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Abstract: 

Although the radiolysis of bulk water is well known, some questions remain in the case of adsorbed 

or confined water, especially in the case of zeolites 4A, which are used to store tritiated water. An 

enhancement of the production of hydrogen is described in the literature for higher porous structures, 

but the phenomenon stays unexplained. We have studied the radiolysis of zeolites 4A containing 

different quantities of water under 137Cs gamma radiation. We focused on the influence of the water 

loading ratio. The enhancement of hydrogen production compared with bulk water radiolysis has 

                                                 
1 Abbreviations :  

 

WLR : Water Loading Ratio 

ZWS : Zeolite 4A / Water System 
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been attributed to the energy transfer from the zeolite to the water, and to the influence of the water 

structure organization in the zeolite.  Both were observed separately, with a maximum efficiency for 

energy transfer at a loading ratio of about 13%, and a maximum impact of structuration of water at a 

loading ratio of about 4%. 
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1. Introduction: 

Zeolites are widely used nanoporous materials. They are encountered in a broad field of applications, 

such as catalysis, filtration and isotopic separation (Kotoh et al., 2010, 2009; Montanari and Busca, 

2008; Zhu et al., 2005). Zeolites A, which are hydrophilic, are also used to store tritiated water, 

generated and required by nuclear applications like ITER. This experimental reactor is supposed to 

produce, amongst other tritiated wastes, high quantities of pure tritiated water during its working 

period (Pamela et al., 2013). Its development requires safe storage solutions. 

Synthetic Zeolites A are built with corner sharing TO4 tetrahedrons, where T corresponds to silicon 

or aluminum (Breck, 1974). At the nanometer scale, their crystalline structure is composed of two 

kinds of cages. Sodalite cages, also called β cages, are a truncated octahedral shape, with a diameter 

of 6.6 Å, disposed at each corner of a cubic arrangement. The second kind of cages, called 

supercages or α cages, are located in the center of this array, and are characterized by a diameter of 

11.4 Å. Sodalites cages are linked together by prisms, called double-four-membered rings (D4R). 

The framework negative charge (induced by the aluminum valence) is compensated by cations, 

included in the structure. The nature and location of those cations affects the properties of the zeolite. 

In zeolites 4A, the positive charge is provided by monovalent sodium cations, leading to the 

following chemical composition for a unit cell: [Na12(SiO4)12(AlO4)12]. The zeolite 4A is strongly 

hydrophilic. A unit cell can adsorb 27 molecules of water. Among those 27 molecules, some are 

commonly localized as molecules adsorbed in the crystalline structure: 4 or 5 in each sodalite cage 

and 20 to 23 in each supercage (Crupi et al., 2005; Demontis et al., 2008). 



The quantity of water is expressed as Water Loading Ratio (WLR) given in percentage, equal to the 

mass of water divided by the mass of zeolites. The maximum loading ratio for zeolites 4A depends 

on the synthesis method and the binder quantity, but is about 20 %. It has been shown, considering 

the adsorption heat (Moïse et al., 2001) or FTIR results (Crupi et al., 2003), that the water adsorption 

is heterogeneous, and occurs in three-steps, leading to different kinds of confined water. The first 

adsorbed water molecules solvate the cations which then migrate, opening the access to the β cages. 

The α cages are then filled.  

Even if bulk water radiolysis is well known, even in the case of self-radiolysis of tritiated water 

(Buxton et al., 1988; Ershov and Gordeev, 2008), (Stolz et al., 2003), many questions remain about 

the radiolysis of adsorbed and confined water. An enhancement of hydrogen production, in some 

porous materials has been observed, for different irradiation conditions (Cecal et al., 2004; Le Caër, 

2011; Le Caër et al., 2005; Rotureau et al., 2005). The same phenomenon is observed in the precise 

case of zeolites A (Nakashima and Aratono, 1993; Nakashima and Tachikawa, 1987), or structurally-

closed zeolites: faujasites (Nakashima and Masaki, 1996), but the literature is quite limited in this 

area, even if the impact of confinement on radiolysis has been shown (Foley et al., 2005).  

