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Abstract: This paper deal with optimal control problems for an unsteady Stokes system. We consider a simultaneous
distributed-boundary optimal control problem with distributed observation. We prove the existence and uniqueness of
an optimal control and we give the first order optimality condition for this problem. We also consider a distributed
optimal control problem and a boundary optimal control problem and we obtain estimations between the simultaneous
optimal control and the optimal controls of these last problems.
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1 INTRODUCTION

Let Ω be a bounded domain (i.e. connected and open set) of R3 with ∂Ω of class C2. We consider the
following unsteady Stokes system

∂y
∂t − divσ(y, p) = u in Ω× (0, T )
div y = 0 in Ω× (0, T )
y = g on ∂Ω× (0, T )
y(0) = a in Ω.

(1)

Here, (y, p) are the velocity and the pressure of the fluid and σ(y, p) denotes the Cauchy stress tensor, which
is defined by Stokes law σ(y, p) = −p Id + 2νD(y), where Id is the identity matrix of order 3, ν is the
kinematic viscosity of the fluid andD(y) is the strain tensor defined by

[D(y)]kl =
1

2

(
∂yk
∂xl

+
∂yl
∂xk

)
.

It is known (see [5, 3]) that System (1) admit a unique (up to a constant for p) solution (y, p) ∈
L2(0, T ;H2(Ω)) × L2(0, T ;H1(Ω)) (see below for the notation of these spaces), provided that u ∈
L2(0, T ;L2(Ω)), g ∈ C0(0, T ;H3/2(Ω)) satisfies

∫
∂Ω g · n dγ = 0 and a ∈ V , where V = {v ∈

H1(Ω) : div v = 0 and v = g(0) on ∂Ω} and n denotes the unit outer normal to fluid. Moreover, there
exists a constant K = K(Ω, ν) such that

‖y‖L2(H2(Ω)) + ‖p‖L2(H1(Ω)) ≤ K
(
‖u‖L2(H2(Ω)) + ‖g‖L2(H3/2(∂Ω)) + ‖a‖H1(Ω)

)
. (2)

Let X be a Banach space, we will denote by Lp(0, T ;X) the space of the all measurable functions y
such that y : [0, T ]→ X defined by y(t)(x) = y(t, x) satisfy

‖y‖Lp(0,T ;X) =

(∫ T

0
‖y(t)‖pX dt

)1/p

< +∞, if p ∈ [1,+∞)

‖y‖L∞(0,T ;X) = ess sup
0≤t≤T

‖y(t)‖X < +∞, if p = +∞.

For the sake of simplicity of notation, we will often use Lp(X) instead of Lp(0, T,X). Lastly, we will
denote (·, ·)Ω and (·, ·)∂Ω the usual scalar products in L2(L2(Ω)) and L2(L2(∂Ω)), respectively.

Now, we formulate the optimal control problems that we will study in this paper.



1. A distributed optimal control problem (Pu):

Find u∗ ∈ L2(0, T ;L2(Ω)) such that J1(u∗) = min
u∈L2(L2(Ω))

J1(u) (Pu)

where J1 : L2(0, T ;L2(Ω))→ R≥0 is the cost function given by

J1(u) :=
1

2

∫ T

0

∫
Ω
|yu − zd|

2 dx dt+
α

2

∫ T

0

∫
Ω
|u|2 dx dt.

In this problem we consider u as the control variable; zd is a given function, α is a positive constant
and yu is the unique solution of the problem (1) with fixed and known g and a.

2. A boundary optimal control problem (Pg):

Find g∗ ∈ L2(0, T ;H) such that J2(g∗) = min
g∈L2(H)

J2(g) (Pg)

where H = {g ∈ H1/2(∂Ω) :
∫
∂Ω g ·n = 0} and the cost function J2 : L2(0, T ;H)→ R≥0 is given

by

J2(g) :=
1

2

∫ T

0

∫
Ω

∣∣yg − zd∣∣2 dx dt+
β

2

∫ T

0

∫
∂Ω
|g|2 dγ dt.

