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We study quadri-algebras and dual quadri-algebras. We describe the free quadri-algebra on one generator as a subobject of the Hopf algebra of permutations FQSym, proving a conjecture due to Aguiar and Loday, using that the operad of quadri-algebras can be obtained from the operad of dendriform algebras by both black and white Manin products. We also give a combinatorial description of free dual quadri-algebras. A notion of quadri-bialgebra is also introduced, with applications to the Hopf algebras FQSym and WQSym.

Introduction

An algebra with an associativity splitting is an algebra whose associative product ⋆ can be written as a sum of a certain number of (generally nonassociative) products, satisfying certain compatibilities. For example, dendriform algebras [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF][START_REF] Loday | Dialgebras and related operads[END_REF] are equipped with two bilinear products ≺ and ≻, such that for all x, y, z:

(x ≺ y) ≺ z = x ≺ (y ≺ z + y ≻ z), (x ≻ y) ≺ z = x ≻ (y ≺ z), (x ≺ y + x ≻ y) ≻ z = x ≻ (y ≻ z).
1. We denote by K a commutative field. All the objects (vector spaces, algebras, coalgebras, operads. . .) of this text are taken over K.

2. For all n ≥ 1, we denote by [n] the set of integers {1, 2, . . . , n}.

1 Reminders on quadri-algebras and operads

Definitions and examples of quadri-algebras

Definition 1 1. A quadri-algebra is a family (A, ↰, ↲, ↳, ↱), where A is a vector space and ↰, ↲, ↳, ↱ are products on A, such that for all x, y, z ∈ A:

(x ↰ y) ↰ z = x ↰ (y ⋆ z), (x ↱ y) ↰ z = x ↱ (y ← z), (x ↑ y) ↱ z = x ↱ (y → z),

(x ↲ y) ↰ z = x ↲ (y ↑ z), (x ↳ y) ↰ z = x ↳ (y ↰ z), (x ↓ y) ↱ z = x ↳ (y ↱ z), (x ← y) ↲ z = x ↲ (y ↓ z), (x → y) ↲ z = x ↳ (y ↲ z), (x ⋆ y) ↳ z = x ↳ (y ↳ z),
where:

← =↰ + ↲, → =↱ + ↳, ↑ =↰ + ↱, ↓ =↲ + ↳, ⋆ =↰ + ↲ + ↳ + ↱=← + →=↑ + ↓ .
These relations will be considered as the entries of a 3 × 3 matrix, and will be refered as relations [START_REF] Aguiar | Quadri-algebras[END_REF][START_REF] Aguiar | Quadri-algebras[END_REF] . . . [START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF][START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF].

2.

A quadri-coalgebra is a family (C, ∆ ↰ , ∆ ↲ , ∆ ↳ , ∆ ↱ ), where C is a vector space and ∆ ↰ , ∆ ↲ , ∆ ↳ , ∆ ↱ are coproducts on C, such that:

(∆ ↰ ⊗ Id) ○ ∆ ↰ = (Id ⊗ ∆ * ) ○ ∆ ↰ , (∆ ↲ ⊗ Id) ○ ∆ ↰ = (Id ⊗ ∆ ↑ ) ○ ∆ ↲ , (∆ ↱ ⊗ Id) ○ ∆ ↰ = (Id ⊗ ∆ ← ) ○ ∆ ↱ , (∆ ↳ ⊗ Id) ○ ∆ ↰ = (Id ⊗ ∆ ↰ ) ○ ∆ ↳ , (∆ ↑ ⊗ Id) ○ ∆ ↱ = (Id ⊗ ∆ → ) ○ ∆ ↱ ; (∆ ↓ ⊗ Id) ○ ∆ ↱ = (Id ⊗ ∆ ↱ ) ○ ∆ ↳ ; (∆ ← ⊗ Id) ○ ∆ ↲ = (Id ⊗ ∆ ↓ ) ○ ∆ ↲ , (∆ → ⊗ Id) ○ ∆ ↲ = (Id ⊗ ∆ ↲ ) ○ ∆ ↳ , (∆ * ⊗ Id) ○ ∆ ↳ = (Id ⊗ ∆ ↳ ) ○ ∆ ↳ ,
with:

∆ ← = ∆ ↳ + ∆ ↱ , ∆ → = ∆ ↰ + ∆ ↲ , ∆ ↑ = ∆ ↰ + ∆ ↱ , ∆ ↓ = ∆ ↲ + ∆ ↳ , ∆ * = ∆ ↰ + ∆ ↲ + ∆ ↳ + ∆ ↱ .

Remarks.

1. If A is a finite-dimensional quadri-algebra, then its dual A * is a quadri-coalgebra, with ∆ ◇ = ◇ * for all ◇ ∈ {↰, ↲, ↳, ↱, ←, →, ↑, ↓, ⋆}.

2. If C is a quadri-coalgebra (even not finite-dimensional), then C * is a quadri-algebra, with ◇ = ∆ * ◇ for all ◇ ∈ {↰, ↲, ↳, ↱, ←, →, ↑, ↓, ⋆}. 3. Let A be a quadri-algebra. Adding each row of the matrix of relations:

(x ↑ y) ↑ z = x ↑ (y ⋆ z), (x ↓ y) ↑ z = x ↓ (y ↑ z), (x ⋆ y) ↓ z = x ↓ (y ↓ z).
Hence, (A, ↑, ↓) is a dendriform algebra. Adding each column of the matrix of relations: (x ← y) ← z = x ← (y ⋆ z), (x → y) ← z = x → (y ← z), (x ⋆ y) → z = x → (y → z).

Hence, (A, ←, →) is a dendriform algebra. The associative (non unitary) product associated to both these dendriform structures is ⋆.

Dually, if

C is a quadri-coalgebra, (C, ∆ ↑ , ∆ ↓ ) and (C, ∆ ← , ∆ → ) are dendriform coalgebras. The associated coassociative (non counitary) coproduct is ∆ * .

Examples.

1. Let V be a vector space. The augmentation ideal of the tensor algebra T (V ) is given four products defined in the following way: for all v 1 , . . . , v k , v k+1 , . . . , v k+l ∈ V , k, l ≥ 1,

v 1 . . . v k ↰ v k+1 . . . v k+l = σ∈Sh(k,l), σ -1 (1)=1, σ -1 (k+l)=k v σ -1 (1) . . . v σ -1 (k+l) , v 1 . . . v k ↲ v k+1 . . . v k+l = σ∈Sh(k,l), σ -1 (1)=k+1, σ -1 (k+l)=k v σ -1 (1) . . . v σ -1 (k+l) , v 1 . . . v k ↳ v k+1 . . . v k+l = σ∈Sh(k,l), σ -1 (1)=k+1, σ -1 (k+l)=k+l v σ -1 (1) . . . v σ -1 (k+l) , v 1 . . . v k ↱ v k+1 . . . v k+l = σ∈Sh(k,l), σ -1 (1)=1, σ -1 (k+l)=k+l v σ -1 (1) . . . v σ -1 (k+l) ,
where Sh(k, l) is the set of (k, l)-shuffles, that is to say permutations σ ∈ S k+l such that σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + l). The associated associative product is the usual shuffle product.

