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The development of post-processing reconstruction techniques has opened new possibilities for the study of in utero fetal brain MRI data. Recent cortical surface analysis have led to the computation of quantitative maps characterizing brain folding of the developing brain. In this paper, we describe a novel feature selection-based approach that can be used for studying the most discriminative brain folding patterns using in utero reconstructed fetal MR data. Results show that this temporal process related to brain maturation can be characterized by a small set of points, located in the main sulci.

Introduction

Development of the central nervous system (CNS) is governed by a complex set of several spatio-temporal mechanisms. Understanding this sequence is fundamental for understanding perinatal neurology [START_REF] Volpe | Neurology of the Newborn[END_REF]. Many processes are involved in brain development at fetal and neonatal stages. These are asynchronous processes taking place at different locations in the brain. For instance, the main period of neural migration is 5 to 25 week postmenstrual age (PMA). Once neurons have been generated, they migrate through two different mechanisms (passive cell displacement and active cell migration). Axon and dendrite sprouting starts around 25 weeks PMA and declines around 1 year. The brain is also the scene of other major events such as synapse formation, glial cell proliferation, myelination, etc. (see de [START_REF] De Graaf-Peters | Ontogeny of 94 the human central nervous system: What is happening when? 95[END_REF] for a recent review of the ontogeny of the human CNS).

As highlighted by de Graaf-Peters and [START_REF] De Graaf-Peters | Ontogeny of 94 the human central nervous system: What is happening when? 95[END_REF], the knowledge on the exact timeline of ontogenetic events occurring during human brain development will provide new insights on the influence of injuries appearing at a specific point in time during this important period of brain building. The modeling of this process timeline from in vivo data is of great importance for improving, for instance, neonatal care services. It is clear that fetal and neonatal periods are key steps of brain devel-expansion [START_REF] Rajagopalan | Mapping directionality specific volume changes using tensor based morphometry: An application to the study of gyrogenesis and lateralization of the human fetal brain[END_REF]. The availability of 1 high resolution 3D images of the fetal brain with tissue 2 labelling enables also studies of tissue boundary shape 3 changes. This has led to the computation of quantita-4 tive maps of brain folding further used for statistical de-5 tection of sulci and brain asymmetry emergence (Habas 6 et al., 2012). Cortical folding analysis has been also used 7 to predict physiological age [START_REF] Wright | Automatic quantifi-109 cation of normal cortical folding patterns from fetal brain MRI[END_REF]. Such [START_REF] Caldairou | Segmentation of the cortex 82 in fetal MRI using a topological model[END_REF]. Let be P = {I 1 , I 2 , . . . , I N } a set of N images. Theses images are normalized in an average space I computed as described previously in section 2.3. The transformation T i that maps the average space I to the image I i is a composition of an affine transform and a non-linear deformation field. In order to capture local shape changes, we only consider the non linear components of the mappings

{T i } i=1,...,N .
Each of the N non linear deformation fields that maps voxels from average space to population space consists of M vectors of R 3 (where M is the number of voxels considered in the region of interest). These 3D vectors are further arranged in a matrix Y ∈ M M×N (R 3 ) where the rows and columns correspond respectively to the features and the samples:

Y =    p 1,1 • • • p 1,N . . . . . . . . . p M,1 • • • p M,N    , (1) 
where p i,j is the 3D displacement vector of the voxel i in the deformation field of subject j. Since we focus in this study on brain folding, the analysis is restricted to the displacement vectors belonging to the cortical plate. The matrix Y is the full set of features from which a sparse representation of brain folding is estimated. Instead of adopting a voxel-based approach, that is to say applying a statistical testing method to detect the most significant folding patterns, we propose a data driven approach aiming at extracting from the matrix Y a small set of discriminative features. [START_REF] Tenenbaum | A global geo-100 metric framework for nonlinear dimensionality reduction[END_REF] (see [START_REF] Gerber | 112 Manifold modeling for brain population analysis[END_REF] for an example of Isomap application to manifold modeling for MRI dataset analysis). However, the lower-dimensional space may not be easily interpretable, meaning that in our context, the extracted patterns do not correspond to displacement fields anymore. In this work, we investigate an alternate method by relying on a feature selection approach, aiming at computing a subset of the original variables.

