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ABSTRACT: Bimetallic systems present new opportunities to tailor the optical 
properties of nanoparticles. Morphology, structural, and optical properties of 
gold and of gold−silver nanoparticles have been studied by three dimensional 
(3D) scanning transmission electron microscopy (STEM), STEM imaging, and 
monochromated subnanometer electron beams. The 3D morphology of these 
nanoparticles consists of bipyramidal prisms with well defined facets. 
Furthermore, in the case of the core−shell nanoparticles, from these 
tomographical studies, we have determined the silver (shell) distribution and 
their atomic arrangement. Multipolar localized surface plasmon resonances 
(LSPR) have been studied, at subnanometer level and at high energy resolution, 
as a function of their shape, their size (aspect ratio), and the surrounding 
environment. These results have been interpreted in the framework of the 
discrete dipole approximation (DDA) simulations. The effect of the silver outer
shell has been elucidated. We observed a significant damping of plasmon excitations due to the difference of dielectric function of
these two metals. In addition, we have shown that the combination of the tomographical and plasmonic (experiments and
simulations) studies with such high spatial resolution constitutes a very powerful and fundamental tool for understanding and
optimizing the photonics properties of nanomaterials.

1. INTRODUCTION
In recent years, significant attention has been devoted to the
study of noble metallic nanoparticles (NP) due to the
possibility of controlling their optical properties. In particular,
the tuning of their localized surface plasmon resonances
(LSPRs) has foreseen applications in photonics, electronics,
and biosensors.1−4 These localized resonances correspond to
the coherent oscillations of the conduction/valence electrons,
mainly at the surface of the metallic nanoparticles, and they
could be excited by an external electromagnetic field (light or
electron beams).1,2 It is well known that particle size, shape,
and composition, as well as the local dielectric environment of
NP have strong impact on these SPRs.1−4 These parameters
can nowadays be controlled in an efficient way during the
synthesis of these nanoparticles, and their applications are
becoming a reality in the different fields mentioned above but
also for catalysis, biomedicine, or optoelectronics.1−7

Bimetallic nanoparticles offer new possibilities to tune the
plasmonic responses by modifying their spectral band or
enhancing the local electromagnetic fields.1 Gold and silver are

the most common noble metal employed in plasmonics, and 
recent attention has been focused on Au−Ag systems.8−14 In 
nanorods or nanodumbbells, SPR energy shifts have been 
observed as a function of the size of the objects. Furthermore, 
extra resonances and new modes have been reported to depend 
on the silver content, as some of them are directly associated 
with silver SPR,15,40,41 others to the shape of the object12,42 and 
even to the arrangement/assembly of these nanostruc
tures.40,43,44 These results demonstrate the interest in bimetallic 
materials. However, detailed local analyses are needed to 
disentangle the effect of the core−shell structure and of other 
structural parameters on the optical properties of these 
materials. In this sense, electron tomography (ET) is probably 
the most powerful technique to obtain, very accurately, all these 
crucial parameters (structural, morphological, and composi
tional aspects) in three dimensions.16−18
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Under this context, electron energy loss spectroscopy
(EELS) developed in a transmission electron microscope
(TEM) is one of the most appropriated techniques for the
study of the SPR response at high spatial resolution.19−27 In the
present work, we have studied core−shell gold−silver nano
particles via low loss EELS experiments using a probe corrected
and monochromated TEM. Pure gold NPs with similar sizes
and shapes have been considered for comparison. The
experimental findings have been interpreted with the help of
discrete dipole approximation (DDA) simulations. Further
more, the geometry of the nanoparticles has been studied by
STEM tomography, and their precise composition and atomic
structure have been analyzed by energy dispersive X ray
spectroscopy (EDS) and high angle annular dark field in
scanning TEM (HAADF STEM) measurements. As part of the
interpretation of the different SPR modes, we have
demonstrated that, due to the very similar optical constant of
bulk Ag and Au below 2 eV, the core−shell or pure NP behave
very similarly for all the optical properties below 2 eV (i.e., in
the visible range). The present works significantly enrich the
understanding of the optical properties of bimetallic nanostruc
tures and provide insight into their potential applications in
photonics and related fields, as subwavelength guiding,
electromagnetic field enhancement, and biosensing.