2. The augmentation ideal of the Hopf algebra FQSym of permutations introduced in [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] and studied in [START_REF] Duchamp | Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras[END_REF] is also a quadri-algebra, as mentioned in [START_REF] Aguiar | Quadri-algebras[END_REF]. For all permutations α ∈ S k , β ∈ S l , k, l ≥ 1:

α ↰ β = σ∈Sh(k,l), σ -1 (1)=1, σ -1 (k+l)=k (α ⊗ β) ○ σ -1 , α ↲ β = σ∈Sh(k,l), σ -1 (1)=k+1, σ -1 (k+l)=k (α ⊗ β) ○ σ -1 , α ↳ β = σ∈Sh(k,l), σ -1 (1)=k+1, σ -1 (k+l)=k+l (α ⊗ β) ○ σ -1 , α ↱ β = σ∈Sh(k,l), σ -1 (1)=1, σ -1 (k+l)=k+l (α ⊗ β) ○ σ -1 .
As FQSym is self-dual, its coproduct can also be split into four parts, making it a quadricoalgebra. As the pairing on FQSym is defined by ⟨σ, τ ⟩ = δ σ,τ -1 for any permutations σ, τ , we deduce that if σ ∈ S n , n ≥ 1, with the notations of [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]:

∆ ↰ (σ) = σ -1 (1),σ -1 (n)≤i<n Std(σ(1) . . . σ(i)) ⊗ Std(σ(i + 1) . . . σ(n)), ∆ ↲ (σ) = σ -1 (n)≤i<σ -1 (1) Std(σ(1) . . . σ(i)) ⊗ Std(σ(i + 1) . . . σ(n)), ∆ ↳ (σ) = 1≤i<σ -1 (1),σ -1 (n) Std(σ(1) . . . σ(i)) ⊗ Std(σ(i + 1) . . . σ(n)), ∆ ↱ (σ) = σ -1 (1)≤i<σ -1 (n) Std(σ(1) . . . σ(i)) ⊗ Std(σ(i + 1) . . . σ(n)).
The compatibilites between these products and coproducts will be studied in Proposition 11. For example:

(12) ↰ (12) = (1342), ∆ ↰ ((3412)) = (231) ⊗ (1), ∆ ↰ ((2143)) = (213) ⊗ (1), (12) ↲ (12) = (3142) + (3412), ∆ ↲ ((3412)) = (12) ⊗ (12), ∆ ↲ ((2143)) = 0, (12) ↳ (12) = (3124), ∆ ↳ ((3412)) = (1) ⊗ (312), ∆ ↳ ((2143)) = (1) ⊗ (132), (12) ↱ (12) = (1234) + (1324), ∆ ↱ ((3412)) = 0, ∆ ↱ ((2143)) = (21) ⊗ (21).
The dendriform algebra (FQSym, ←, →) and the dendriform coalgebra (FQSym, ∆ ← , ∆ → ) are decribed in [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF][START_REF]Primitive elements of the Hopf algebra of free quasi-symmetric functions[END_REF]; the dendriform algebra (FQSym, ↑, ↓) and the dendriform coalgebra (FQSym, ∆ ↑ , ∆ ↓ ) are decribed in [START_REF] Foissy | Natural endomorphisms of shuffle algebras[END_REF]. Both dendriform algebras are free, and both dendriform coalgebras are cofree, by the dendriform rigidity theorem [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF]. Note that FQSym is not free as a quadri-algebra, as (1) ↰ (1) = 0.

3. The dual of the Hopf algebra of totally assigned graphs [START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF] is a quadri-coalgebra.

Nonsymmetric operads

We refer to [START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Mark | Operads in Algebra[END_REF][START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF] for the usual definitions and properties of operads and nonsymmetric operads.

Notations and reminders.

• Let V be a vector space. The free nonsymmetric operad generated in arity 2 by V is denoted by F(V ). If we fix a basis (v i ) i∈I of V , then for all n ≥ 1, a basis of F(V ) n is given by the set of planar binary trees with n leaves, whose (n -1) internal vertices are decorated by elements of {v i i ∈ I}. The operadic composition is given by the grafting of trees on leaves. If V is finite-dimensional, then for all n ≥ 1, F(V ) n is finite-dimensional, and:

dim(F(V ) n ) = 1 n 2n -2 n -1 dim(V ) n .
• Let P a nonsymmetric operad and V a vector space. A structure of P-algebra on V is a family of maps:

P(n) ⊗ V ⊗n → V p ⊗ v 1 ⊗ . . . ⊗ v n → p.(v 1 , . . . , v n ),
satisfying some compatibilities with the composition of P.

• The free P-algebra generated by the vector space V is, as a vector space:

F P (V ) = ⊕ n≥0 P(n) ⊗ V ⊗n ;
the action of P on F P (V ) is given by:

p.(p 1 ⊗ w 1 , . . . , p n ⊗ w n ) = p ○ (p 1 , . . . , p n ) ⊗ w 1 ⊗ . . . ⊗ w n .
• Let P = (P n ) n≥1 be a nonsymmetric operad. It is quadratic if :

-It is generated by

G P = P 2 .
-Let π P ∶ F(G P ) → P be the canonical morphism from F(G P ) to P; then its kernel is generated, as an operadic ideal, by Ker(π P ) 3 = Ker(π P ) ∩ F(G P ) 3 .

If P is quadratic, we put G P = P 2 , and R P = Ker(π P ) 3 . By definition, these two spaces entirely determine P, up to an isomorphism.

Examples.

1. The nonsymmetric operad Quad of quadri-algebras is quadratic. It is generated by G Quad = V ect(↰, ↲, ↳, ↱), and R Quad is the linear span of the nine following elements:

d d ↰ ↰ -↰ ⋆ , d d ↰ ↱ -↱ ← , d d ↱ ↑ -↱ → , d d ↰ ↲ -↲ ↑ , d d ↰ ↳ -↳ ↰ , d d ↱ ↓ -↳ ↱ , d d ↲ ← -↲ ↓ , d d ↲ → -↳ ↲ , d d ↳ ⋆ -↳ ↳ . As dim(F (G Quad ) 3 ) = 32, dim(Quad 3 ) = 32 -9 = 23.
2. The nonsymmetric operad Dend of dendriform algebras is quadratic. It is generated by G Dend = V ect(≺, ≻), and R Dend is the linear span of the three following elements:

d d ≺ ≺ -≺ ⋆ , d d ≺ ≻ -≻ ≺ , d d ≻ ⋆ -≻ ≻ .
The nonsymmetric-operad Quad of quadri-algebras, being quadratic, has a Koszul dual Quad ! . The following formulas for the generating formal series of Quad and Quad ! has been conjectured in [START_REF] Aguiar | Quadri-algebras[END_REF] and proved in [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF], as well as the koszulity:

Proposition 2 1. For all n ≥ 1, dim(Quad(n)) = 2n-1 j=n 3n n + 1 + j j -1 j -n
. This is sequence A007297 in [START_REF] Sloane | On-line encyclopedia of integer sequences[END_REF].

For all

n ≥ 1, dim(Quad ! (n)) = n 2 .
3. The operad of quadri-algebras is Koszul.

2 The operad of quadri-algebras and its Koszul dual

Dual quadri-algebras

Algebras on Quad ! will be called dual quadri-algebras. This operad Quad ! is described in [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF] in terms of the white Manin product. Let us give an explicit description.

