
HAL Id: hal-01114987
https://hal.science/hal-01114987

Preprint submitted on 10 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tayler instability in liquid metal columns and liquid
metal batteries

W Herreman, C Nore, L Cappanera, J.-L Guermond

To cite this version:
W Herreman, C Nore, L Cappanera, J.-L Guermond. Tayler instability in liquid metal columns and
liquid metal batteries. 2015. �hal-01114987�

https://hal.science/hal-01114987
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Tayler instability in liquid metal columns
and liquid metal batteries

W. Herreman1, C. Nore1, L. Cappanera1,2 and J.-L. Guermond1,2

1Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, CNRS UPR
3251, BP 133, 91403 Orsay cedex, France and Université Paris-Sud 11;
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This paper investigates the Tayler instability in an incompressible, viscous and resistive
liquid metal column and in a model of liquid metal battery (LMB). Detailed comparisons
between theory and numerics, both in linear and nonlinear regimes, are performed. We
identify the timescale that is well adapted to the quasi-static regime and find the range
of Hartmann numbers where this approximation applies. The scaling law Re ∼ Ha2

for the amplitude of the Tayler destabilized flow is explained using a weakly nonlinear
argument. We calculate a critical electrolyte height above which the Tayler instability
is too weak to disrupt the electrolyte layer in a LMB. Applied to present day Mg-based
batteries, this criterion shows that short-circuits can occur only in very large batteries.
Finally, preliminary results demonstrate the feasibility of direct numerical multiphase
simulations of the Tayler instability in a model battery.

1. Introduction

In a fairly recent review article (Kim et al. (2013)) on liquid metal batteries (LMBs),
Prof. D. Sadoway’s group at MIT proposed LMBs as a solution to meet future electrical
energy storage problems. Although LMBs have been around for some time already, this
proposal ignited a global interest for this technology; we refer to references [3-10] from
Weber et al. (2014) for early works on LMBs. Liquid metal batteries are usually com-
posed of three layers of fluids (liquid metal electrode–electrolyte–liquid metal electrode)
of different densities stacked over each other and stabilized by gravity. Apart from the
liquid aspect, the electrical function of LMBs is identical to common galvanic cells. LMBs
have several advantages with respect to classical galvanic cells when it comes to large
scale power generation though. Common galvanic cells are built using solid and liquid
(or gel) components for the electrodes and the electrolytes, and the solid-liquid interfaces
gradually degrade through charging and discharging, thereby limiting the cell’s lifetime
and size. Galvanic batteries meeting powergrid standards could be built in principle by
connecting large numbers of small cells, but this would be expensive to produce and main-
tain. The erosion problems disappear in liquid systems, since the electrolyte–electrode
interfaces are continuously renewed by permanent small recirculating flows. In principle
the continuous regeneration of the interfaces makes the lifetime of LMBs significantly
larger than that of galvanic batteries. Moreover, as discussed in Kim et al. (2013) and
Bradwell et al. (2012), materials susceptible to be used in LMBs are not necessarily as
exotic/rare as one could fear. Finally, the stabilizing effect of gravity seriously simplifies
the design of these devices and enables scalability. In principle, it should be possible to
built powergrid-scale devices by assembling small numbers of large LMBs.
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The above rosy picture must be moderated by the fact that, at very large scales, in-
tense electrical currents passing through LMBs might trigger Magneto-Hydro-Dynamical
(MHD) instabilities (as suggested in Stefani et al. (2011) and Weber et al. (2013, 2014)).
For instance large currents may trigger the Tayler instability in the well-conducting liquid
metal layers and induce fluid flows, which in turn may deform the electrode–electrolyte
interfaces to a great extent. Some fluid movement is certainly desirable, but there is a
danger of short-circuit when the motion of the fluid is so intense that it can destroy the
integrity of the stratified structure of the battery. Note that a very similar problem arises
in the case of Al-reduction cells, where the width of the electrolyte layer has to be kept
above some critical threshold to avoid instabilities. It is therefore necessary to assess the
strength of MHD-induced flows before contemplating any significant industrialization of
LMBs, and one objective of the present paper is contribute to this effort.

Better known in the plasma context, the Tayler instability (Tayler 1957, 1960) is prob-
ably one of the simplest plasma instabilities that are known. In regions of quiescent fluid,
strong electrical current tubes can spontaneously lose stability. With such minimal ingre-
dients, the Tayler instability has attracted the attention of the astrophysical community
for a long time (Tayler 1973; Vandakurov 1972). But applications to liquid metals in
laboratory environments, where the fluid movements are slow, have only been studied
recently. The linear regime of the Tayler instability has been studied in many articles
(Tayler 1957, 1960; Rüdiger & Schultz 2010; Rüdiger et al. 2011, 2012) and predictions
for the instability threshold and growth rates have been successfully compared to exper-
iments in a liquid column of Galinstan, (Seilmayer et al. 2012). The characterisation of
the nonlinear regime is however not so well documented. Direct numerical simulations on
the Tayler instability in the quasi-static low conductivity limit have been done in Weber
et al. (2013, 2014) and a scaling law for the intensity of the flow induced by the instability
has been observed. Stefani et al. (2011) was the first article to discuss the importance of
MHD instabilities in the context of LMBs.