2. MATERIALS AND METHODS

Materials. Growth of Gold Bipyramids. The nanostructures
were grown using the seed mediated method in aqueous
cationic surfactant solutions in the presence of AgNO3, CTAB.
Citrate stabilized Au nanoparticles were used as seeds. Their
preparation followed the previously reported procedure.17

Briefly, aqueous solutions of HAuCl4 (0.25 mM, 0.125 mL)
and sodium citrate (0.25 mM, 0.25 mL) were first added into
deionized water and then a freshly prepared, ice cold solution
of NaBH4 (0.6 mL, 12 mM) was added under vigorous stirring.
The resulting seed solution was kept at least 4 h before use. For
a typical preparation of Au bipyramids in CTAB solutions, a
growth solution was first prepared by the addition of HAuCl4
(11 mM, 0.45 mL), AgNO3 (26 mM, 0.038 mL), HCl (0.2 mL,

1 M), and ascorbic acid (0.1 M, 0.076 mL) into an aqueous
solution of CTAB (0.1 M, 10 mL) at 27 °C. The citrate
stabilized seed solution was then added. The reaction solution
was mixed by gentle inversion for 10 s and then left
undisturbed overnight in an oven at 65 °C. Similar preparations
with the use of different volumes (20−600 mL) of seed
solutions were carried out in order to prepare the gold
bipyramid of different lengths.

Silver Coating of the Gold Bipyramids. The original
method that we used to deposit silver onto the elongated Au
nanostructures favors the deposition of silver on the large
sidewalls facets rather than at the tip. One found that by
carefully controlling the pH of the solution, a thin layer of silver
could be more homogeneously deposited on the overall
structure (lateral highly stepped facets as well as the equatorial
plane and the tips).17 Experimental conditions used were 0.1
mM of gold bipyramids, 0.05 M of CTAB, ascorbic acid (AA)
in a ratio of [AA]/[Ag+] = 20, and the quantity of silver nitrate
was calculated to be in a ratio [Ag+]/[Au] = 0.2−1.5. To
initiate the silver reduction, the pH was adjusted at 8.5 by
slowly adding an aqueous solution of 0.01 M NaOH. The pH is
a critical parameter in this study for homogeneous coating.

TEM: Imaging, EDS, Tomographic, and EELS Analyses.
A purification of the Au and Au−Ag bipyramids solution was
systematically performed prior to TEM studies. After this
purification process, the samples were prepared placing a drop
of the nanoparticle aqueous suspension directly on a copper
carbon holey grid that was left drying in air before putting it
inside the microscope. NPs were deposited on amorphous
carbon films on a Cu grid with repeated plasma cleaning to
eliminate organic contamination prior to the STEM tomog
raphy and EELS analyses. In the case of the TEM samples
employed for tomographical studies, we added Au spherical
nanoparticles of less than 5 nm as markers for the tilt series
alignment. It is worth noting that such samples were not
studied in low loss EELS, to prevent any contribution to the
plasmon response of the Au and Au−Ag nanoparticles of
interest.
All the TEM studies (tomography, EDS, imaging, and EELS)