Proposition 3 A dual quadri-algebra is a family (A, ↰, ↲, ↳, ↱), where A is a vector space and ↰, ↲, ↳, ↱∶ A ⊗ A → A, such that for all x, y, z ∈ A:

(x ↰ y) ↰ z = x ↰ (y ↰ z) = x ↰ (y ↲ z) = x ↰ (y ↳ z) = x ↰ (y ↱ z), (x ↱ y) ↰ z = x ↱ (y ↰ z) = x ↱ (y ↲ z), (x ↰ y) ↱ z = (x ↱ y) ↱ z = x ↱ (y ↳ z) = x ↱ (y ↱ z), (x ↲ y) ↰ z = x ↲ (y ↰ z) = x ↲ (y ↱ z), (x ↳ y) ↰ z = x ↳ (y ↰ z), (x ↲ y) ↱ z = (x ↳ y) ↱ z = x ↳ (y ↱ z), (x ↰ y) ↲ z = (x ↲ y) ↲ z = x ↲ (y ↲ z) = x ↲ (y ↳ y), (x ↳ y) ↲ z = x(↱ y) ↲ z = x ↳ (y ↲ z), (x ↰ y) ↳ z = (x ↲ y) ↳ z = (x ↳ y) ↳ z = (x ↱ y) ↳ z = x ↳ (y ↳ z).
These groups of relations are denoted by (1) ! , . . . , (9) ! . Note that the four products ↰, ↲, ↳, ↱ are associative.

Proof. We put G = V ect(↰, ↲, ↳, ↱) and E the component of arity 3 of the free nonsymmetric operad generated by G, that is to say:

E = V ect ⎛ ⎜ ⎝ f g , d d f g f, g ∈ {↰, ↲, ↳, ↱} ⎞ ⎟ ⎠ .
We give G a pairing, such that the four products form an orthonormal basis of G. This induces a pairing on E: for all x, y, z, t ∈ G,

⟨ d d x y , d d z t ⟩ = ⟨x, z⟩⟨y, t⟩, ⟨ x y , z t ⟩ = -⟨x, z⟩⟨y, t⟩, ⟨ x y , d d z t ⟩ = 0, ⟨ d d x y , z t ⟩ = 0.
The quadratic nonsymmetric operad Quad is generated by G = V ect(↰, ↲, ↳, ↱) and the subspace of relations R of E corresponding to the nine relations (1,1). . . [START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF][START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF]. The quadratic nonsymmetric operad Quad ! is generated by G ≈ G * and the subspaces of relations R ⊥ of E. As dim(R) = 9 and dim(E) = 32, dim(R ⊥ ) = 23. A direct verification shows that the 23 relations given in (1) ! , . . . , (9) ! are elements of R ⊥ . As they are linearly independent, they form a basis of R ⊥ . ◻

Notations. We consider:

R = ∞ ⊔ n=1 [n] 2 .
The element (i, j) ∈ [n] 2 ⊂ R will be denoted by (i, j) n in order to avoid the confusions. We graphically represent (i, j) n by putting in grey the boxes of coordinates (a, b), 1 ≤ a ≤ i, 1 ≤ b ≤ j, of a n × n array, the boxes (1, 1), (1, n), (n, 1) and (n, n) being respectively up left, down left, up right and down right. For example:

(2, 1) 3 = ∎∎ , (1, 1) 2 = ∎ , (3, 2) 4 = ∎∎∎ ∎∎∎ . Proposition 4 Let A R = V ect(R).
We define four products ↰, ↲, ↳, ↱ on A R by:

(i, j) p ↰ (k, l) q = (i, j) p+q , (i, j) p ↱ (k, l) q = (k + p, j) p+q , (i, j) p ↲ (k, l) q = (i, p + l) p+q , (i, j) p ↳ (k, l) q = (k + p, l + p) p+q .
Then (A R , ↰, ↲, ↳, ↱) is a dual quadri-algebra. It is graded by putting the elements of [n] 2 ∈ R homogeneous of degree n, and the generating formal series of A R is:

∞ n=1 n 2 X n = X(1 + X) (1 -X) 3 .
Moreover, A R is freely generated as a dual quadri-algebra by (1, 1) 1 .

Proof. Let us take (i, j) p , (k, l) q and (m, n) r ∈ R. Then:

• Each computation in (1) ! gives (i, j) p+q+r .

• Each computation in (2) ! gives (p + k, j) p+q+r .

• Each computation in (3) ! gives (p + q + m, j) p+q+r .

• Each computation in (4) ! gives (i, p + l) p+q+r .

• Each computation in (5) ! gives (p + k, p + l) p+q+r .

• Each computation in (6) ! gives (p + q + m, p + l) p+q+r .

• Each computation in (7) ! gives (i, p + q + n) p+q+r .

• Each computation in (8) ! gives (p + k, p + q + n) p+q+r .

• Each computation in (9) ! gives (p + q + m, p + q + n) p+q+r .

So A R is a dual quadri-algebra. We now prove that A R is generated by (1, 1) 1 . Let B be the dual quadri-subalgebra of A R generated by (1, 1) 1 , and let us prove that (i, j) n ∈ B by induction on n for all (i, j) n ∈ R. This is obvious in n = 1, as then (i, j) n = (1, 1) 1 . Let us assume the result at rank n -1, with n > 1.

• If i ≥ 2 and j ≤ n -1, then (1, 1) 1 ↱ (i -1, j) n-1 = (i, j) n . By the induction hypothesis, (i -1, j) n-1 ∈ B, so (i, j) n ∈ B. • If i ≤ n -1 and j ≥ 2, then (1, 1) 1 ↲ (i, j -1) n-1 = (i, j) n . By the induction hypothesis, (i, j -1) n-1 ∈ B, so (i, j) n ∈ B.
• Otherwise, (i = 1 or j = n) and (i = n or j = 1), that is to say

(i, j) n = (1, 1) n or (i, j) n = (n, n) n . We remark that (1, 1) ↰ (1, 1) n-1 = (1, 1) n and (1, 1) 1 ↳ (n-1, n-1) n-1 = (n, n) n .
By the induction hypothesis, (1, 1) n-1 and (n -

1, n -1) n ∈ B, so (1, 1) n and (n, n) n ∈ B.
Finally, B contains R, so B = A R .

Let C be the free Quad ! -algebra generated by a single element x, homogeneous of degree 1. As a graded vector space:

C = ⊕ n≥1 Quad ! n ⊗ V ⊗n , where V = V ect(x). So for all n ≥ 1, by Proposition 2, dim(C n ) = n 2 = dim(A n ).
There exists a surjective morphism of Quad ! -algebras θ from C to A, sending x to (1, 1) 1 . As x and (1, 1) 1 are both homogeneous of degree 1, θ is homogeneous of degree 0. As A and C have the same generating formal series, θ is bijective, so A is isomorphic to C. ◻

Examples. Here are graphical examples of products. The result of the product is drawn in light gray:

∎∎ ↰ ∎ = ∎∎ ∎ ∎∎ , ∎∎ ↲ ∎ = ∎∎ ∎ ∎∎ ∎∎ ∎∎ ∎∎ , ∎∎ ↳ ∎ = ∎∎ ∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ , ∎∎ ↱ ∎ = ∎∎ ∎ ∎∎∎∎ .
Roughly speaking, the products of x ∈ [m] 2 ⊂ R and y ∈ [n] 2 ⊂ R are obtained by putting x and y diagonally in a common array of size (m + n) × (m + n). This array is naturally decomposed in four parts denoted by nw, sw, se and ne according to their direction. Then:

1. x ↰ y is given by the black boxes in the nw part.