The objective of the present paper is to revisit the Tayler instability in the context
of LMBs using various analytical and numerical tools, including SFEMaNS which is a
finite element code that our group has been developing for many years. The paper is
organized as follows. We start in §2 by properly defining the base state of the fluid and
by defining two configurations to evaluate the impact of various boundary conditions.
We conclude that simulating a current-free region around the liquid metal domain has
little impact on the onset of the Tayler instability. In section §3, we use SFEMaNS to
investigate qualitatively and quantitively the linear and the nonlinear regimes of the
Tayler instability in cylinders of various sizes for different Hartmann numbers, Ha, and
magnetic Prandtl numbers, Pm. We discuss the difference between helical and phase-
fixed modes and demonstrate that the top and bottom boundary conditions have a
strong impact on the presence of these modes. The nonlinear saturation amplitudes are
measured and an oscillatory secondary instability is identified. The theoretical section §4
is dedicated to the analysis of both the linear and nonlinear stages. We use the analytical
method of Tayler to study the linear stability of the problem for all possible values of the
viscosity and magnetic diffusion. Detailed comparisons between theoretical predictions
from the linear stability analysis and direct numerical simulations are performed. We
show that for each value of the Prandtl number there exists a range of Hartmann numbers
in which the Tayler instability appears in quasi-static form. We also discuss in this section
the possible existence of weakly nonlinear equilibria; we develop an argument that leads
to a plausible explanation for the scaling law for the intensity of the Tayler destabilized
flow observed in Weber et al. (2013, 2014). In the final section §5, we consider the Mg-
based Liquid Metal Battery system. After compiling information for typical values of the
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(a) Configuration I (b) Configuration II

Figure 1. Base state in two different configurations. A cylinder of radius R is filled with a
conducting fluid of density ρ, conductivity σ and kinematic viscosity ν. A homogenous current
density Jb = J0ez runs through the fluid and induces a toroidal magnetic field Bb = B0(r)eθ.
(a) Configuration I: the tube is surrounded by a current free region (air). (b) Configuration II:
a synthetic boundary condition confines the magnetic field to the inside of the cylinder.

physical parameters, we discuss the relevance of the Tayler instability in LMBs. Using
the scaling law deduced in §4 for the nonlinear intensity of the flow at saturation, we
estimate a safe upper bound for the critical width of the electrolyte layer and apply this
estimate to Mg-based batteries. We end section §5 by showing some numerical simulations
of the Tayler instability in a LMB-model using our multiphase MHD solver. We use these
simulations to test the critical electrolyte layer height criterion.

2. Base-state & equations

As schematized in figure 1, we consider a cylindrical vessel of radius R and height
H. This vessel is filled with an electrically conducting fluid of density ρ, conductivity
σ, permeability µ0 and kinematic viscosity ν. A homogenous current density Jb = J0ez
runs through the fluid.

The velocity field U , pressure P and magnetic field B inside the tube are assumed to
satisfy the Magneto-HydroDynamical (MHD) equations:

∂tU + U ·∇U = − 1
ρ∇P + 1

ρµ0
(∇×B)×B + ν∆U

∂tB = ∇×(U×B)− 1
σµ0
∇×(∇×B) (2.1)

∇·U = 0

∇·B = 0

Tayler’s original set-up is shown in panel (a) of figure 1: the cylinder has infinite height
H → ∞ and is surrounded by a current free region. We will refer to this case as con-
figuration I in what follows. Denoting by C an arbitrary constant and using cylindrical
coordinates (r, θ, z), the following base state

Ub = 0, Bb =
µ0J0

2
r eθ, Pb = C − µ0J

2
0

4
r2, r < R, (2.2)

Bb =
µ0J0

2

R2

r
eθ, r > R, (2.3)
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is then considered. The inner and outer magnetic fields match continuously across the
interface r = R, where they have the magnitude B0 = µ0J0R/2, a notation that will be
used consistently thereafter.

The presence of an external current free region is not important for the physics of the
Tayler instability. We will substantiate this claim by studying the synthetic configuration
II, shown in panel (b) of figure 1, in which there is no outer region (r ≤ R). The base
state (2.2) is again a solution inside the cylinder provided a fictive surface current density

Js

∣∣∣
r=R

= er×
Bb

µ0

∣∣∣
r=R

=
J0R

2
ez, (2.4)

is enforced at the boundary r = R. Numerically, it is slightly simpler to work in this
second configuration since there is no exterior domain. Physically this boundary condition
corresponds to an infinite conductor outside the cylinder. It will be shown in section §4.3.3
that this boundary condition does not significantly impact the threshold and the linear
regime in general. We will exclusively restrict ourselves to this configuration II in the
direct numerical simulations.

3. Numerical study of Tayler’s instability

3.1. Numerical set-up

Our group has been developing for many years a finite element/Fourier code, called
SFEMaNS, capable for solving nonlinear MHD problems in axisymmetric domains. SFE-
MaNS uses a Fourier representation along the azimuthal direction and finite elements in
the meridian sections. For instance the approximate velocity field has the following rep-
resentation:

U =

M∑
m=0

U c
m(r, z, t) cosmθ +

M∑
m=1

U s
m(r, z, t) sinmθ, (3.1)

where U c
m(r, z, t) and U s

m(r, z, t) are vector-valued finite elements functions and M is
the number of (complex) Fourier mode used in the discretization. All the fields, either
vector-valued or scalar-valued, are represented as above. Unless specified otherwise we use
M = 16 in the simulations reported in the rest of the paper. SFEMaNS (Guermond et al.
2009, 2011a) has been thoroughly tested and has been used to solve dynamo problems
(Nore et al. 2011; Giesecke et al. 2012; Nore et al. 2012). Originally limited to describing
MHD in only one kind of electrically conducting fluid, we have now added a module to
allow for multiphase MHD simulations that shall be used in section 5.