In this problem g is considered as the control variable; zd is a given function, β is a positive constant
and yg is the unique solution of the problem (1) with fixed and known u and a.

3. A simultaneous distributed-boundary optimal control problem (Pug):

Find (u∗, g∗) ∈ Aad such that J(u∗, g∗) = min
(u,g)∈Aad

J(u, g) (Pug)

where Aad = L2(0, T ;L2(Ω))× L2(0, T ;H) and the cost function J : Aad → R≥0 is given by

J(u, g) :=
1

2

∫ T

0

∫
Ω

∣∣yug − zd∣∣2 dx dt+
α

2

∫ T

0

∫
Ω
|u|2 dx dt+

β

2

∫ T

0

∫
∂Ω
|g|2 dγ dt.

Here (u, g) is considered as the control variable; zd is a given function, α and β are the previous
positive constants and yug is the unique solution of the problem (1) with fixed and known a.

In [2], several optimal control problems of the type (Pu) and (Pg) have been studied. In [4], the authors
studied a optimal control problem of the type (Pu) for the heat equation with mixed boundary conditions.

The goal of our work is to study in detail the simultaneous optimal control problems for unsteady Stokes
equations, a similar problem was studied in [1] for elliptic equations. In Section 2 we prove the existence
and uniqueness of the solutions of the problem (Pug). We obtain that the cost functions J1, J2 and J are
Gâteaux-differentiable and we give the first order optimality conditions in terms of the adjoint states of
the system. In Section 3 we get estimations between the unique solution of the problem (Pu) and the first
component of the unique solution of the problem (Pug). We also prove estimations between the unique
solution of the problem (Pg) and the second component of the unique solution of the problem (Pug).

2 RESULTS OF EXISTENCE AND UNIQUENESS OF OPTIMAL CONTROLS

2.1 DISTRIBUTED OPTIMAL CONTROL AND BOUNDARY OPTIMAL CONTROL

The proofs of existence and uniqueness of an optimal controlu∗ for Problem (Pu) and an optimal control
g∗ for Problem (Pg) follows similarly to what was done for example in [2] or [4], therefore we omit them.
We only recall the optimality conditions that satisfy u∗ and g∗, which are expressed in terms of the Gâteaux
derivative of their respective cost functions.



• For the distributed optimal control u∗:

〈J ′1(u∗),w〉 = (yu∗ − zd,yw − y0)Ω + α(u∗,w)Ω = 0, ∀ w ∈ L2(L2(Ω)) (3)

we note that yw − y0 satisfies (1) with u = w, g = 0 and a = 0.
• For the distributed optimal control g∗:

〈J ′2(g∗),f〉 = (yg∗ − zd,yf − y0)Ω + β(g∗,f)∂Ω = 0, ∀f ∈ L2(H) (4)

we note that yf − y0 satisfies (1) with u = 0, g = f and a = 0.

2.2 SIMULTANEOUS DISTRIBUTED-BOUNDARY OPTIMAL CONTROL

We define the map C : Aad → L2(H1
0 (Ω)) such that (u, g) 7→ yug − y00, where y00 is the unique

solution of (1) with u = g = 0 and fixed a.
We also define the maps Π : Aad ×Aad → R and Υ : Aad → R as

Π((u, g), (v,h)) = (C(u, g), C(v,h))Ω + α (u,v)Ω + β (g,h)∂Ω , ∀ (u, g), (v,h) ∈ Aad

Υ(u, g) = (C(u, g), zd)Ω , ∀ (u, g) ∈ Aad.

The following properties hold for the maps introduced above.

Proposition 1

a) C is a linear and continuous application.

b) Π is a bilinear, continuous, symmetric and coercive map.

c) Υ is a linear and continuous map.

After some calculations, it is possible to rewrite the cost function J as

J(u, g) =
1

2
Π((u, g), (u, g))−Υ(u, g) +

1

2
‖zd‖2L2(L2(Ω)) . (5)

Theorem 1 There exists a unique solution (u∗, g∗) ∈ Aad of the simultaneous distributed-boundary opti-
mal control problem (Pug).