2.

x ↲ y is given by the boxes in the sw part which are simultaneously under a black box and to the left of a black box.

3.

x ↳ y is given by the black boxes in the se part.

4.

x ↱ y is given by the boxes in the ne part which are simultaneously over a black box and to the right of a black box.

Here are the results of the nine relations applied to x = ∎∎ , y = ∎ and z = ∎∎∎ ∎∎∎ :

(1) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎ (2) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎∎∎ (3) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎∎∎∎∎∎∎ (4) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎ ∎∎ ∎∎ ∎∎ (5) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ (6) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ (7) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎ ∎∎ ∎∎ ∎∎ ∎∎ ∎∎ ∎∎ (8) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ ∎∎∎∎ (9) ! ∶ ∎∎ ∎ ∎∎∎ ∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎ ∎∎∎∎∎∎∎∎
Remarks.

1. A description of the free Quad ! -algebra generated by any set D is done similarly. We put:

R(D) = ∞ ⊔ n=1 [n] 2 × D n .
The four products are defined by: ((i, j) p , d 1 , . . . , d p ) ↰ ((k, l) q , e 1 , . . . , e q ) = ((i, j) p+q , d 1 , . . . , d p , e 1 , . . . , e q ), ((i, j) p , d 1 , . . . , d p ) ↲ ((k, l) q , e 1 , . . . , e q ) = ((i, p + l) p+q d 1 , . . . , d p , e 1 , . . . , e q ), ((i, j) p , d 1 , . . . , d p ) ↳ ((k, l) q , e 1 , . . . , e q ) = ((k + p, l + p) p+q d 1 , . . . , d p , e 1 , . . . , e q ) ((i, j) p , d 1 , . . . , d p ) ↱ ((k, l) q , e 1 , . . . , e q ) = ((k + p, j) p+q d 1 , . . . , d p , e 1 , . . . , e q ).

2. We can also deduce a combinatorial description of the nonsymmetric operad Quad ! . As a vector space,

Quad ! n = V ect([n]
2 ) for all n ≥ 1. The composition is given by:

(i, j) m ○ ((k 1 , l 1 ) n 1 , . . . , (k n , l n ) nm ) = (n 1 + . . . + n i-1 + k i , n 1 + . . . + n j-1 + l j ) n 1 +...+nm .
In particular:

↰ = (1, 1) 2 , ↲ = (1, 2) 2 , ↳ = (2, 2) 2 , ↱ = (2, 1) 2 .
Corollary 5 We define a nonsymmetric operad Dias in the following way:

• For all n ≥ 1,

Dias n = V ect([n]
). The elements of [n] ⊆ Dias n are denoted by (1) n , . . . , (n) n in order to avoid confusions.

• The composition is given by: (i) m ○ ((j 1 ) n 1 , . . . , (j m ) nm ) = (n 1 + . . .

+ n i-1 + j i ) n 1 +...+nm .
This is the nonsymmetric operad of associative dialgebras [START_REF] Loday | Dialgebras and related operads[END_REF], that is to say algebras A with two products ⊢ and ⊣ such that for all x, y, z ∈ A:

x

⊣ (y ⊣ z) = x ⊣ (y ⊢ z) = (x ⊣ y) ⊣ z, (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), (x ⊣ y) ⊢ z = (x ⊢ y) ⊢ z = x ⊢ (y ⊢ z).
We denote by ◻ and ∎ the two Manin products on nonsymmetric-operads of [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF]. Then:

Quad ! = Dias ⊗ Dias = Dias ◻ Dias = Dias ∎ Dias, Quad = Dend ∎ Dend = Dend ◻ Dend.
Proof. We denote by Dias ′ the nonsymmetric operad generated by ⊣ and ⊢ and the relations:

⊣ ⊣ = ⊣ ⊢ = d d ⊣ ⊣ , ⊢ ⊣ = d d ⊣ ⊢ , ⊢ ⊢ = d d ⊢ ⊣ = d d ⊢ ⊢ .
First, observe that:

(1) 2 ○ (I, (1) 2 ) = (1) 2 ○ (I, (2) 2 ) = (1) 2 ○ ((1) 2 , I) = (1) 3 , ( 
) 2 ○ ((2) 2 , I) = (2) 2 ○ (I, (1) 2 ) = (2) 3 , 1 
) 2 ○ (I, (2) 2 ) = (2) 2 ○ ((1) 2 , I) = (2) 2 ○ ((2) 2 , I) = (3) 3 . (2 
So there exists a morphism θ of nonsymmetric operad from Dias ′ to Dias, sending ⊣ to (1) 2 and ⊢ to (2) 2 . Note that θ(I) = (1) 1 .

Let us prove that θ is surjective. Let n ≥ 1, i ∈ [n], we show that (i) n ∈ Im(θ) by induction on n. If n ≤ 2, the result is obvious. Let us assume the result at rank n -1, n ≥ 3. If i = 1, then:

(1) 2 ○ ((1) 1 , (1) n-1 ) = (1) n .

By the induction hypothesis, (1) n-1 ∈ Im(θ), so (1) n ∈ Im(θ). If i ≥ 2, then:

(2) 2 ○ ((1) 1 , (i -1) n-1 ) = (i) n .
By the induction hypothesis, (1) n-1 ∈ Im(θ), so (i) n ∈ Im(θ).

It is proved in [START_REF] Loday | Dialgebras and related operads[END_REF] that dim(Dias ′ n ) = dim(Dias n ) = n for all n ≥ 1. As θ is surjective, it is an isomorphism. Moreover, let us consider the following map:

Dias ⊗ Dias → Quad ! (i) n ⊗ (j) n → (i, j) n .
It is clearly an isomorphism of nonsymmetric operads. It is proved in [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF] that Dias ◻ Dias = Quad ! . As R Dias is generated the quadratic nonsymmetric algebra generated by (1) 2 and (2) 2 and the following relations:

d d b a -c d , (a, b, c, d) ∈ E = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ((1) 2 , (1) 2 , (1) 2 , (1) 2 ), ((1) 2 , (1) 2 , (1) 2 , (2) 2 ), ( ( 
2) 2 , (1) 2 , (2) 2 , (1) 2 ), ((1) 2 , (2) 2 , (2) 2 , (2) 2 ), ( (2 
) 2 , (2) 2 , (2) 2 , (2) 2 ) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ , Dias ∎ Dias is generated by (1, 1) 2 , (1, 2) 2 , (2, 1) 2 and
(2, 2) 2 with the relations:

d d b a -c d , (a, b, c, d) ∈ E ′ , E ′ = {((a 1 , a 2 ) 2 , (b 1 , b 2 ) 2 , (c 1 , c 2 ) 2 , (d 1 , d 2 ) 2 ) (a 1 , b 1 , c 1 , d 1 ), (a 2 , b 2 , c 2 , d 2 ) ∈ E}.
This gives 25 relations, which are not linearly independent, and can be regrouped in the following way: .

where we denote ij instead of (i, j) 2 . So Dias∎Dias is isomorphic to Quad ! via the isomorphism given by:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Quad ! → Dias ∎ Dias ↰ → (1, 1) 2 , ↲ → (1, 2) 2 , ↳ → (2, 2) 2 , ↱ → (2, 1) 2 .
By Koszul duality, as Dias ! = Dend, we obtain the results for Quad. ◻

Free quadri-algebra on one generator

As Quad = Dend◻Dend, Quad is the suboperad of Dend⊗Dend generated by the component of arity 2. An explicit injection of Quad into Dend ⊗ Dend is given by: Proposition 6 The following defines a injective morphism of nonsymmetric operads:

Θ ∶ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Quad → Dend ⊗ Dend ↰ → ≺ ⊗ ≺ ↲ → ≺ ⊗ ≻ ↳ → ≻ ⊗ ≻ ↱ → ≻ ⊗ ≺ .