Let Y j be the j th column of the matrix Y and X j a subset vector of Y j (X j ⊂ Y j ) of size M ′ ≤ M . The key assumption here is that the entire set of non linear deformations can be reconstructed using only a very small set of 3D displacement vectors. Within such a sparse framework, Y j and X j are linked by a reconstruction function f :

Y j = f (X j ).
(2)

In this work, we chose to formulate the reconstruction function f using a Nadarya-Watson kernel regression function [START_REF] Nadaraya | On estimating regression[END_REF]:

f (X, h) = N j=1 w j (X, h)Y j (3)
where the weighting function w j is written as

w j (X, h) = K h (X -X j ) N k=1 K h (X -X k ) . ( 4 
)
The parameter h is the bandwidth of the kernel K h acting on the subset X. The proposed sparsity-based approach relies on the assumption of redundant information in the original sample Y . Therefore, the relevant information is carried by a subset of parameters. Such a subset of M ′ parameters should minimize the following criterion:

{γ, ĥ} = arg min γ,h J(γ, h) s.t. γ 0 ≤ M ′ , (5) 
where γ ∈ M p×1 ({0, 1}) is a binary vector used to define the activated parameters and J is the reconstruction error defined as follows:

J(γ, h) = N j=1 Y j -f (diag(γ) • Y j , h) 2 . ( 6 
)
Optimization problems such as defined by equation ( 5) error threshold E.

2

The error criterion is the mean reconstruction error of parameters and is then expressed in mm:

Ē(γ, h) = 1 N p N j=1 p i=1 Y i,i -f (diag(γ) • Y j , h) i 2 , (7) 
where f (diag(γ) • Y j , h) i is the reconstruction of the i th 

γ := (0 • • • 0) T Estimate parameter h J 0 := J(γ, ĥ) k := 1 while k ≤ M ′ and J(γ, ĥ) ≤ E do J k := J k-1 foreach feature i such that γ(i) = 0 do γ(i) := 1 if J(γ, ĥ) < J k then J k := J(γ, ĥ) i (+) k := i end γ(i) := 0 end if one parameter to add is found then γ i (+) k := 1 Estimate parameter h k := k + 1 else Stop the loop end end X := diag(γ) • Y

Results
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Experiments have been conducted on both synthetic In each experiment, a Gaussian kernel is used within The synthetic dataset is composed of 20 two-dimensional 19 ellipses (rasterized to images of size 64 × 64 pixels) whose 20 shape varies according to the vertical axis (see Figure 1).

21

The first image of this dataset is then an elongated ellipse 22 while the last image is a circle. This dataset has been gen-23 erated using only one degree of freedom (i.e. the length of 24 the vertical axis). On the first image, the vertical axis is 25 four times smaller than the horizontal one.

26

The results of the proposed algorithm on synthetic of 20 different shapes (reflecting shape variability), or 2) as a set of an evolving shape over time (i.e. temporal evolution of a shape). In later case, it is interesting to study time varying features that could reflect the growth rate for instance, such as length of the vertical axis.

Given the half-size d of the ellipse on the vertical axis and at t = 1, the half-size of the ellipse on the same axis and at t = 20 should be equal to 4dd = 3d, because the vertical axis on the first image is four time smaller than the same axis on the last image. Since there are 20 images sampled over time, the growth rate should be equal to 3d 20 = 0.15d. In our case, the half-size of the vertical axis on the first image is 5.5 pixels. Therefore, the theoretical growth rate of the simulated dataset is 0.825 pixels per time unit.

Figure 4 shows the mean magnitude of vectors over time in the reference space of the first image (t = 1). The linear function fitted to the data has a slope of 0.812, which is close to the theoretical growth rate.

Application on fetal brain MRI dataset

Since our first objective is to study the geometrical changes of the cortical folding through in utero brain maturation, we define as region of interest the cortical gray matter. Moreover, average deformation fields (computed in the orthogonal direction of brain surface) along the cortical gray matter have been used in order to reduce the initial parameter set to a smaller set of 3D displacement vectors [START_REF] Rajagopalan | Mapping directionality specific volume changes using tensor based morphometry: An application to the study of gyrogenesis and lateralization of the human fetal brain[END_REF]. Figure 5 shows five examples of deformation fields considered in this study. Time (a.u.) Mean magnitude (pixels)

Figure 4: Analysis of the growth rate on the synthetical dataset. The plot shows the mean magnitude of selected vectors across time (in the reference space of the first image, t = 1). By studying the fit of a linear function, the growth rate can be estimated with the slope of the function. In this case, the estimated growth rate (0.812) is close the theoretical one (0.825). Our work is also related to the recent study of growth 28 seeds performed by [START_REF] Lefèvre | Identification of growth seeds in the neonate brain through surfacic Helmholtz decomposition[END_REF], where an analysis 