have been developed using a FEI Titan Low Base microscope,

Figure 1. (a) Low magnification (LM) HAADF image of one of the Au bipyramids. (b) EDS spectra recorded at different positions marked in
Figure 1a. (c) Low magnification HAADF image of an Au−Ag core−shell bipyramidal nanoparticle. (d) EDS spectra recorded in two different
regions marked on the LM HAADF image. (e) 3D model of the nanoparticle obtained by a classical data segmentation procedure from a
reconstructed HAADF STEM tilt series, Au in purple and Ag in gray, respectively. (f) A slice through the XY plane of the chemical sensitive volume
showing the Au (red) and Ag (green) distribution at the basis of the pyramid.
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working at 80 kV (EELS, some EDS and imaging works) or 300
kV. This microscope is equipped with a Cs probe corrector, a
monochromator, and an ultrabright X FEG electron source.
The tilt tomographical series were acquired using Xplore3D
FEI. The tilt angle range was of ±72°, with an image recorded
every 2° in Saxton mode.30 After acquisition, the tilt series data
were treated for imaging processing, alignment and recon
struction, using IMOD31 and the volume reconstruction was
performed employing the algebraic reconstruction technique
(ART)32 (15 iterations) implemented in TomoJ,33 a plugin in
ImageJ. The volume segmentation and visualization were
performed using ImageJ and 3DSlicer software. It is worth
noting that no evidence of irradiation damage in the samples
was detected during the tilt series acquisition. For the low loss
studies, the energy resolution was below 200 meV (even 150
meV for some of the cases), and the spectra were collected in
STEM mode using spectrum image mode.34,35 40−60 Spectra
(of 30−40 ms/each) were acquired for each probe position
following a two dimensional (2D) region across the nano
object. The convergence and collection angle were 25 and 35
mrad, respectively, and the energy resolution ∼200 meV. The
low loss region of EEL spectra is strongly affected by the broad
tails of the zero loss peak (ZLP). The fact that we used a
monochromator and the energy resolution that we obtain helps
for the analysis of the low energy features but a careful
treatment has to be done. In order to be able to extract
quantitative information, all the EEL spectra have been
normalized by the intensity of the first mode (marked as A),
which is the most intense one (see Figure S4 of the Supporting
Information). The tail of the zero loss peak has been removed
using a power law subtraction method.36

EELS Simulations. EELS simulations have been performed
in the discrete dipole approximation (DDA) method as

implemented in the DDEELS code.28,37 The optical constant
of bulk metals have been taken from tabulated data38,39 and the
number of dipoles varies from 15000 to 30000 depending of
the NP.

3. RESULTS AND DISCUSSION
Figure 1a displays a HAADF image of a pure gold nanoparticle
as checked by EDS (Figure 1b). EDS spectra have been
collected at different areas of this NP and shows Au X rays as
well as Cu fluorescence coming from the TEM grid. Au−Ag
core−shell nanoparticles have also been investigated (Figure 1,
panels c and d). These figures correspond to a HAADF image
and to several EDS spectra recorded at different positions on
one of the Au−Ag NP. All these nanostructures (Au pure or
Au−Ag systems) have the same arrowhead shape, and their size
is in the range of 150−350 nm for the long axis and 50−90 nm
for the short axis.
In order to obtain structural information on different NPs,

we have developed three dimensional (3D) STEM HAADF
measurements in both Au−Ag core−shell and Au nano
particles. Figure 1e shows the 3D computed model of the Au−
Ag core−shell nanoparticle displayed in Figure 1c. All the
studied NP are bipyramidal prisms, with pentagonal joined
bases and relatively rounded apexes. Furthermore, the core−
shell nanoparticles are composed by a Au core, which is
covered by a relatively uniform layer of Ag of a few nanometers
thick. A movie of the 3D models of the Au−Ag NP (Figure 1c)
is displayed in the Supporting Information, showing the relative
uniformity of the Ag layer.
Once the morphology and composition of the NP have been

fully characterized, we turned to the study of their optical
properties via EELS measurements in the low loss region
(below 50 eV). The SPR were excited by an 80 keV

Figure 2. (a and d) EEL spectra (each of them corresponds to the sum of 16 spectra) extracted from the SPIMs recorded on the Au and Au−Ag
core−shell nanoprisms depicted in the HAADF images (the scale bar is 50 nm) (Figure 2, panels b and e, respectively). The dimensions of the
nanoparticles are specified in those images: L, length; W, width; and σ, aspect ratio (W/L). Inset of Figure 2d corresponds to a zoom of the 2.0−3.5
eV region. (c and f) Different intensity maps showing the spatial distribution of the SPR modes of these Au and Au−Ag core−shell nanobipyramids.
These different modes are marked as A−D.
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monochromated electron beam, using the STEM EELS
spectrum image (SPIM) acquisition mode. It is also worth
mentioning that following each SPIM acquisition, we recorded
HAADF images to ensure that no visible beam damage (due to
the inelastic scattering events) or carbon contamination has
occurred. Among the different bipyramid nanoparticles present
in the sample, we have focused our attention on NP with very
similar sizes but with different compositions (pure Au and Au−
Ag core−shell). We have considered, for each composition,
typical sizes and aspect ratio.
The Figure 2 depicts the EELS analyses of the SPR modes