Corollary 7

The quadri-subalgebra of (FQSym, ↰, ↲, ↳, ↱) generated by (12) is free.

Proof. Both dendriform algebras (FQSym, ↓, ↑) and (FQSym, ←, →) are free. So the Dend ⊗ Dend-algebra (FQSym ⊗ FQSym, ↑ ⊗ ←, ↓ ⊗ ←, ↓ ⊗ →, ↑ ⊗ →) is free. By restriction, the Dend⊗Dend-subalgebra of FQSym⊗FQSym generated by (1)⊗( 1) is free. By restriction, the quadri-subalgebra A of FQSym ⊗ FQSym generated by (1) ⊗ ( 1) is free.

Let B be the quadri-subalgebra of FQSym generated by [START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF] and let φ ∶ A → B be the unique morphism sending (1) ⊗ ( 1) to [START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF]. We denote by FQSym even the subspace of FQSym formed by the homogeneous components of even degrees. It is clearly a quadri-subalgebra of FQSym. As (12) ∈ FQSym even , A ⊆ FQSym even . We consider the map:

ψ ∶ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ FQSym even → FQSym ⊗ FQSym σ ∈ S 2n → ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ σ(1)-1 2 , . . . , σ(n)-1 2 ⊗ σ(n+1) 2 , . . . , σ (2n) 2 
if σ(1), . . . , σ(n) are odd and σ(n + 1), . . . , σ(2n) are even,

0 otherwise. Let σ ∈ S 2m , τ ∈ S 2n . Let us prove that ψ(σ ◇ τ ) = ψ(σ) ◇ ψ(τ ) for ◇ ∈ {↰, ↲, ↳, ↱}.
First case. Let us assume that ψ(σ) = 0. There exists 1 ≤ i ≤ m, such that σ(i) is even, and an element m + 1 ≤ j ≤ m + n, such that σ(j) is odd. Let τ ∈ S 2n . Let α be obtained by a shuffle of σ and τ [2n]. If the letter σ(i) appears in α in one of the position 1, . . . , m + n, then ψ(α) = 0. Otherwise, the letter σ(i) appears in one of the positions m + n + 1, . . . , 2m + 2n, so σ(j) also appears in one of these positions, as i < j, and ψ(α) = 0. In both case, ψ(α) = 0, and we deduce that ψ(σ ◇ τ ) = 0 = ψ(σ) ◇ ψ(τ ).

Second case. Let us assume that ψ(τ ) = 0. By a similar argument, we show that ψ(σ ◇ τ ) = 0 = ψ(σ) ◇ ψ(τ ).

Last case. Let us assume that ψ(σ) ≠ 0 and ψ(τ ) ≠ 0. We put σ = (σ 1 , σ 2 ) and τ = (τ 1 , τ 2 ), where the letters of σ 1 and τ 1 are odd and the letters of σ 2 and τ 2 are even. Then ψ(σ ↰ τ ) is obtained by shuffling σ and τ [2n], such that the first and last letters are letters of σ, and keeping only permutations such that the (m + n) first letters are odd (and the (m + n) last letters are even). These words are obtained by shuffling σ 1 and τ 1 [2m] such that the first letter is a letter of σ 1 , and by shuffling σ 2 and τ 2 [2m], such that the last letter is a letter of σ 2 . Hence:

ψ(σ ↰ τ ) = ψ(σ) ↑ ⊗ ← ψ(τ ) = ψ(σ) ↰ ψ(τ ).
The proof for the three other quadri-algebra products is similar.

Consequently, ψ is a quadri-algebra morphism. Moreover, ψ ○φ((1)⊗( 1)) = ψ(12) = (1)⊗(1). As A is generated by (1) ⊗ (1), ψ ○ φ = Id A , so φ is injective, and A is isomorphic to B. ◻

Koszulity of Quad

The koszulity of Quad is proved in [START_REF] Vallette | Manin products, Koszul duality, Loday algebras and Deligne conjecture[END_REF] by the poset method. Let us give here a second proof, with the help of the rewriting method of [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF][START_REF] Dotsenko | Gröbner bases for operads[END_REF][START_REF] Loday | Algebraic operads, Grundlehren der Mathematischen Wissenschaften[END_REF].

Theorem 8

The operads Quad and Quad ! are Koszul.

Proof. By Koszul duality, it is enough to prove that Quad ! is Koszul. We choose the order ↳<↱<↲<↰ for the four operations, and the order d d < for the two planar binary trees of arity 3. Relations (1) ! , . . . , (9) ! give 23 rewriting rules:

↰ ↰ , ↰ ↲ , ↰ ↳ , ↰ ↱ → d d ↰ ↰ , ↱ ↰ , ↱ ↲ → d d ↰ ↱ , d d ↱ ↰ , ↱ ↳ , ↱ ↱ → d d ↱ ↱ , ↲ ↰ , ↲ ↱ → d d ↰ ↲ , ↳ ↰ → d d ↰ ↳ , ↳ ↱ , d d ↱ ↲ → d d ↱ ↳ , ↲ ↲ , ↲ ↳ , d d ↲ ↰ → d d ↲ ↲ , ↳ ↲ , d d ↲ ↰ → d d ↲ ↳ , ↳ ↳ , d d ↳ ↰ , d d ↳ ↲ , d d ↳ ↱ , → d d ↳ ↳ .
There are 156 critical monomials, and the 156 corresponding diagrams are confluent. Hence, Quad ! is Koszul. We used a computer to find the critical monomials and to verify the confluence of the diagrams. ◻

3 Quadri-bialgebras

Units and quadri-algebras

Let A, B be a vector spaces. We put

A⊗B = (K ⊗ B) ⊕ (A ⊗ B) ⊕ (A ⊗ K).
Clearly, if A, B, C are three vector spaces, (A⊗B)⊗C = A⊗(B⊗C).

Proposition 9 1. Let A be a quadri-algebra. We extend the four products on A⊗A in the following way

: if a, b ∈ A, a ↰ 1 = a, a ↱ 1 = 0, 1 ↰ a = 0, 1 ↱ a = 0, a ↲ 1 = 0, a ↳ 1 = 0, 1 ↲ a = 0, 1 ↳ a = a.
The nine relations defining quadri-algebras are true on A⊗A⊗A.