The code is nondimensionalized with respect to the following units:

[x] = R, [U ] = B0/
√
ρµ0, [t] = [x]/[U ], [B] = B0, [p] = ρ[U ]2

so that the non-dimensional fields satisfy the equations

∂tU + U ·∇U = −∇P + (∇×B)×B +

√
Pm
Ha ∇·(∇U +∇UT ),

∂tB = ∇×(U×B) + 1

Ha
√
Pm
∇×(∇×B), (3.2)

∇·U = 0.

Two non-dimensional parameters appear in these equations: the Hartmann number, Ha,
and the magnetic Prandtl number, Pm, and they are defined by

Ha = B0R

√
σ

ρν
, Pm = σµ0ν. (3.3)
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In liquid metals, the magnetic Prandtl number is always very small Pm ' 10−5 − 10−8,
meaning that magnetic diffusion is far stronger than viscous diffusion. This observation
has motivated other teams (e.g. Weber et al. (2013)) to use the quasi-static (QS) approx-
imation of MHD to describe fluid motions in which the magnetic Prandtl number Pm
no longer appears as an explicit parameter. This may present some technical advantages
and could have been implemented in SFEMaNS, but we have preferred to keep a time
stepping strategy to be able to evaluate the influence of the magnetic Prandtl number.

As specified above, all the numerical computations are performed using configuration
II, i.e., all the fields are restricted to the inner region r ≤ R. The aspect ratio h = H/R is
finite to make the computational domain bounded. The initial data for (3.2) can be of two
kinds: either we start from a slightly perturbed base state or we restart from a previously
computed state. On the vertical walls, we impose the no-slip boundary condition on U
and the synthetic boundary condition (2.4) on the magnetic induction:

U
∣∣∣
r=1

= 0, er×B
∣∣∣
r=1

= ez. (3.4)

On the top and bottom lids, we use two different types of boundary conditions: either
we impose periodicity on U , B and P , or we impose the following conditions,

Uz

∣∣∣
z=0,h

= 0, [(∇U +∇UT )·ez]×ez
∣∣∣
z=0,h

= 0

Bz

∣∣∣
z=0,h

= 0, (∇×B)×ez
∣∣∣
z=0,h

= 0,
(3.5)

meaning that the lids are impenetrable, the tangential component of the stress is zero,
the magnetic induction is tangential, and the electrical current is normal to the top and
bottom lids. We henceforth refer to these two sets of top/bottom boundary conditions
as periodic TB-BC and stress-free TB-BC. The no-slip boundary conditions are not used
in this article on the top and bottom lids because the linear stability analysis (done
in §4.3.1) is significantly easier to perform with periodic or stress-free TB-BC. We use
these TB-BC in the numerical simulations to be able to make comparisons with the
linear stability analysis from §4. We expect the effect of this boundary condition not to
be significant for vessels of sufficiently large aspect ratio. The effect of realistic no-slip
boundary conditions on the top and bottom plates have been studied in Weber et al.
(2013, 2014). The initial data, the boundary conditions and the value of h that we choose
to perform computations will always be specified locally in the text.

We will perform simulations for different choices of the parameters Ha, Pm and h.
Qualitative behaviors will be illustrated in the form of snapshots. Quantitive results will
also be given. For instance, recalling the discrete representation of the velocity field (3.1),
we will compute

um(t) =

√
2

h

∫ 1

0

∫ h

0

(‖U c
m‖2 + ‖U s

m‖2) rdr dz, 0 ≤ m ≤M, (3.6)

the volume averaged rms velocity of the Fourier mode m.
Tayler instability simulations will be done by using the base state (2.2) augmented

with random noise. Since in the linear regime the Tayler instability only grows along the
Fourier mode m = 1, we then expect that

u1(t) ∼ eγat, (3.7)

where γa ≥ 0 is called the growth rate. The suffix ’a’ refers to the Alfvén time-units that
we use in SFEMaNS and is added to avoid confusion with the growth rate γ that will be



6 W. Herreman1, C. Nore1, L. Cappanera1,2 and J.-L. Guermond1,2

(a) U , colored by Uz (b) iso-surface of Bz (c) U , colored by Uz (d) iso-surface of Bz

Figure 2. Periodic TB-BC with h = 2: unstable Tayler mode at Ha = 24 and Pm = 10−2. A
growing helicoidal mode (a) and (b) is observed for general initial conditions, but non-helicoidal
modes (c) and (d) can also be observed when the phase between the initial velocity and magnetic
fields is π

2
.

defined in the theoretical section §4. The growth rate γa will be evaluated numerically.
The analysis of the nonlinear regime of the Tayler instability (Weber et al. 2014) is
important to be able to estimate how strong the flow may become; this will be done by
using the total specific kinetic energy:

Ka =

M∑
m=0

(1 + δm0)
π

2

∫ 1

0

∫ h

0

(
‖U c

m‖2 + ‖U s
m‖2

)
rdr dz, (3.8)

We will also report the volume averaged rms total velocity

urms,a =
√

2Ka/(πh). (3.9)

The phenomenology of the nonlinear transition will be discussed, and differences between
periodic and stress-free boundary conditions will be analyzed.