Since the interaction and behavior of water strongly depends on the loading ratio of zeolites, we 

followed gas production depending on the level of water filling of the zeolites. We chose gamma 

irradiations, which are close to β- irradiations induced by tritiated water in terms of the dose rate. We 

took special care with respect to the dosimetry: the primary energy deposition in water is commonly 

estimated to be equal to the total energy deposited multiplied by its mass ratio (LaVerne and Tandon, 

2002),(LaVerne and Tonnies, 2003). We proposed an improvement of this consideration using 

Monte-Carlo simulation. We focused on the dihydrogen production since it may create, with 

dioxygen, an explosive atmosphere over a large range of concentration. We adopted two different 

approaches, regarding both primary energy deposition in the water and energy deposition in the 

whole system containing zeolites 4A and water. 

2. Materials and Methods 

2.1.Sample conditioning 

Synthetic hydrophilic zeolites 4A were supplied by Molsiv Adsorbents. Their maximum water 

capacity, expressed as the ratio of water mass under dried zeolite mass, given by the supplier is 

19.6 %. To improve the mechanical properties of zeolites 4A, a chemical inert non-porous binder, 

presenting the same atomic composition as the zeolites, is included during the synthesis. We 

estimated the proportion of binder by comparing the experimental water quantity adsorbed at 



saturation for our samples and that for a pure 4A sample, provided by CECA. The water saturation 

obtained by exposure to ambient water vapor, is investigated by thermogravimetry and is obtained as 

a mass percentage of 25 % for pure zeolites, against 19 % for our storage samples. The binder 

proportion is so estimated to be 24 %. Nevertheless, as the atomic composition of binder is close to 

the one of pure zeolites, no significant influence on interaction sections, and thus on irradiation 

effects, is expected.     

4 g of zeolites 4A were introduced in 10 cm3 air tight glass ampoules. Samples were then 

conditioned with a unique bench, comprising a pump, a pure water tank, a manometer and a junction 

to connect ampoules containing samples (figure 1). The use of a unique bench and of a unique 

ampoule for the different steps of samples conditioning prevents from the exposition of zeolites 4A 

to atmospheric water. As they are hydrophilic, such an exposition would have led to residual water 

adsorption by zeolites.    

 

Figure 1. Schematic representation of the bench used to adsorb controlled amounts of water. 

 

Each ampoule was degassed under vacuum at 623 K, during at least 12 h, to ensure the elimination 

of water from zeolites initially equilibrated with water vapor from the atmosphere. The complete 

dehydration has been checked by weighing, after isolation and removal of ampoules from the bench. 

Adsorption of controlled quantity of water, from about 3 % to saturation, was realized by 

manometry. Zeolites were exposed to the chosen water vapor pressure, released in the line whose 

volume has been measured to 2.58 dm3. The quantity of water adsorbed was thus pre-determined 

using the perfect gas equation, and checked by the mass increase. Details of the quantities of water 

adsorbed are given in Table 1. 



Water loading ratio (%) 3.1 4.1 5.6 7.1 13.0 19.1 

F [a] 1.50 1.53 1.52 1.50 1.46 1.43 

Ewater (%)[b] (from mass ratio) 3.0 3.9 5.3 6.6 11.5 16.0 

Ewater (%)[b] (improved with 

MCNPX) 
4.9 6.1 8.1 10.3 17.4 23.6 

 

[a] Correction coefficient used to calculate total energy deposited in zeolite/water systems from 

energy deposited in the Fricke dosimeter 

[b] Percentage of total energy deposited in water 

Table 1. Characteristics of irradiated zeolite 4A / water systems 

 

Ampoules were then connected to the analysis bench, and filled with argon, used as gas carrier 

during irradiations and analysis, with a pressure of 1.46 bar. Each sample underwent several 

irradiations. The analysis line is also used to replace radiolysis gases after each irradiation and each 

measure, by pure argon. We then proceeded with the following irradiation. 