Influence of the bandwidth parameter h
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  brain folding studies are of great importance to improve 9 our understanding of malformation of the cortex. 10 In this work, we focus on the study of the evolution of 11 brain folding during later stages of intrauterine life. In-12 stead of computing scalar features such as surface curva-13 ture to provide global markers of brain development, we 14 have chosen to investigate the use of a data driven ap-15 proach. The underlying question is: what is the smallest 16 most discriminative set of features reflecting fetal brain 17 folding? Following the work of Rajagopalan et al. (2012), 18 a deformation based morphometry approach is adopted to 19 capture directional growth information on the white mat-20 ter / cortex interface. However, the voxel-based statistical 21 testing method applied in (Rajagopalan et al., 2012) does 22 not lead to easily interpretable results of growth patterns. 23 In this study, we have considered the use of feature selec-24 tion techniques in order to extract the sparsest set of de-25 formation fields describing the brain folding process. By 26 studying brain development as a shape modeling problem, we are able to extract the most discriminative set of points 28 related to brain folding during in utero development.

  Subjects and fetal MRI acquisition 31 This study has been conducted on a population of 22 32 fetus aged from 26 to 34 weeks of gestational age at scan 33 time. The data set includes 23 MRI T2 weighted images. 34 Fetal MRI images have been obtained on a 1.5 T Siemens contrast variation induced by motion of the fetal brain 54 with respect to the imaging coil in the magnet. More-55 over, a super-resolution technique is applied in order to 56 remove the effects of the blurring convolution and to in-57 crease the voxel grid density. The resolution of the recon-58 structed images is: 0.74 × 0.74 × 0.74mm. A topological 59 based clustering technique is then applied on the motion-60 compensated high-resolution images to provide segmen-61 tation maps (ventricles, CSF, cortical plate, non-cortical 62 plate -including white matter, subplate, intermediate zone 63 and deep gray nuclei)

  approach for deformation based 66 morphometry to compare anatomies at different stages of 67 brain development, a mapping is estimated to bring every 68 subject's anatomy into correspondence within a common 69 coordinate system. This common space corresponds to 70 the average space of the subjects's anatomies. For this 71 purpose, an iterative registration approach proposed by 72 Guimond et al.[START_REF] Guimond | Average brain models: A convergence study[END_REF] has been used in 73 this work. The procedure to estimate a common space is 74 as following. First, a reference image is chosen among the 75 dataset and the non linear transformations from this refer-76 ence to the remaining images of the dataset are estimated 77 using ANTS diffeomorphic registration technique (Avants 78 and Gee, 2004). Then, the choice of a reference induces 79 a bias that is corrected by using the average of all trans-80 formations. Finally, this average transformation maps the 81 chosen reference to a new space which corresponds to the 82 average space of the subject's anatomies. The reference for 83 the next iteration will be this new space. These steps are 84 repeated iteratively, until convergence of the algorithm, 85 which usually occurs within a few iterations (Guimond 86 et al., 2000). 87 Parameters for ANTS registration are: cross correla-88 tion as similarity measure, gaussian regularization with a 89 symmetric diffeomorphic transformation model. To avoid 90 any possibility of mis-registration due to brain tissue con-91 trast changes, the similarity criterion used during the reg-92 istration process is a weighted combination of image inten-93 sities and tissue label maps (a similar strategy has been 94 proposed by Habas et al. (2010a)). Weights have been set 95 to 0.5 for each feature. 96 To assess the quality of the atlas building step based on 97 image registration, we have computed the average DICE 98 coefficient of the white matter maps between the estimated 99 template and the population. This average DICE coeffi-100 cient is equal to 0.95 ± 0.06, showing the validity of the 101 approach.
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  Our objective concerns the selection of the most dis-104 criminative deformation-based features reflecting fetal brain 105 development. Please note that although we focus in this 106 work on brain folding, the proposed approach is versatile 107 and it could be used with any other kind of relevant features dedicated to brain anatomy study.