(0.75−3.5 eV) carried out for pure gold and Au−Ag core−shell
bipyramids having the same size [Length (or long axis) = 340
nm and width (or short axis) = 75 nm]. Typical EEL spectra
(sum of 16 spectra) are plotted in Figure 2 (panels a and d).
They have been extracted from different areas of the 2 SPIMs
(Figure 2, panels c and f) as marked on the HAADF images
(Figure 2, panels b and e): curve (i) is from the long axes apex,
curve (ii) from the short axes apex, and curve (iii) from the
edge of the NP. The maps correspond to the intensity extracted
for the SPIMs after zero loss peak (ZLP) subtraction (see
Methods). More experimental data on Au and Au−Ag NP of
different size and aspect ratio are given in the Supporting
Information.
We observe three main plasmon modes, denoted as A, B, and

C, which are common to all the nanobipyramids, independently
of their size or composition. It is worth mentioning that, as
observed from Figure 2 (panels a and d), the relative intensity
of these modes strongly depends on the probe position.
Furthermore, we also note that the intensities of the modes are
not symmetrically distributed even if the NPs are symmetric
(see Figure 2, panels c and f). This asymmetry is not due to the
orientation of the NP but from the carbon membrane on which
the NP is partly lying (see HAADF images, Figure 2, panels b
and e). Indeed (from the TEM analyses, including the
tomography studies), we concluded that the NP long axis is
oriented rather perpendicular to the electron beam. Local
modification of the environment (the presence of the carbon
membrane in this case) can damp heavily the local surface
plasmon resonances (LSPR).27

The A mode is localized at the sharp (long axis) apex of the
nanoparticles, the C mode at the other (short axis) apex of the
nanoparticle, where the B mode is observed for a probe
trajectory close to all apexes. The position of the A mode

depends on the size and aspect ratio of the nanobipyramid (see
more experimental data in the Supporting Information), but
there is no clear shift of this mode in energy for Au−Ag core−
shell compared to homogeneous Au NP (Figure 2d and panel d
of Figure S1 of the Supporting Information). The position,
shape, and intensity of the C mode depend mainly of the
composition. A well defined peak at 2.4 eV was observed for Au
nanoparticules but is almost not observable for Au−Ag core−
shell NPs. Furthermore, in this latter case (Au−Ag system), this
C mode splits into 2 modes at 2.4 and 3.1 eV. There is a fourth
resonance (D at ∼1.8 eV) which is only visible for the biggest
nanoparticles, independent of their composition (pure gold or
gold−silver) and located at the edge (or the face) of the
nanobipyramid.
In order to interpret these results, we have performed DDA

simulations of EELS, as implemented in the DDEELS code.28

We first consider the EELS response of ellipsoidal nanoparticles
(Figure 3a). Even if ellipsoid is only a rough estimation of the
actual NP shape, it gives us an easy classification of the
observed modes and can be compared with other studies.28,29

Size, aspect ratio and impact parameter (that correspond to the
different area of the SPIMs) effects are summarized in Figure 3.
EEL spectra for two impact parameters (nearby the long axis
apex and the short axis apex of the ellipsoid) are simulated. The
main (and low energy) mode for the long axis apex impact
parameter (solid black line) is the longitudinal (long axis)
optically active dipolar (D1). The next mode [at 1.7, 2.2, and
2.7 eV on curves (i), (ii), and (iii)] is a quadrupolar mode Q
(optically not active for small NP) as proven by its activity for
both impact parameters and by the map of the induced EM
field (not shown). As expected, the modes D1 and Q are clearly
size and aspect ratio dependent. The transverse dipolar mode
D2 (at 3.6 eV) is excited by the short axis apex impact
parameter. Its shape and energy is independent of the size and
aspect ratio of the ellipsoid for the considered geometries. This
invariance is related to the small size of the associated semiaxis
(24 to 48 nm) for which quasi static approximation remains
valid. Finally, an octupolar mode O is found only for large 5:1
ellipsoid at 2.4 eV.
EELS simulations for Au ellipsoid, Ag ellipsoid, and Au−Ag

core−shell ellipsoid give some insight into the composition
effect on the plasmon modes as demonstrated on Figure 3b for
NP with a semiaxis of (90:30) nm for the outer ellipsoid and
(75:25) nm for the inner ellipsoid. First, we observe that the