2.2. Irradiations 

γ irradiations by a 137Cs source were carried out with a dose rate of 5.4 Gy.min-1. The experimental 

dose was determined by irradiation using the Fricke dosimeter, irradiated under the same conditions 

as the zeolites samples (equivalent mass, equivalent ampoule and equivalent volume).  

After the initial conditioning, consisting in water adsorption at controlled ratios, each ampoule 

underwent several cycles of irradiations. One cycle includes a filling with argon, used as the carrier 

gas, exposition to the 137Cs source, analysis of the gas released, elimination of radiolysis gases, and 

weighing. This last step is carried out successfully to ensure that the quick elimination of radiolysis 

gases under primary vacuum did not induce significant modifications of the amount of water 

adsorbed. Samples have been exposed to radiations during periods from 14 hours to 63 hours. The 

apparent quantity of hydrogen produced was determined by gas chromatography (Varian model CP 

2003), using argon as the carrier gas. Chromatogram peaks were integrated with the software 

Soprane. Calibration of the chromatograph was performed using a dedicated standard gas, containing 

argon, and H2, in a known concentration of 99.6 ppm. The error on the H2 concentration measure, in 

ppm, was calculated to be 2 %. 



The absence of any significant hydrogen release under irradiation has been checked for empty glass 

ampoules and for an ampoule containing dried zeolites 4A. 

3. Results and discussion: 

Six systems containing the same quantity of zeolites (about 3.5 g) but with different quantities of 

water underwent cumulative γ irradiations. The quantity of hydrogen released was measured after 

each irradiation, and eliminated before the next one. 

3.1. Dosimetry 

The energy deposition is commonly deduced from the Fricke dosimetry (LaVerne and Tandon, 2002; 

LaVerne and Tonnies, 2003; Le Caër et al., 2005). However, if the Fricke dosimeter is relevant for 

homogenous systems, its precision for heterogeneous systems is debatable. Discussion about energy 

transfers also requires a precise idea of how primary energy deposition is divided between the 

zeolites and water. This repartition is frequently evaluated from the weight ratio (LaVerne and 

Tandon, 2002; LaVerne and Tonnies, 2003), which does not take into account the different 

composition between the adsorbent and the adsorbed molecules. The different atomic composition 

between zeolites and water implies, for example, different interaction cross sections, physical and 

electronic densities. Therefore, we conducted Monte-Carlo simulations, to improve the evaluation of 

the dose deposition in the systems, in zeolites and in water, rather than considering untreated 

experimental dosimetry results and mass ratios.      

The experimental dose deposed in the samples, is experimentally estimated from the dose deposited 

in the Fricke dosimeter, exposed to gamma radiation, in similar conditions (equivalent mass, 

equivalent geometry, and equivalent volume) to the Zeolite / Water Systems (ZWS). The 

experimental dose rate is thus estimated to be 5.4 Gy.min-1.  

To calculate the energy deposited in the samples, as a function of water loading, we carried out 

simulations with the MCNPX code, version 2.7.0, based on Monte-Carlo considerations. MCNPX is 

able to follow gamma particles and secondary electrons generated. It evaluates the statistical energy 

deposition and location until a threshold of 1 keV. Under this energy, the program consider that the 

energy carried by the particles is deposited where it is locate. A model of two spheres was used 

(figure 2). The first sphere contains the water and the second sphere has the interaction properties of 

zeolites, that is to say, the atomic composition and density (1.57) of zeolites 4A. For each system, the 

diameter of the water sphere has been calculated to provide a volume ratio between the zeolite and 

water corresponding to their mass ratio, considering their respective density. If rw, on figure 2, 



represents the radius of the water sphere and is directly linked to the water mass and volume, R 

represents the radius of the bigger sphere, but is not directly linked to zeolite mass and volume, as 

water replaces zeolite material in the geometry. The ratio between rw and R have been calculated for 

the different quantities of water adsorbed. 