3.2. Cylinder with aspect ratio h = 2

3.2.1. Periodic TB-BC

We first study the Tayler instability in a periodic cylinder of aspect ratio h = 2. The
instability is observed for Pm = 10−2 and Ha = 24, and two types of growing modes
with different symmetries are observed, see figure 2. Helicoidal structures (panels (a) and
(b)) are found for generically random initial data, but the mode shown in panels (c) and
(d) is also obtained if the phase between the initial velocity and magnetic fields is set
to π

2 . This mode is composed of two counter-rotating vortices (panel (c)) and a pair of
oppositely oriented bz blobs (panel (d)). Both modes have exactly the same growth rate
γa = 0.0187 (i.e., they live in the same four-dimensional eigenspace; each mode comes in
pair due to the symmetries of the problem, see §4.3.1) and their wavelength is equal to
the height of the domain. The vertical position of all the eigenmodes is arbitrary owing
to the periodicity along the vertical direction.

To better evaluate the importance of the parameters Pm and Ha, we now explore
the ranges Pm ∈ {1, 10−2, 10−4, 10−6} and Ha ∈ {20, 24, 30, 35, 40, 100}. For instance
we show in figure 3 the time evolution of the rms velocity u1(t) for Pm = 10−2 and
Ha ∈ {20, 24, 30, 35, 40, 100}. The exponential growth (positive or negative) of the Tayler
instability in the linear regime clearly appears as straight lines in the semilogarithmic
representation. For each pair of parameters (Pm,Ha), the growth rate γa is estimated by
linear fit from these plots. The results are compiled in table 1 (left table). Apart from the
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Figure 3. Rms velocity u1(t) vs. time at Pm = 10−2 and for different Ha-numbers. Periodic
cylinder with aspect ratio h = 2.

Ha Pm = 1 Pm = 10−2 Pm = 10−4 Pm = 10−6

24 - 0.187×10−1 0.191×10−2 0.179×10−3

30 - 0.586×10−1 0.607×10−2 0.602×10−3

35 - 0.881×10−1 - 0.914×10−3

40 0.3302 1.146×10−1 1.205×10−2 1.208×10−3

100 0.5734 3.307×10−1 4.184×10−2 4.201×10−3

Pm Hac
10−2 21.7
10−4 21.7
10−6 22.5

Table 1. Growth rate γa (left table) and critical Hartmann number Hac (right table) at
various Pm in a cylinder with aspect ratio h = 2 and periodic TB-BC.

Ha 24 30 35 40 50
Ka (Pm = 10−2) 4.63×10−2 2.56×10−1 3.05×10−1 3.58×10−1 -
Ka (Pm = 10−4) 5.4×10−4 3.2×10−3 4.3×10−3 5.5×10−3 1.1×10−2

Table 2. Kinetic energy at saturation for various Pm and Ha in a cylinder of aspect ratio
h = 2 and periodic TB-BC.

values obtained for Pm = 1, we observe that γa ∼
√
Pm. An explanation for this behavior

and a detailed comparison with the linear stability theory will be presented in section §4.3.
Linear interpolation of the measured γa allows us to estimate the threshold Hac, i.e., when
γa = 0. The threshold values Hac thus obtained are reported in Table 1 (right table); Hac
is fairly independent of Pm, in agreement with the linear stability analysis of Rüdiger
et al. (2011, 2012).

We now follow the non-helicoidal structures of figure 2 (panels (c) and (d)) in the
nonlinear regime. The time evolution of the kinetic energy Ka is reported in figure 4
for Pm = 10−2, 10−4, 10−6. The qualitative behavior of Ka with respect to time is
similar for the different values of Pm investigated, but the amplitude of the realized flow
dramatically decreases with Pm, indicating that a scaling law might exist. This point will
be discussed in section §4. Table 2 shows the mean kinetic energy measured at saturation
for various values of Pm and Ha.

For all the values of Pm explored, we observe that the shape of the steady state
solution at Ha = 24 (i.e., near the threshold) is similar to that of the eigenvectors shown
in figure 2 (c) and (d). Two steady counter-rotating vortices have formed together with
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Figure 4. Time evolution of the kinetic energy Ka for h = 2 with periodic TB-BC and different
Pm as indicated: Ha = 24 (red line), Ha = 30 (green line), Ha = 35 (blue line), Ha = 40 (pink
line).

(a) t and t+ T (b) t+ T/4 (c) t+ T/2 (d) t+ 3T/4

Figure 5. Periodic TB-BC, h = 2: time-periodic state at Ha = 35 and Pm = 10−2. Two
pulsating vortices in phase opposition.

Pm 10−2 10−4 10−6

T (Ha = 30) 20.4 ≈ 190 ≈ 1800
T (Ha = 35) 18.8 ≈ 160 ≈ 1570
T (Ha = 40) 17.2 QP QP

Table 3. Periodic TB-BC with h = 2: period of the system at Ha = 30, 35, 40 (this period
corresponds to twice the period of the kinetic energy because the flow has 2 alternating vortices).
QP stands for a quasi-periodic regime.