Figure 3. (a) EELS simulations for a homogeneous biaxial ellipsoid of Ag, showing the size and aspect ratio effects on LSP resonances. Aspect ratio
and values of the semiaxis (in nanometers) are displayed above the curves. Two impact parameters are considered, close to the long axis (black solid
curve) and close to the short axis (dashed red curve). (b) EELS simulations for an Ag, and Au and an Au−Ag core−shell ellipsoidal NP [marked as
(i), (ii), and (iii)]. The sizes of the semiaxis are (90:30) nm for the outer ellipsoid and (75:25) nm for the inner ellipsoid).
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energy and shape of the D1 mode are almost independent of
the composition of these nanostructures. This is related to the
very similar optical constant of bulk Ag and Au below 2 eV.
This means NP made of Au and Ag will behave very similarly
for all the optical properties below 2 eV (i.e., in the visible
range), whatever the relative composition is. D2 shows up at
3.6 eV for Ag NP and at 2.4 eV for Au NP (superimposed with
the Q mode). Core−shell NP display a very broad D2 plasmon
mode with maxima at energies of the mode of homogeneous
NP (that we can call D2 and D2′).
To go further in the analysis of experimental results, we

performed EELS simulations for a more realistic NP shape (i.e.,
a nanobipyramid with sharp tips in order to mimic the
experimentally explored NP). We present results for both
homogeneous Au NP (Figure 4a) and Au−Ag core−shells NP
(Figure 4b) for L = 350 nm and W = 78 nm, very similar to the
experimental morphology of Figure 2. Maps of intensity of the
losses are present in Figure 4c for the Au−Ag core−shell NP.
The D1 mode shows up at 1.1 eV for both NPs. The mode at
1.45 eV is a quadrupolar (Q) mode with loss intensities maxima
at all the four apex of the NP. The D2 mode is observed at 2.4
eV for Au bipyramid, while a broad plasmon excitation is
observed in our simulations for Au−Ag core−shell NP (D2 and
D2′). An edge (or face) mode is obtained at 1.8 eV (Au) or
2.05 eV (Au−Ag). This mode corresponds to the O mode for
ellipsoid. It is worth noting that, as seen for ellipsoid, this high

order (or “face”) mode are more clearly seen for larger NP. We
have also simulated the EELS response for other NP (pure and
core−shell) of different aspect ratio/size (see Figures S2 and S3
of the Supporting Information).
Table 1 summarizes all the EELS experimental results on

pure and core−shell bipyramids for the L = 340 nm, W = 75
nm and the L = 210 nm, W = 70 nm (see the Supporting
Information) and link them with the DDEELS simulations.
There are two parameters governing the response of these
nanoparticles: the morphology (size and aspect ratio) and the
composition (homogeneous/pure or core−shell NP).
The mode A is obviously the longitudinal D1 mode, not

affected by the composition and shifted by size and aspect ratio
modification. We note here that the mode A of the small Au−
Ag core−shell NP at 1.1 eV is red shifted compared with the
homogeneous NP. This contradicts both the conclusions
reached above for larger NP and the simulations (see the
Supporting Information). A local contamination could explain
this discrepancy. The mode C is the transverse mode (D2),
associated with the gold core that is not influenced by the Ag
shell or by the size of the NP. The mode C′ is the transverse
mode associated with the Ag shell (D2′). The mode B is a
quadrupolar mode Q, not influenced by the composition but by
the size and aspect ratio. Finally, the mode D is a “face” or high
order mode that only appears for larger NPs. Note that for
some of the spectra, it was impossible to define the energy of