Proof. Taking into account (5) and Proposition 1 we can deduce that J is a strictly convex function.
Thus, by the classical theory of optimal control [2, Chapter 3], we have that there exists a unique solution
(u∗, g∗) ∈ Aad of the problem (Pug) . �

Proposition 2 The function J is Gâteaux-differentiable and its derivate is given by

〈J ′(u, g), (v,h)〉 = (yug − zd,yvh − y00)Ω + α(u,v)Ω + β(g,h)∂Ω, ∀ (v,h) ∈ Aad.

Thanks to Proposition 2 we can give the first order optimality condition for (u∗, g∗). Namely, the unique
solution (u∗, g∗) can be characterized as the unique pair of functions that satisfies

〈J ′(u∗, g∗), (v,h)〉 = (yu∗g∗ − zd,yvh − y00)Ω + α(u∗,v)Ω + β(g∗,h)∂Ω = 0, (6)

for all (v,h) ∈ Aad.
Since the equation (6) does not permit to express the optimality condition easily, we will introduce the

adjoint state φug, to rewrite this derivative into a more workable expression. For this, let us consider the
following system 

−∂φ
∂t − divσ(φ, q) = yug − zd in Ω× (0, T ),

divφ = 0 in Ω× (0, T ),
φ = 0 on ∂Ω× (0, T )
φ(T ) = a in Ω.

(7)

Now, we are in position to establish the following result



Proposition 3 The optimality condition (6) can be written in terms of the adjoint state as

〈J ′(u∗, g∗), (v,h)〉 = (φu∗g∗ + αu∗,v)Ω + (βg∗ − σ(φu∗g∗ , q)n,h)∂Ω = 0, ∀(v,h) ∈ Aad. (8)

and the simultaneous optimal control (u∗, g∗) is given by

u∗ =
−1

α
φu∗g∗ in Ω× (0, T ) and g∗ =

1

β
σ(φu∗g∗ , q)n on ∂Ω× (0, T ). (9)

3 ESTIMATIONS

Proposition 4 Let (u∗, g∗) be the unique solution of the optimal control problem (Pug) with a given.
(a) If u∗ is the unique solution of the optimal control problem (Pu) for a function fixed g, then

‖u∗ − u∗‖L2(L2(Ω)) ≤
K

α

∥∥yu∗g∗ − yu∗∥∥L2(L2(Ω))
.

(b) If g∗ is the unique solution of the optimal control problem (Pg) for a function fixed u, then

‖g∗ − g∗‖L2(L2(∂Ω)) ≤
K

β

∥∥yu∗g∗ − yg∗∥∥L2(L2(Ω))
.

Here K denote a positive constant depending on Ω and ν.

Proof. (a) Taking (v,h) = (u∗ − u∗,0) in (6) and w = u∗ − u∗ in (3), adding the two equations and
taking into account that yw − y0 = −(yvh − y00), we deduce

(yu∗g∗ − yu∗ ,yvh − y00)Ω − α(u∗ − u∗,u∗ − u∗)Ω = 0,

by using the Cauchy-Schwartz inequality and (2), we obtain

α‖u∗ − u∗‖L2(L2(Ω)) ≤ K‖yu∗g∗ − yu∗‖L2(L2(Ω))

≤ K
(
‖u∗ − u∗‖L2(L2(Ω)) + ‖g∗ − g‖L2(L2(∂Ω))

)
.

(10)

(b) By a similar way to (a) we obtain

β‖g∗ − g∗‖L2(L2(∂Ω)) ≤ K‖yu∗g∗ − yg∗‖L2(L2(Ω))

≤ K
(
‖g∗ − g∗‖L2(L2(∂Ω)) + ‖u∗ − u‖L2(L2(Ω))

)
.

(11)

�

Corollary 1 If the coercitivity constants α and β satisfy α, β > C for some positive constant, then we have
u∗ = u∗ and g∗ = g∗.

Proof. It is sufficient to take g = g∗ in (10), u = u∗ in (11) and C = K with K = K(Ω, ν) the constant
given in (2). �
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