a pair of magnetic blobs in quadrature. Between Ha = 24 and Ha = 30 the flow becomes
time-dependent. The oscillating velocity and magnetic fields that can be observed (not
shown here) are similar to the time-periodic eigenmode observed at Ha = 35. Figure 5
shows snapshots of the solution obtained at Ha = 35 and Pm = 10−2 during one period
(t, t+T/4, t+T/2, t+3T/4, t+T ): there are two pulsating vortices in phase opposition.
Table 3 shows the measured period as a function of Pm and Ha. The period decreases as
Ha increases. The time-periodic regime is observed for all values of Pm at Ha = 30 and
Ha = 35, but for Ha = 40 the time-periodic state is observed only at Pm = 10−2; the
dynamic becomes quasi-periodic for smaller values of the Prandtl number i.e., Pm = 10−4

and Pm = 10−6 (see figures 4(b) and 4(c)). Since Pm = 10−2 gives the same qualitative
results as Pm = 10−4 and Pm = 10−6, we will use Pm = 10−2 in the parametric studies
in the next sections.
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Ha γa (SF -one) γa (SF -half)
20 −0.1343×10−1 −0.1930×10−1

24 0.1873×10−1 0.0555×10−1

30 0.5900×10−1 0.3584×10−1

Table 4. Stress-free TB-BC with h = 2 and Pm = 10−2: growth rates for SF -one and SF -half
eigenstates.

(a) SF -one eigenstate (b) SF -half eigenstate

Figure 6. h = 2, stress-free TB-BC and Pm = 10−2: competing eigenstates SF -one and
SF -half shown by vectors colored by Uz.

3.2.2. Stress-free TB-BC

When the periodic TB-BC condition is replaced by the stress-free TB-BC, the eigen-
modes that are observed are no longer helicoidal; actually, these modes can exist only in
periodic boxes as will be shown in the theoretical section §4. Our computations show that
two eigenmodes become unstable when Ha = Hac ≈ 21.7. The dominant mode consists
of two counter-rotating vortices filling the vessel; the corresponding growth rates and
thresholds are the sames as those found in the periodic case, see table 4. This mode is
henceforth referred to as SF -one and is shown in figure 6(a). The second eigenmode is
composed of a single vortex filling the vessel and is henceforth referred to as SF -half, see
table 4 and figure 6(b).

We now perform a simulation in the nonlinear regime to see how the SF -one and
SF -half modes compete. The time evolution of the kinetic energy is shown in figure 7(a)
for Ha = 24, 30, 35. At Ha = 30, starting from initial random noise, a state with one-
wavelength (like the SF -one eigenvector, see figure 7(b)) increases exponentially and
reaches a maximum around t = 195 (see figure 7(a)). Then, the kinetic energy decreases
and reaches a minimum value at t = 225. During this transition the number of vortices
occupying the vessel changes from 2 to 1. The orientation of the axis of the vortices
changes as well and rotates by π/2 (see figure 7(b-e)). The kinetic energy increases
afterwards and reaches a plateau at t = 350. The final state is composed of one steady
vortex and one magnetic field blob resembling the SF -half eigenvector.

3.3. Cylinder with optimal aspect ratio h = 2.77

The linear theory developed in §4.3.2 predicts that a cylinder of aspect ratio h = 2.77
gives the lowest threshold on the Hartmann number, Hac,∗ = 19.296. We will use this
optimal cylinder height in the Liquid Metal Battery (LMB) configuration. Our numerical
estimation of the threshold on the Hartmann number is Hac ≈ 19.4; the linearly unstable
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Figure 7. h = 2, stress-free TB-BC and Pm = 10−2: (a) time evolution of the kinetic energy
in the nonlinear regime. (b-e) competition between two states at Ha = 30. The two vortices of
the most unstable linear eigenmode merge into one vortex and rotate by π/2 for 200 ≤ t ≤ 250.
Note the change of view point at t = 300.

(a) Eigenmode with periodic TB-BC. (b) Eigenmode with stress-free TB-BC.

Figure 8. The optimal box h = 2.77 at Ha = 24 and Pm = 10−2: eigenmode for (a) periodic
TB-BC and (b) stress-free TB-BC.

modes in the periodic and stress-free TB-BC cases are similar to those obtained for h = 2
and are shown in figure 8.

We now perform nonlinear runs for the two types of boundary conditions. For the
periodic case, we have performed a set of computations starting from different initial
conditions (see figure 9(a)). Starting from random noise at Ha = 24, the system converges
to a steady state with one wavelength in the vertical box (two counter-rotating vortices,
see figure 8(a)). Restarting from this state and increasing the Hartmann number to
Ha = 35 leads to a first plateau in the kinetic energy. This is not the asymptotic state
since performing another run with Ha = 35 using as initial data a state computed at
Ha = 40 (curve titled ’Ha=35’ at time t ≥ 1170) leads to a time-periodic regime. The
dynamic system obtained at Ha = 40 is also time-periodic with two vortices pulsating in
phase opposition (similar to those in figure 5). Decreasing the Hartmann number from
Ha = 40 to Ha = 30 yields a steady state (curve titled ’Ha=30’ at time t ≥ 1170).
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Figure 9. Time evolution of the kinetic energy for h = 2.77 and Pm = 10−2 with different
boundary conditions.

Therefore the transition from a steady state to an oscillating regime occurs for Ha > 30.
On the other hand, the stress-free case leads to a steady state with one wavelength for
all the Hartmann numbers that we have explored, Ha ∈ {24, 35, 40, 50}. The steady
state nature of the various cases is visible on the time history of the kinetic energy, see
figure 8(b). These nonlinear runs clearly illustrate the importance of the top and bottom
boundary conditions on the dynamics of the system.