We indicated a density of 1 for water and 1.57 for zeolites and atomic composition of zeolites and 

water is given as an input parameter. Results are given for 108 gamma followed.   

 

Figure 2. Geometry used with MCNPX with radius details, to estimate energy depositions in water 

and in zeolites, from Fricke dosimeter. 

 

Using the Fricke dosimeter, MCNPX gave a correction coefficient called F (table 1) for energy 

deposition in the whole sample, slightly evolving with the water loading. Simulation also provides, 

for each one of the six systems studied, an indication about the energy distribution between the 

zeolite and the water. This distribution concerns first the energy deposition events and does not take 

into account the energy transfer occurring after them. The primary energy deposition in water (Ewater) 

is given as a percentage in table 1. It does not imply a drastic change compared to primary energy 

deposition calculated from mass ratios. Note that the energy deposition in percentage calculated from 

the water mass ratio is different from the Water Loading Ratio. Actually, the latter is conventionally 

defined as the mass of water divided by the mass of dried zeolites. Energy deposition has to be 

calculated from the ratio between the mass of water and the total mass of the system.  

3.2. Hydrogen production 

Using these simulation results, we extracted two kinds of information from the hydrogen release, one 

according to the energy deposition in the whole system, and a second according to the primary 



energy deposited in the water. The first one consists in considering the extreme case of a complete 

energy transfer from the zeolite to the adsorbed water. The second one consists in neglecting this 

energy transfer. Following this second strategy, we obtained a hydrogen release which can be 

compared to hydrogen measured in free bulk water. This quantity of hydrogen is calculated from the 

primary radiolytic yield encountered in the literature: 0.045 µmol.J-1 (Rotureau et al., 2005). Our 

measurements first confirmed the enhancement of hydrogen production that can be multiplied by 

three in the presence of the zeolites, previously described as a catalyst (Cecal et al., 2004). 

As observed by Nakashima et al. (Nakashima and Aratono, 1993; Nakashima and Tachikawa, 1987), 

hydrogen release seems to be linearly dependent on the energy deposited for the higher water loading 

ratios (higher than 12~13 %) (figure 3). This behavior is conserved for lower loading (figure 4), 

contrary to the results available for 5A zeolites (Nakashima and Tachikawa, 1987) that showed a 

slow-down of the hydrogen release rate with respect to the dose deposition. In the case of 5A 

zeolites, irradiations were carried out in one-step, with different irradiations stages. In our case we 

exposed ZWS repeatedly to irradiations, eliminating hydrogen between the two steps.  

 

Figure 3. Cumulated hydrogen released from ZWS, depending on the cumulated primary energy 

deposition in water, for water loading ratios between 10 and 20%. The dashed line shows the 

quantity of hydrogen which would have been released for free water irradiated under similar 

conditions. (WLR: Water Loading Ratio) 

 



Figures 3 and 4 represent the total hydrogen released depending on the total energy deposited in the 

water. The elimination of the hydrogen ensures that the system returns to its initial state between 

each irradiation. This in turn avoids hydrogen recombination that is observed at high doses, when a 

single long irradiation is carried out rather than cumulated ones. The lower hydrogen quantity 

observed for our longest segmented irradiations, corresponds to the slowing down observed by 

Nakashima et al. along one-step irradiations. 

 

Figure 4. Hydrogen released from ZWS, depending on the primary energy deposition in water, for 

the water loading ratio of 5.6%. The dashed line shows the quantity of hydrogen which would have 

been released for free water irradiated under similar conditions. (WLR: Water Loading Ratio) 

 

Otherwise, after our long-step irradiations, for the lower loading ratios, a slight increase is observed 

for the hydrogen release ratio (figure 4). Similar results are obtained if the energy deposition in the 

whole ZWS is taken into account. 

3.3. Hydrogen radiolysis yield 

For each water loading ratio, the hydrogen radiolytic yields are extracted from the slopes between 

two consecutive points. Values obtained for similar slopes are joined to calculate the average 

hydrogen radiolytic yield. When they are not compatible, two radiolytic yields are calculated and 

extracted. 



