (Lohmann49

et al., 2008). The study of local fluctuations of these50

cortical patterns using a clustering approach such as in51

(Sun et al., 2009) could provide complementary insights52

on brain folding to gyrification index measurements (Clou-53

choux et al., 2011). The spatial distribution of deep sulcal54

landmarks (Im et al., 2010), especially over time (Meng55

et al., 2014), may help to set up new early markers of later56

functional development (Dubois et al., 2008) or particular57

cortical malformation (such as polymicrogyria) that might58

be difficult to detect and quantify visually.59

4. Conclusion60

In this paper, we have used a feature selection approach61

to characterize cortical folding patterns occurring during62

fetal brain development with a sparse representation.63

The use of such a feature selection technique is not re-64

stricted to only fetal brain development studies. It could65

be used to define biomarkers, shape representation, diffu-66

sion / fiber tracts, etc.67
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