4. Theoretical analysis of Tayler’s instability

4.1. Perturbation problem

We now investigate the linear stability theory of the Tayler instability. We start by writing
the non-dimensional perturbation equations using the following units:

[x] = R, [t] = ρ/(σB2
0), [u] = [x]/[t], [b] = σµ0[u][x]B0, [p] = ρ[u]2, (4.1)

to scale the space, the time, the velocity, the magnetic field and the pressure. These
units are different from those used in the previous section but they are better adapted
to describe the Tayler instability in the quasi-static regime. The time-scale is such that
the magnetic interaction parameter N := σB2

0R/ρ[u] is equal to 1.
We inject U = Ub + u, B = Bb + b, P = Pb + p into (2.1), where u, b and p are

infinitesimal perturbations, and find that

∂tu = −∇q + [reθ·∇b + b·∇(r eθ)] + Ha−2∆u + Nu,

PmHa2 ∂tb = ∇×(u×reθ) + ∆b + Nb, (4.2)

∇·u = ∇·b = 0,

where we have introduced a modified pressure field q defined as

q = p+ bθ r + 1
2PmHa2‖b‖2, (4.3)

and Nu Nb are nonlinear terms:

Nu = −(u·∇)u + PmHa2 (b·∇)b

Nb = −PmHa2 (u·∇)b + PmHa2 (b·∇)u. (4.4)

We have already stated that the magnetic Prandtl number is always very small Pm '
10−5 − 10−8 in real liquid metals. In the so-called quasi-static (QS) limit, all the terms
weighted by Pm are neglected. The combination

√
PmHa is also sometimes called Lundquist
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number. We do not adopt the quasi-static approach immediately since our aim is to spec-
ify for which range of the parameters Ha and Pm the QS limit applies.

For configuration I, we impose the no-slip condition on the velocity perturbations at
r = 1 and the continuity of the magnetic induction across the cylindrical boundary r = 1:

BC I: u
∣∣∣
r=1−

= 0, b
∣∣∣
r=1−

= ∇ψ
∣∣∣
r=1+

, (4.5)

where outside the cylinder we look for b in potential form b := ∇ψ with ∇2ψ = 0.
Note that this hypothesis, also used by Tayler, is somewhat restrictive since it excludes
external fields that perhaps could be more complex (the external region is a torus and
thus not simply connected). In configuration II, we impose again the no-slip condition
on the velocity, but this time the perturbations of the tangential magnetic field must be
zero on the lateral boundary r = 1,

BC II: u
∣∣∣
r=1−

= 0, er×b
∣∣∣
r=1−

= 0. (4.6)

4.2. Linear stability analysis: method

4.2.1. General solution

In the limit of vanishing perturbations u, b, q → 0, we neglect the nonlinear terms Nu

and Nb. The linearized perturbation equations can be decoupled in terms of the modified
pressure, which for all non-axisymmetric perturbations, leads to the following 10th order
Master equation{[

(∂t −Ha−2∆)(PmHa2 ∂t −∆)− ∂2θθ
]2

∆ + 4∂2θθ∂
2
zz

}
∂θq = 0. (4.7)

The decoupling process is quite technical and similar to Tayler’s original approach. The
details are reported in the appendix A. We consider the following ansatz with an harmonic
structure with respect to z, θ and t:

q(r, θ, z, t) =

5∑
j=1

Pj Jm(kjr) e
imθ eilz eγt, (4.8)

where m ∈ Z, l ∈ R are azimuthal and vertical wavenumbers, γ ∈ C is the unknown
complex-valued growth rate, Pj are 5 arbitrary complex-valued coefficients, and kj ∈ C
are 5 different radial wavenumbers with the convention that Re(kj) ≤ 0. The functions
Jm(kjr) are Bessel functions of the first kind†. No Bessel functions of the second kind
Ym(kjr) are involved since r = 0 is part of the fluid domain. The radial wavenumbers kj
are chosen so that the numbers zj = k2j + l2, j = 1, . . . , 5 are the roots of the fifth-order
characteristic polynomial

Q(z) = [(γ + Ha−2z)(PmHa2γ + z) +m2]2z − 4m2l2 (4.9)

associated with (4.7). This implicitly fixes the 5 numbers kj as functions of m, l, Ha,
Pm and γ. The dependence of kj on m, l, Ha, Pm and γ is implicit not only because
no analytical formula exists for the roots of Q(z), but also because γ is still unknown at
the moment. By back-substituting the ansatz (4.8) into the original equations, we can

† Tayler preferred to use modified Bessel functions Im but this choice has no impact on the
solution
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calculate all the other fields

u± =

5∑
j=1

Pj
±kj(PmHa2γ + zj)

fj +m(m± 2)
Jm±1(kjr) e

imθ eilz eγt,

b± =

5∑
j=1

Pj
±imkj

fj +m(m± 2)
Jm±1(kjr) e

imθ eilz eγt,

uz =

5∑
j=1

Pj
−il(PmHa2γ + zj)

fj +m2
Jm(kjr) e

imθ eilz eγt,

bz =

5∑
j=1

Pj
ml

fj +m2
Jm(kjr) e

imθ eilz eγt,

(4.10)

where we defined fj = (γ+Ha−2 zj)(PmHa2γ+zj) and u± = ur± iuθ and b± = br± ibθ.
This fixes all the fields in terms of 5 arbitrary constants Pj . Note that the notation
u± = ur ± iuθ and b± = br ± ibθ allows to recognize simple structures in the solution.