 

Figure 5. Apparent hydrogen radiolytic yield as a function of the water loading ratio of zeolites, 

according to the primary energy deposition in water. 

 

 

Figure 6. Apparent hydrogen radiolytic yield as a function of the water loading ratio of zeolites, 

according to the energy absorbed by the whole system (zeolites 4A and water) 

 



The calculated hydrogen radiolytic yields, using the two strategies previously described are given in 

figure 5 and 6. The dashed line in figure 5 shows the reference value for irradiated bulk water 

irradiated under similar conditions (primary hydrogen radiolytic yield: 0.045 µmol.J-1). The dashed 

line in figure 6 represents the apparent G value calculated from the bulk water radiolytic yield, for 

the irradiation of a ZWS system, with the total energy deposition taken into account, but without 

energy transfer from the zeolite. 

In both cases, whatever the energy taken into account, hydrogen release seems to be favored in ZWS 

systems compared to free bulk water. Nevertheless, the yield does not increase linearly with the 

WLR. A maximum appears and its position depends on whether the radiolytic yield is calculated 

from the primary energy deposition in the water or in the whole system.  

The hydrogen radiolytic yield, calculated from the primary energy deposition in water, shows a 

maximum for a loading ratio close to 4 %, and then decreases, approaching the yield obtained in 

water (figure 5). This loading ratio corresponds to a particular hydration condition of the zeolite. At a 

loading ratio of 4 %, β cages are filled and the water adsorbed is the water which presents the 

strongest interaction with the zeolite. This is highlighted by the conditions required to evacuate this 

water. Dehydration of the zeolite from saturation to 4 or 5 % is possible by pumping under secondary 

vacuum for several hours. Then, to eliminate the residual water, additional heating over 423 K is 

required (Demontis et al., 2008). Besides, the entropy of the water adsorbed in β- cages is close to the 

entropy of solid water at absolute zero temperature (Mizota et al., 2001). This illustrates the 

confinement effect on the organization of water. The strong confinement effect and interaction 

between zeolite and water at such a loading rate seems to favor energy transfer and dihydrogen 

production. 

The hydrogen radiolytic yields calculated from the energy deposited in the whole ZWS shows a 

different maximum, at a WLR of 13 % (figure 6). If the transfer of energy from zeolite to water is 

complete, the hydrogen radiolytic yield should vary in the same way than the radiolytic yield 

calculated for the primary energy deposition in water. The maximum obtained at 13% highlights a 

maximum efficiency of all cumulated interactions between zeolite and water. It is coherent with the 

hydration of the zeolite. Actually, above 13 %, water adsorbed in zeolites, is sometimes called “bulk-

like” water, as it is located in the center of α cages, and only undergoes a low indirect influence from 

the zeolite (Demontis et al., 2008). At about 13 %, the maximum internal surface coverage is 

reached, leading to a configuration in which the higher proportion of water interacts with the zeolite. 

It seems that the more the internal surface of the zeolite is covered by water, the more efficient the 



energy transfer is. Then, for higher WLR, the hydrogen radiolytic yield decreases tending to join that 

for bulk water.  

If the confinement effects are neglected, we can evaluate the percentage of energy transferred from 

the zeolite to water at the end of the irradiation stages, by assuming that the hydrogen radiolytic yield 

of adsorbed water would be equal to the one in bulk water (0.045 µmol.J-1). 

Results are given in table 2. “p” is the percentage of energy transferred from the zeolite to water, 

compared to the quantity of energy deposited in the zeolite. “nH2” is the quantity of hydrogen 

released, “GH2” the radiolytic yield of dihydrogen in water, “Ewater” the primary energy deposition in 

water and “Ezeolite” the primary energy deposition in zeolite.  