Figure 4. EELS simulations for (a) Au and (b) Au−Ag bipyramids for three different impact parameters [see sketch between Figure 4, panels a and
b, marked as (i), (ii), and (iii)]. The size of the NP is L = 350 nm and W = 78 nm. (c) Intensity maps of the intensity of the losses at 4 different
energies for the Au−Ag core−shell NP.
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the C′ mode because of the very wide and extended energy
range of the mode (see curve (iii) in Figure 4b between 2.0 and
3.5 eV). These findings corroborate other recent works
developed on different kinds (size and shape) of Au−Ag
core−shell nanostructures, where slight (<0.1 eV) energy shifts
of the modes have been observed due to the presence of Ag
shells.40−43

While the morphology (size and aspect ratio) influence on
the SPR resonance is well documented, it is worth insisting on
the effect of the composition that this study reveals. First, below
2 eV (modes A and B), an Ag shell has no influence on the
plasmon excitation scheme (for both position and intensities).
This is related to the nearly identical optical constant of bulk
Ag and Au in the IR. Above 2 eV, the composition of the NP is
revealed. The more spectacular effect is a dramatic damping of
plasmon excitations, even for very narrow Ag coverage of Au
NP. This can be explained by the difference in the imaginary
part of the dielectric function for both metals in this frequency
range that give rise to this heavy damping. Figure 5 further
illustrates this damping effect. We cannot directly compare the
two experiments carried out in different NP (of the same size
and shape) but different composition (pure Au, Figure 5a, and
Au−Ag core−shell, Figure 5b, respectively). It is worth
mentioning that these intensity maps are normalized by the
intensity map corresponding to the A mode which is, for all the
cases, the most intense mode (see Methods). We can observe
that, taking the intensity map of the A mode (Imode‑A) as

Table 1. Table Compiling All the Different SPR Modes
Observed for the 2 Different Systems (Pure Au and Core
Shell Au−Ag) and for the NP Presenting 2 Different Aspect
Ratio Valuesa

aThis mode (*) corresponds to a quadrupolar mode (Q) which, in the
case of the pure Au nanoparticles, is superimposed with a dipolar
mode (D2). In italic, the theoretical energy values for the different
SPR modes. These modes (#) are not clearly identified.

Figure 5. (a and b) Normalized intensity maps (see Methods) for the two different systems displayed in Figure 2, corresponding to pure Au (Figure
5a) and Au−Ag core−shell NP (Figure 5b), respectively.
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reference for both systems, the other modes vary as follows (in
% of the A mode): (i) pure Au NP: Imode‑B is 62%, Imode‑C is
38%, and Imode‑D is 59%. (ii) Au−Ag core−shell NP: Imode‑B is
36%, Imode‑C is 38%, and Imode‑D is 15%. It is obvious that the
intensity of all the modes decrease significantly when an Ag
layer is present.

4. CONCLUSION
In summary, we have employed SR EELS STEM, coupled with
electron tomography, HAADF STEM and EDS, to deeply
study core−shell gold−silver and pure gold bipyramidal
nanoparticles. This approach, combining all of these analytical
and local methods, provides a wealth of information, at a
subnanometer scale, of the precise structure/morphology,
composition, and optical properties of these complex
nanostructures. Furthermore, we have used discrete dipolar
approximation (DDA) calculations for the interpretation of the
different LSPR modes excited by EELS. The effect of the
composition and the size (aspect ratio) of these nanostructures
on the evolution of electromagnetic modes has been analyzed.
We have observed that, due to the very similar optical constant
of bulk Ag and Au below 2 eV, the core−shell or pure NP
behave very similarly for all the optical properties below 2 eV
(i.e., in the visible range). In addition, we have observed that
there is a dramatic damping of plasmon excitations for very
narrow shell of Ag covering the Au NP. This effect can be
explained by the difference in the imaginary part of the
dielectric function for both metals. These findings, which can
be obtained only by the TEM techniques used here, have a very
important impact on the application of these nanomaterials as
nanophotonic/plasmonic systems.
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