In configuration I, the interior magnetic induction must match an exterior field that
derives from an harmonic potential of the following form

ψ(r, z, θ, t) = DKm(lr) eimθ eilz eγt, (4.11)

where D ∈ C is a 6th arbitrary constant, and Km is a modified Bessel function of the
second kind. The associated magnetic field is

b± = D(−l)Km±1(lr) eimθ eilz eγt,

bz = D(il)Km(lr) eimθ eilz eγt.
(4.12)

At this point, we have found solutions of the homogenous problem inside and outside
the cylinder in terms of 6 arbitrary coefficients. There are exactly 6 boundary/transmission
conditions (4.5) and it is thus possible to find a set of 6 homogenous algebraic equations
for the constants P1, . . . , P5, D. Upon defining V = [P1, P2, P3, P4, P5, D]T , in matrix
notation we have:

M(γ,m, l,Ha,Pm) V = 0, (4.13)

where M ∈ C6×6 is a complex-valued matrix depending on γ, m, l, Ha, Pm. The rank-
nullity theorem implies that it is necessary that

detM(γ,m, l,Ha,Pm) = 0, (4.14)

for this homogenous system of algebraic equations to have a non-trivial solution. Together
with the characteristic polynomial (4.9), this relation formally gives the dispersion rela-
tion of the Tayler instability and allows to find the growth rate γ ∈ C as a function of
m, l,Ha,Pm. The same technique applies to configuration II, but this time M ∈ C5×5

since the extra coefficient D is irrelevant in the absence of the exterior domain.

4.2.2. Solving the dispersion relation in practice

In his article (Tayler 1960), Tayler used a very similar method, but due to the lack of
computing power at that time, no explicit expressions for γ could be found for arbitrary
values of m, l,Ha,Pm. About 50 years later, the necessary computing power is readily
available and we propose to solve the dispersion relation by using an iterative Newton-
based algorithm. We first fix m, l,Ha,Pm and provide an estimate for the growth rate
γ̂. We then feed these numbers to an optimization loop that calculates five candidate
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wavenumbers kj using the characteristic polynomial, and evaluate the matrix M together
with its determinant. Using a gradient descent method, we modify γ̂ to converge towards
a solution γ that annihilates det(M).

4.2.3. Solution in the QS limit

Upon inspecting the induction equation in (4.2) we infer that the quasi-static (or
diffusion dominated) limit requires that

(QS): PmHa2 → 0. (4.15)

The solution in this limit is obtained by using the technique described above and setting
Pm = 0 in the previous expressions. We henceforth denote γqs the corresponding growth
rate.

4.2.4. Solution in the non-viscous QS limit

We define the non-viscous, quasi-static (or diffusion dominated) (NVQS) regime by
assuming that

(non-viscous QS): Ha→ +∞, PmHa2 → 0, (4.16)

at the same time. The magnetic Prandtl number Pm thus needs to decay faster than
Ha−2 as Ha → ∞, which, given that real liquid metals have finite Prandtl numbers,
can never happen; we will nevertheless investigate this limit. Neglecting all the terms
weighted by Ha−2 and PmHa2, the perturbation equations (4.2) no longer depend on any
non-dimensional parameter. The decoupling process then results in a 6th order Master
equation and solutions for all the fields are found by setting Ha−2 = PmHa2 = 0 in (4.10).
In this limit, only 3 Bessel functions appear in the radial structure with wavenumbers
kj , and the characteristic polynomial (4.9) simplifies into

Q(z) = [γz +m2]2z − 4m2l2. (4.17)

The dispersion relation is obtained by replacing the viscous no-slip boundary condition
by the non-viscous no-penetration boundary condition

ur
∣∣
1−

= 0. (4.18)

The magnetic boundary/transmission conditions are unchanged. Expressing these bound-
ary conditions gives a matrix M ∈ C4×4 in configuration I and a matrix M ∈ C3×3 in
configuration II. The same iterative technique as before can be used to compute the
growth rate, which we henceforth denote γnvqs. This value is denoted Γ in Rüdiger et al.
(2012).

4.2.5. Solution in the ideal MHD limit

We also want to investigate the ideal MHD regime: non-viscous and non-diffusive. This
limit consists of assuming that

(Ideal): Ha→ +∞, PmHa2 → +∞. (4.19)

This is not an artificial limit, although it is hard to approach in liquid metals where Pm
is very small. In this limit it is appropriate to rescale the time and adopt the Alfvén
time unit; this is done by rescaling the growth rate as follows: γ = γa/(

√
PmHa). Ne-

glecting all the terms related to viscous and magnetic diffusion, we obtain a 2nd order
Master equation for q. Up to some rescaling of the amplitudes, the fields can be ob-
tained from (4.10). Only one radial wavenumber k appears in the radial structure and
the characteristic polynomial is linear

Q(z) = [γ2 +m2]2z − 4m2l2, (4.20)
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where we recall that z = k2 + l2. The corresponding growth rate in Alfvén’s units is
henceforth denoted γa,ideal. The wavenumber k is such that the no-penetration boundary
condition is satisfied on the lateral boundary r = 1:

ur
∣∣
1−

= 0, (4.21)

which requires that k solves(
1−

√
1 +

k2

l2

)
Jm+1(k) +

(
1 +

√
1 +

k2

l2

)
Jm−1(k) = 0. (4.22)

This equation has only real solutions, and they can be easily computed numerically. No
boundary/transmission condition on the magnetic field can be enforced, which means that
we cannot differentiate configurations I and II. The growth rate is found by computing
the single root of Q, see (4.20):

γa, ideal =

√√√√ 2|m|√
1 + k2

l2

−m2. (4.23)

Since the wavenumber k is real, we deduce that only modes m = ±1 can be unstable (to
have a positive value under the square root). It follows that instability is possible only if
|k|/|l| <

√
3.