 

WLR (%) 3.1 4.1 5.6 7.1 13.0 19.1 

Esystem (J) 388.3 455.5 461.3 208.5 296.5 250.1 

Ezeolite (J) 369.3 427.7 423.9 187.0 244.9 191.1 

Ewater (J) 19.0 27.8 37.4 21.5 51.6 59.0 

nH2 total (µmol) 1.57 3.14 4.14 2.45 6.09 4.16 

p (%) 4.3 9.8 12.9 17.6 34.2 17.5 

GH2 (µmol.J-1)[a] 6.2 х 10-3 9.9 х 10-3 1.2 х 10-2 1.7 х 10-2 2.2 х 10-2 1.7 х 10-2 

 

[a] : calculated according to the energy deposition in the whole system and excluding the long step 

irradiations which slow down the hydrogen production 

Table 2. Evaluation of the energy transfer from the zeolite to the water according to water loading 

ratios in our systems. 

 

The maximum percentage of energy transferred, evaluated this way, is about 34 %, for the WLR of 

13.0 %. This value is high compared to the energy transferred from CeO2 or ZrO2 to adsorbed water, 

which are of 4 and 18 % respectively, and which are calculated with the same reasoning (LaVerne 

and Tandon, 2002). This comparison tends to confirm that energy transfers from zeolite to adsorbed 

water are efficient. 

Moreover, the confinement effect has been shown to favor the radiolysis in controlled pore glasses 

(Foley et al., 2005). Our result, obtained for smaller cavities, is consistent with these observations, as 

GH2 calculated from the energy deposition in water shows a maximum for a complete filling of the 

smallest cavity, where the water is in the most organized state. For this loading ratio, according to the 



strength of interaction between zeolite and adsorbed water, confinement could result in a quasi-

immobilization of water. This interpretation is confirmed by a decrease tending to the value of the 

hydrogen radiolytic yield obtained for bulk water, when the loading ratio increases, and so the 

strength of the interaction between zeolite and water, and the confinement effects decrease.  

Nevertheless, the specific state of confined/fixed water does not simply correspond to a high 

organization of water, if we compare the radiolysis of liquid water and radiolysis of ice water. 

Actually, the radiolytic yield of hydrogen in ice under gamma radiation is much lower than in liquid 

water, with values such as 0.007 µmol.J-1 at -196°C, 0.010 µmol.J-1 at -100°C and 0.026 µmol.J-1 at  

-15°C (Ghormley and Stewart, 1956; Siegel and Rennick, 1966). Freezing and increasing the 

organization of water seems to decrease the hydrogen radiolytic yield rather than favoring it. A 

modification of the migration properties of the intermediate species of radiolysis in confined water 

could also be implied. It would lead to a perturbation of the recombination mechanisms, resulting in 

the excessive production of hydrogen compared to free liquid water. 

4. Conclusion: 

Hydrogen released has been quantified for different Zeolites 4A/ Water Systems (ZWS), containing 

different water quantities. An enhancement of hydrogen production in ZWS compared to bulk water 

has been first confirmed. The influence of the water loading ratio (WLR) on the hydrogen released 

by radiolysis has been studied with two approaches.  

A maximum hydrogen radiolytic yield is observed at a WLR of about 4 %, if the primary energy 

deposition in water is used for the calculations. In this configuration, water is confined in the β 

cages, in the most organized configuration, and undergoes the strongest interaction with the zeolites. 

It seems that the strongest interaction leads to the highest hydrogen radiolytic yield. β cages water 

shows the most efficient hydrogen production under radiolysis by gamma radiation. 

If the energy deposition in the whole system is used, the maximum hydrogen radiolytic yield is 

displaced to 13 % WLR. This results reveals the WLR that shows the most efficient hydrogen 

production, when cumulated interactions are taken into account. The 13 % WLR value, 

corresponding to a maximum coverage of the inner surfaces of zeolite, is consistent with the 

hydration of zeolites 4A.   

The WLR of 13 % also corresponds to the situation when the gas phase contains the most important 

concentration of hydrogen, in absolute value, during the radiolysis under gamma radiations. 
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