  Such a dimension reduction issue can be tackled with either feature extraction or feature selection techniques. Feature extraction methods transform the high-dimensional data into a space of fewer dimensions. The main linear technique is the principal component analysis (PCA) which performs a linear mapping of the data to a lowerdimensional space in such a way that the variance in the low-dimensional representation is maximized and the covariance is minimized. Although PCA may be applied to study affine deformation, the linear assumption makes it less adapted for non linear deformations. Non-linear feature extraction techniques have been proposed by preserving local data structures. An important example of such non linear techniques is Isomap

3Algorithm 1 :

 1 displacement vector of the j th subject. 4 Feature selection algorithm Input: Y Set of deformation fields P Maximum number of parameters to select E Error threshold Output: X Selected features

6Figure 2 :

 2 Figure 2: Selected points and cost function evolution of the proposed algorithm on a synthetic dataset. The colors reflect the energy of the parameters as a log scale. The first selected parameter (in red) is located on the border of the ellipse and on the varying axe of the dataset. The cost function decreases dramatically after one selected parameter and no parameter can be added without increasing the cost function after 2 iterations.

  11 the reconstruction function (see equation (3)) and the max-12 imum number of parameter is set to M ′ = 100. The mean 13 parameter error threshold is set to E = 0.1 mm for ex-14 periments on brain MR images. For synthetic experiment 15 only, the threshold is set to E = 0 mm in order to study 16 the convergence of the algorithm.
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Figure 1 :Figure 3 :

 13 figure 1 can be seen in two different ways: 1) as a set 47

30Figure 5 :

 5 Figure 5: Five instances of the dataset used. The selection algorithm is applied on the cortical deformation fields mapping the reference space to population.

Figure 7 :

 7 Figure 7: The regions of interest used with the feature selection algorithm. These regions corresponds approximately to the frontal (red), temporal (blue), parietal (green) and occipital (yellow) lobes.

  33 few features (up to 6) are required to discriminate the sets 34 of images for each ROI. The coronal view confirms pre-35 vious experiments (see Section 3.2.1): the selected points 36 are located into sulci valleys.

  37 3.2.3. Evolution of deformation vector magnitude 38 We examine in this section the temporal evolution of 39 magnitudes of selected deformation vectors. Once the 40 most discriminant points are selected for each region of 41 interest, we compute the set V of deformation fields be-42 tween each subject and the mean image estimated at 26 43 weeks: V = { v x (t i )} where x is the location of each se-44 lected point and t i is the time difference between the age 45 of the subject i and 26 weeks. The evolution of the mag-

Figure 6 :Figure 8 :

 68 Figure 6: Study of the influence of the choice of the bandwidth parameter of the proposed algorithm. As the bandwidth increases, the number of selected parameters increases as well. An important property is the location stability of the solution with various bandwidth values.

Figure 9 :Figure 11 :

 911 Figure9: Selected cortical points of four lobe regions of the right hemisphere using the proposed algorithm. The left column shows the solution for a fixed bandwidth (h = 2). The other columns show the results for the optimal bandwidth. Top row: frontal lobe; second row: temporal lobe; third row: parietal lobe; last row: occipital lobe. The selected cortical points are depicted as red spheres. The color code in 3D mesh views maps the curvature of the cortical plate from blue color (positive curvature) to red color (negative curvature).
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  of depth maps of cortical surface based on the Helmholtz 30 decomposition of the deformation fields. In the work of 31[START_REF] Lefèvre | Identification of growth seeds in the neonate brain through surfacic Helmholtz decomposition[END_REF], which is also related to the works of 32 Cuzol et al. (2005) and Grenander et al. (2007), the main 33 idea relies in that a decomposition is used to make the 34 physical interpretation of the deformation fields (captur-35 ing the brain maturation process) easier. Our approach 36 is complementary to these techniques in the sense that 37 the relevant (i.e. most discriminative) displacement vec-38 tors are selected using a non-parametric approach. Further 39 work would consist in analyzing the impact of the defor-40 mation model on the selected features. 41 As shown in our experiments, the most discriminative 42 points lie in deep sulcal regions. These specific locations 43 could be used as consistent shape features in further stud-44 ies. Future work will consist in analyzing these patterns

nitudes of computed deformation fields at selected point 47 locations is estimated using a temporal polynomial of de-48 gree 3 regression approach (see figure 10 for an instance 49 of regression over time for one vector). Figure 11 shows [START_REF] Im | Spatial Distribution of Deep Sulcal Landmarks and Hemispherical Asymmetry on the Cortical Surface[END_REF], especially over time (Meng 55 et al., 2014), may help to set up new early markers of later 56 functional development [START_REF] Dubois | Primary cortical folding in the 104 human newborn: an early marker of later functional development[END_REF] or particular 57 cortical malformation (such as polymicrogyria) that might 58 be difficult to detect and quantify visually.