2. Let A, B be two quadri-algebras. Then A⊗B is a quadri-algebra with the following products:

• if a, a ′ ∈ A ⊔ K, b, b ′ ∈ B ⊔ K, with (a, a ′ ) ∉ K 2 and (b, b ′ ) ∉ K 2 : (a ⊗ b) ↰ (a ′ ⊗ b ′ ) = (a ↑ a ′ ) ⊗ (b ← b ′ ), (a ⊗ b) ↱ (a ′ ⊗ b ′ ) = (a ↑ a ′ ) ⊗ (b → b ′ ), (a ⊗ b) ↲ (a ′ ⊗ b ′ ) = (a ↓ a ′ ) ⊗ (b ← b ′ ), (a ⊗ b) ↳ (a ′ ⊗ b ′ ) = (a ↓ a ′ ) ⊗ (b → b ′ ).
• If a, a ′ ∈ A:

(a ⊗ 1) ↰ (a ′ ⊗ 1) = (a ↰ a ′ ) ⊗ 1, (a ⊗ 1) ↱ (a ′ ⊗ 1) = (a ↱ a ′ ) ⊗ 1, (a ⊗ 1) ↲ (a ′ ⊗ 1) = (a ↲ a ′ ) ⊗ 1, (a ⊗ 1) ↳ (a ′ ⊗ 1) = (a ↳ a ′ ) ⊗ 1. • If b, b ′ ∈ B: (1 ⊗ b) ↰ (1 ⊗ b ′ ) = 1 ⊗ (b ↰ b ′ ), (1 ⊗ b) ↱ (1 ⊗ b ′ ) = 1 ⊗ (b ↱ b ′ ), (1 ⊗ b) ↲ (1 ⊗ b ′ ) = 1 ⊗ (b ↲ b ′ ), (1 ⊗ b) ↳ (1 ⊗ b ′ ) = 1 ⊗ (b ↳ b ′ ).
Proof. 1. It is shown by direct verifications.

2. As (A, ↑, ↓) and (B, ←, →) are dendriform algebras, A ⊗ B is a Dend ⊗ Dend-algebra, so is a quadri-algebra by Proposition 6, with ↰=↑ ⊗ ←, ↲=↓ ⊗ ←, ↳=↓ ⊗ → and ↱=↑ ⊗ →. The extension of the quadri-algebra axioms to A⊗B is verified by direct computations. ◻

Remark. There is a second way to give A⊗B a structure of quadri-algebra with the help of the associativity of ⋆:

If a ∈ A or a ′ ∈ A, b, b ′ ∈ K ⊕ B, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (a ⊗ b) ↰ (a ′ ⊗ b ′ ) = (a ↰ a ′ ) ⊗ (b ⋆ b ′ ), (a ⊗ b) ↲ (a ′ ⊗ b ′ ) = (a ↲ a ′ ) ⊗ (b ⋆ b ′ ), (a ⊗ b) ↳ (a ′ ⊗ b ′ ) = (a ↳ a ′ ) ⊗ (b ⋆ b ′ ), (a ⊗ b) ↱ (a ′ ⊗ b ′ ) = (a ↱ a ′ ) ⊗ (b ⋆ b ′ ); if b, b ′ ∈ K ⊕ B, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (1 ⊗ b) ↰ (1 ⊗ b ′ ) = 1 ⊗ (b ↰ b ′ ), (1 ⊗ b) ↲ (1 ⊗ b ′ ) = 1 ⊗ (b ↲ b ′ ), (1 ⊗ b) ↳ (1 ⊗ b ′ ) = 1 ⊗ (b ↳ b ′ ), (1 ⊗ b) ↱ (1 ⊗ b ′ ) = 1 ⊗ (b ↱ b ′ ).
A ⊗ K and K ⊗ B are quadri-subalgebras of A⊗B, respectively isomorphic to A and B.

Definitions and example of FQSym

Definition 10 A quadri-bialgebra is a family (A, ↰, ↲, ↳, ↱, ∆↰ , ∆↲ , ∆↳ , ∆↱ ) such that:

• (A ↰, ↲, ↳, ↱) is a quadri-algebra.
• (A, ∆↰ , ∆↲ , ∆↳ , ∆↱ ) is a quadri-coalgebra.

• We extend the four coproducts in the following way:

∆ ↰ ∶ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ A → A ⊗ A a → ∆↰ (a) + a ⊗ 1, ∆ ↱ ∶ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ A → A ⊗ A a → ∆↱ (a), ∆ ↲ ∶ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ A → A ⊗ A a → ∆↲ (a), ∆ ↳ ∶ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ A → A ⊗ A a → ∆↳ (a) + 1 ⊗ a.
For all a, b ∈ A: For all a, b ∈ A:

∆ ↰ (a ↰ b) = ∆ ↑ (a) ↰ ∆ ← (b) ∆ ↱ (a ↰ b) = ∆ ↑ (a) ↰ ∆ → (b) ∆ ↰ (a ↲ b) = ∆ ↑ (a) ↲ ∆ ← (b) ∆ ↱ (a ↲ b) = ∆ ↑ (a) ↲ ∆ → (b) ∆ ↰ (a ↳ b) = ∆ ↑ (a) ↳ ∆ ← (b) ∆ ↱ (a ↳ b) = ∆ ↑ (a) ↳ ∆ → (b) ∆ ↰ (a ↱ b) = ∆ ↑ (a) ↱ ∆ ← (b) ∆ ↱ (a ↱ b) = ∆ ↑ (a) ↱ ∆ → (b) ∆ ↲ (a ↰ b) = ∆ ↓ (a) ↰ ∆ ← (b) ∆ ↳ (a ↰ b) = ∆ ↓ (a) ↰ ∆ → (b) ∆ ↲ (a ↲ b) = ∆ ↓ (a) ↲ ∆ ← (b) ∆ ↳ (a ↲ b) = ∆ ↓ (a) ↲ ∆ → (b) ∆ ↲ (a ↳ b) = ∆ ↓ (a) ↳ ∆ ← (b) ∆ ↳ (a ↳ b) = ∆ ↓ (a) ↳ ∆ → (b) ∆ ↲ (a ↱ b) = ∆ ↓ (a) ↱ ∆ ← (b) ∆ ↳ (a ↱ b) = ∆ ↓ (a) ↱ ∆ → (b)
Remark. In other words, for all a, b ∈ A:

∆↰ (a ↰ b) = a ′ ↑ ↑ b ⊗ a ′′ ↑ + a ′ ↑ ↑ b ′ ← ⊗ a ′′ ↑ ← b ′′ ← , ∆↲ (a ↰ b) = a ′ ↓ ↑ b ⊗ a ′′ ↓ + a ′ ↓ ↑ b ′ ← ⊗ a ′′ ↓ ← b ′′ ← , ∆↳ (a ↰ b) = a ′ ↓ ⊗ a ′′ ↓ ← b + a ′ ↓ ↑ b ′ → ⊗ a ′′ ↓ ← b ′′ → , ∆↱ (a ↰ b) = a ′ ↑ ⊗ a ′′ ↑ ← b + a ′ ↑ ↑ b ′ → ⊗ a ′′ ↑ ← b ′′ → , ∆↰ (a ↲ b) = a ′ ↑ ↓ b ⊗ a ′′ ↑ + a ′ ↑ ↓ b ′ ← ⊗ a ′′ ↑ ← b ′′ ← , ∆↲ (a ↲ b) = b ⊗ a + b ′ ← ⊗ a ← b ′′ ← + a ′ ↓ ↓ b ⊗ a ′′ ↓ + a ′ ↓ ↓ b ′ ← ⊗ a ′′ ↓ ← b ′′ ← , ∆↳ (a ↲ b) = b ′ → ⊗ a ← b ′′ → + a ′ ↓ ↓ b ′ → ⊗ a ′′ ↓ ← b ′′ → , ∆↱ (a ↲ b) = a ′ ↑ ↓ b ′ → ⊗ a ′′ ↑ ← b ′′ → , ∆↰ (a ↳ b) = a ↓ b ′ ← ⊗ b ′′ ← + a ′ ↑ ↓ b ′ ← ⊗ a ′′ ↑ → b ′′ ← , ∆↲ (a ↳ b) = b ′ ← ⊗ a → b ′′ ← + a ′ ↓ ↓ b ′ ← ⊗ a ′′ ↓ → b ′′ ← , ∆↳ (a ↳ b) = b ′ → ⊗ a → b ′′ → + a ′ ↓ ↓ b ′ → ⊗ a ′′ ↓ → b ′′ → , ∆↱ (a ↳ b) = a ↓ b ′′ → ⊗ b ′′ → + a ′ ↑ ↓ b ′ → ⊗ a ′′ ↑ → b ′′ → , ∆↰ (a ↱ b) = a ↑ b ′ ← ⊗ b ′′ ← + a ′ ↑ ↑ b ′ ← ⊗ a ′′ ↑ → b ′′ ← , ∆↲ (a ↱ b) = a ′ ↓ ↑ b ′ ← ⊗ a ′′ ↓ → b ′′ ← , ∆↳ (a ↱ b) = a ′ ↓ ⊗ a ′′ ↓ → b + a ′ ↓ ↑ b ′ → ⊗ a ′′ ↓ → b ′′ → , ∆↱ (a ↱ b) = a ⊗ b + a ′ ↑ ⊗ a ′′ ↑ → b + a ↑ b ′′ → ⊗ b ′′ → + a ′ ↑ ↑ b ′ → ⊗ a ′′ ↑ → b ′′ → .
Consequently, we obtain four dendriform bialgebras [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF]:

(A, ←, →, ∆ ← , ∆ → ), (A, ↓ op , ↑ op , ∆ op ↓ , ∆ op ↑ ), (A, → op , ← op , ∆ ↑ , ∆ ↓ ), (A, ↑, ↓, ∆ op → , ∆ op ← ).
Proposition 11 The augmentation ideal of FQSym is a quadri-bialgebra. 

′ ↑ ↑ τ ′ → ⊗ σ ′′ ↑ → τ ′′ → . So: ∆ ↱ (σ ↱ τ ) = σ ⊗ τ + σ ′ ↑ ⊗ σ ′′ ↑ → τ + σ ↑ τ ′ → ⊗ τ ′′ → + σ ′ ↑ ↑ τ ′ → ⊗ σ ′′ ↑ → τ ′′ → .
The other compatibilities are proved following the same lines. ◻

Other examples

Let F Quad (V ) be the free quadri-algebra generated by V . As it is free, it is possible to define four coproducts satisfying the quadri-bialgebra axioms in the following way: for all v ∈ V ,

∆↰ (v) = ∆↲ (v) = ∆↳ (v) = ∆↱ (v) = 0.
It is naturally graded by puting the elements of V homogeneous of degree 1.

Proposition 12 For any vector space V , F Quad (V ) is a quadri-bialgebra.

Proof. We only have to prove the nine compatibilities of quadri-coalgebras. We consider:

B (1,1) = {a ∈ F Quad (V ) (∆ ↰ ⊗ Id) ○ ∆ ↰ (a) = (Id ⊗ ∆) ○ ∆ ↰ (a)}.
First, for all v ∈ V :

(∆ ↰ ⊗ Id) ○ ∆ ↰ (v) = v ⊗ 1 ⊗ 1 = (Id ⊗ ∆) ○ ∆ ↰ (v), so V ⊆ B (1,1) . If a, b ∈ B (1,1)
and ◇ ∈ {↰, ↲, ↳, ↱}:

(∆ ↰ ⊗ Id) ○ ∆ ↰ (a ◇ b) = ((∆ ↑ ⊗ Id) ○ ∆ ↑ (a)) ◇ (∆ ← ⊗ Id) ○ ∆ ← (b)) = ((Id ⊗ ∆) ○ ∆ ↑ (a)) ◇ ((Id ⊗ ∆) ○ ∆ ← (b)) = (Id ⊗ ∆)(∆ ↑ (a) ◇ ∆ ← (b)) = (Id ⊗ ∆) ○ ∆ ↰ (a ◇ b).
So a◇b ∈ B (1,1) , and

B (1,1) is a quadri-subalgebra of F Quad (V ) containing V : B (1,1) = F Quad (V ),
and the quadri-coalgebra relation (1.1) is satisfied. The eight other relations can be proved in the same way. Hence, F Quad (V ) is a quadri-bialgebra. ◻ Remarks.

1. We deduce that (F Quad (V ), ←, →, ∆ ← , ∆ → ) and (F Quad (V ), ↑, ↓, ∆ op → , ∆ op ← ) are bidendriform bialgebras, in the sense of [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF][START_REF]Primitive elements of the Hopf algebra of free quasi-symmetric functions[END_REF]; consequently, (F Quad (V ), ←, →) and (F Quad (V ), ↑, ↓) are free dendriform algebras.

2. When V is one-dimensional, here are the respective dimensions a n , b n and c n of the homogeneous components, of the primitive elements, and of the dendriform primitive elements, of degree n, for these two dendriform bialgebras: These are sequences A007297, A085614 and A078531 of [START_REF] Sloane | On-line encyclopedia of integer sequences[END_REF].

n
3. Let V be finite-dimensional. The graded dual F Quad (V ) * of F Quad (V ) is also a quadribialgebra. By the bidendriform rigidity theorem [START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF][START_REF]Primitive elements of the Hopf algebra of free quasi-symmetric functions[END_REF], (F Quad (V ) * , ←, →) and (F Quad (V ) * , ↑ , ↓) are free dendriform algebras. Moreover, for any x, y ∈ V , nonzero, x ↰ y and x ↳ y are nonzero elements of P rim Quad (F Quad (V )), which implies that (F Quad (V ) * , ↰, ↲, ↳, ↱) is not generated in degree 1, so is not free as a quadri-algebra. Dually, the quadri-coalgebra F Quad (V ) is not cofree.

We now give a similar construction on the Hopf algebra of packed words WQSym, see [START_REF] Novelli | Natural endomorphisms of quasi-shuffle Hopf algebras[END_REF] for more details on this combinatorial Hopf algebra.

Theorem 13 For any nonempty packed word w of length n, we put:

m(w) = max{i ∈ [n] w(i) = 1}, M (w) = max{i ∈ [n] w(i) = max(w)}.
We define four products on the augmentation ideal of WQSym in the following way: if u, v are packed words of respective lengths k, l ≥ 1: w.

u ↰ v = P ack(w ( 
We define four coproducts on the augmentation ideal of WQSym in the following way: if u is a packed word of length n ≥ 1,

∆ ↰ (u) = u(1),u(n)≤i<max(u) u [i] ⊗ P ack(u [max(u)]∖[i] ), ∆ ↲ (u) = u(n)≤i<u(1) u [i] ⊗ P ack(u [max(u)]∖[i] ), ∆ ↳ (u) = 1≤i<u(1),u(n) u [i] ⊗ P ack(u [max(u)]∖[i] ), ∆ ↱ (u) = u(1)≤i<u(n) u [i] ⊗ P ack(u [max(u)]∖[i] ).
These products and coproducts make WQSym a quadri-bialgebra. The induced Hopf algebra structure is the usual one.

Proof. For all packed words u, v of respective lengths k, l ≥ 1:

u ⋆ v = P ack(w(1)...w(k))=u, P ack(w(k+1)...w(k+l)=v w.

So ⋆ is the usual product of WQSym, and is associative. In particular, if u, v, w are packed words of respective lengths k, l, n ≥ 1:

u ⋆ (v ⋆ w) = (u ⋆ v) ⋆ w = P ack(x ( 
1)...x(k))=u, P ack(x(k+1)...x(k+l)=v, P ack(x(k+l+1),...,x(k+l+n))=w

x.

Then each side of relations (1, 1) . . . [START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF][START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF] is the sum of the terms in this expression such that:

m(x), M (x) ≤ k m(x) ≤ k < M (x) ≤ k + l m(x) ≤ k < k + l < M (x) M (x) ≤ k < m(x) ≤ k + l k < m(x), M (x) ≤ k + l k < m(x) ≤ k + l < M (x) M (x) ≤ k < k + l < m(x) k < M (x) ≤ k + l < m(x) k + l < m(x), M (x) So (WQSym, ↰, ↲, ↳, ↱) is a quadri-algebra.
For all packed word u of length n ≥ 1:

∆(u) = 1≤i<max(u) u [i] ⊗ P ack(u [max(u)]∖[i] ).
So ∆ is the usual coproduct of WQSym and is coassociative. Moreover:

( ∆ ⊗ Id) ○ ∆(u) = (Id ⊗ ∆) ○ ∆(u) = 1≤i<j<max(u) u [i] ⊗ P ack(u [j]∖[i] ) ⊗ P ack(u [max(u)]∖[j] ).
Then each side of relations (1, 1) . . . [START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF][START_REF] Duchamp | A combinatorial non-commutative Hopf algebra of graphs[END_REF] is the sum of the terms in this expression such that:

u(1), u(n) ≤ i u(1) ≤ i < u(n) ≤ j u(1) ≤ i < j < u(n) u(n) ≤ i < u(1) ≤ j i < u(1), u(n) ≤ j i < u(1) ≤ j < u(n) u(n) ≤ i < j < u(1) i < u(n) ≤ j < u(1) j < u(1), u(n) So (WQSym, ∆ ↰ , ∆ ↲ , ∆ ↳ , ∆ ↱ ) is a quadri-coalgebra.
Let us prove, as an example, one of the compatibilities between the products and the coproducts. If u, v are packed words of respective lengths k, l ≥ 1, ∆ ↱ (u ↱ v) is obtained as follows:

• Consider all the packed words w such that P ack(w(1) . . . w(k)) = u, P ack(w(k+1) . . . w(k+ l)) = v, such that 1 ∉ {w(k + 1), . . . , w(k + l)} and max(w) ∈ {w(k + 1), . . . , w(k + l)}.

• Cut all these words into two parts, by separating the letters into two parts according to their orders, such that the first letter of w in the left (smallest) part, and the last letter of w is in the right (greatest) part, and pack the two parts.

If u ′ ⊗ u ′′ is obtained in this way, before packing, u ′ contains 1, so contains letters w(i) with i ≤ k, and u ′′ contains max(w), so contains letters w(i), with i > k. Four cases are possible.

• u ′ contains only letters w(i) with i ≤ k, and u ′′ contains only letters w(i) with i > k. Then w = (u(1) . . . u(k)(v(1) + max(u)) . . . (v(l) + max(u)) and u ′ ⊗ u ′′ = u ⊗ v.

• u ′ contains only letters w(i) with i ≤ k, whereas u ′′ contains letters w(i) with i ≤ k and letters w(j) with j > k. Then u ′ is obtained from u by taking letters < i, with i ≥ u(1), and u ′′ is a term appearing in P ack(u [k]∖[i] ) ⋆ v, such that there exists j > ki, with u ′′ (j) = max(u ′′ ). Summing all the possibilities, we obtain u ′ ↑ ⊗ u ′′ ↑ → v.

• u ′ contains letters w(i) with i ≤ k and letters w(j) with j > k, whereas u ′′ contains only letters w(i) with i > k. With the same type of analysis, we obtain u ↑ v ′ → ⊗ v ′′ → .

• Both u ′ and u ′′ contain letters w(i) with i ≤ k and letters w(j) with j > k. We obtain

u ′ ↑ ↑ v ′ → ⊗ u ′′ ↑ → v ′′ → .
Finally: Corollary 14 (WQSym, →, ←) and (WQSym, ↓, ↑) are free dendriform algebras.

∆ ↱ (u ↱ v) = u ⊗ v + u ′ ↑ ⊗ u ′′ ↑ → v + u ↑ v ′ → ⊗ v ′′ → + u ′ ↑ ↑ v ′ → ⊗ u ′′ ↑ → v ′′ → .

Remarks.

1. If A is a quadri-algebra, we put:

P rim Quad (A) = Ker( ∆↰ ) ∩ Ker( ∆↲ ) ∩ Ker( ∆↳ ) ∩ Ker( ∆↱ ).

For any vector space V , A = F Quad (V ) is obviously generated by P rim Quad (A), as V ⊆ P rim Quad (A). So FQSym is not generated by P rim Quad (FQSym), so is not isomorphic, as a quadribialgebra, to any F Quad (V ). A similar argument holds for WQSym.

Proof.

  As an example, let us prove the last compatibility. Let σ, τ be two permutations, of respective length k and l. Then ∆ ↱ (σ ↱ τ ) is obtained by shuffling in all possible ways the words σ and the shifting τ [k] of τ , such that the first letter comes from σ and the last letter comes from τ [k], and then cutting the obtained words in such a way that 1 is in the left part and k + l in the right part. Hence, the left part should contain letters coming from σ, including 1, and starts by the first letter of σ, and the right part should contain letters coming from τ [k], including k + l, and ends with the last letter of τ [k]. there are four possibilities: • The left part contains only letters from σ and the right part contains only letters form τ [k]. This gives the term σ ⊗ τ . • The left part contains only letters from σ, and the right part contains letters from σ and τ [k]. This gives the term σ ′ ↑ ⊗ σ ′′ ↑ → τ . • The left part contains letters from σ and τ [k], and the right part contains only letters form τ [k]. This gives the term σ ↑ τ ′ → ⊗ τ ′′ → . • Both parts contains letters from σ and τ [k]. This gives the term σ

  The fifteen remaining compatibilites are proved following the same lines. ◻ Examples. (12) ↰ (12) = (1423), (12) ↲ (12) = (1312) + (2312) + (2413) + (3412), (12) ↳ (12) = (1212) + (1213) + (2313) + (2314), (12) ↱ (12) = (1223) + (1234) + (1323) + (1324).

2 .

 2 Let us consider the quadri-bialgebra FQSym. Direct computations show that:P rim Quad (FQSym) 1 = V ect(1), P rim Quad (FQSym) 2 = (0), P rim Quad (FQSym) 3 = (0), P rim Quad (FQSym) 4 = V ect((2413) -(2143), (2413) -(3412)); moreover, the homogeneous component of degree 4 of the quadri-subalgebra generated by P rim Quad (FQSym) has dimension 23, with basis:(1234), (1243), (1324), (1342), (1423), (1432), (2134), (2314), (2314), (2431), (3124), (3214), (3241), (3421), (4123), (4132), (4213), (4231), (4312), (4321), (2143) + (2413), (3142) + (3412), (2143) -(3142).
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