4.3. Linear stability: Results & comparison

In agreement with the numerical simulations performed in section §3, and other pre-
viously published results (see e.g. Tayler (1957); Rüdiger et al. (2011, 2012)), we find
that only modes with azimuthal wavenumbers such that |m| = 1 are unstable and the
corresponding growth rates are real above some critical number Hac. The objective of
this section is threefold: first we discuss the cases studied in section §3 and compare
the numerical results with our theoretical estimates; then we explore the range of the
parameters Pm,Ha; finally we consider the non-viscous limits. The numerical growth
rates obtained with SFEMaNS are scaled in Alfvén’s time-unit. They are converted in
the present units by using the formula γ = γa/(

√
PmHa).

4.3.1. Case h = 2, Ha = 24, Pm = 10−2

We start with configuration II. Assuming periodicity in the vertical direction with
period h, we must have l = 2πn/h with integer n. The fundamental mode with one
wavelength along z is then l = ±π. The modem = 1 and l = π is unstable, and the growth
rate given by the linear stability analysis is γ = 7.805×10−3. This corresponds very well
to the value 7.804×10−3 estimated with SFEMaNS (γa = 1.87×10−2 in Table 1). The
spatial structure of this mode is shown in figure 10. The amplitudes are normalized
so that max(|ur|, |uθ|, |uz|) = 1. Note that the velocity and the magnetic fields are in
quadrature, and the radial component of each field is in quadrature with the azimuthal
and axial components.

Since the growth rates are exactly the same for all 4 combinations of m = ±1 and
l = ±π, a Tayler mode is a real-valued superposition of these 4 complex fundamental
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Figure 10. Radial structure of the unstable Tayler mode in configuration II. m = 1, l = π,
Ha = 24, Pm = 10−2.

modes and can be represented as follows:
ur
uθ
uz
br
bθ
bz

 = Re

A+


Vr(r)
iVθ(r)
−iVz(r)
iCr(r)
−Cθ(r)
Cz(r)

 e
i(θ+lz) +A−


Vr(r)
−iVθ(r)
−iVz(r)
−iCr(r)
−Cθ(r)
−Cz(r)

 e
i(−θ+lz)

 eγt.

We can now understand why the modes come in different classes as observed with SFE-
MaNS. If one of the amplitudes A+ or A− is zero, we have an helical mode as in figure
2(a) and (b), with either left-hand or right-hand polarisations. These solutions are the
modes labeled L and R in Bonanno et al. (2012). When |A+| = |A−|, we obtain the
modes of figure 2(c) and (d). In all the other cases the modes are superposed; this is not
observed in the simulations because of the adopted initial conditions.

The choice of amplitudes is further limited in the finite cylinder with the stress-free
boundary condition. It is possible to construct superpositions such that uz, ∂zu±, bz,
j± ∼ sin(lz) along z, so that the stress-free TB-BC boundary conditions (3.5) can be
satisfied with the choice l = nπ/h and n ∈ N, only if A+ = A∗−. Helical modes are
thus excluded by the stress-free boundary condition in agreement with the numerical
observations in §3.2.2, i.e., helical modes do not spontaneously emerge as they do in
the setting studied in Bonanno et al. (2012). Note also that with stress-free TB-BC
the fundamental wavenumber is no longer π but π/2 in the cylinder h = 2. This is in
agreement with the fact that two competing modes (SF-one and SF-half) were found
for this configuration (see figure 6). The linear stability analysis gives a second unstable
mode with l = π/2, and the corresponding growth rate γ = 2.289×10−3 at Ha = 24 is 3
times smaller than that of the SF-one mode. Again this agrees very well with the value
2.312×10−3 evaluated numerically (γa = 5.55×10−3 in the rightmost column of Table 4).
The linear stability analysis explains well the presence of the SF-half mode, but it does
not explain why this mode wins the competition over the SF-one mode in the nonlinear
regime.

4.3.2. Variation of Hac with l

The critical Hartmann number for the onset of the Tayler instability, Hac, is inde-
pendent of the Prandtl number; it depends only on the vertical wavenumber l. We have
calculated this number for both configurations I and II over a large interval for l; the
results are displayed in figure 11. We observe that the behavior of Hac with respect to
l is similar in configurations I and II. There is a lower limit under which the Tayler
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Figure 11. Critical Hartmann number Hac vs. wavenumber l.

instability cannot exist. The thresholds for both configurations I and II become identical
in the limit l → +∞; this is a consequence of the fact that the exterior magnetic field
quickly decays away from the cylinder as l increases. The pairs (l∗,Hac,∗) corresponding
to the lowest threshold are

I ( ) : l∗ = 2.483 , Hac,∗ = 21.092,

II (•) : l∗ = 2.271 , Hac,∗ = 19.296.
(4.24)

We have investigated numerically the optimal cylinder with height h∗ = 2π/l∗ = 2.77
and we have obtained Hac ≈ 19.4 in configuration II, see section §3.3. These results are
also in good agreement with the result Hac,∗ ≈ 22 found in Rüdiger et al. (2012) for an
infinite cylinder with insulating walls (i.e., configuration I).

4.3.3. Variation of γ and γqs with Ha

Since most of the numerical simulations have been done with the aspect ratio h =
2, we now fix l = π and compute the theoretical values for the growth rates in both
configurations I and II for a large range of parameters Pm, Ha. The results are gathered
in figure 12. The left panel gives the growth rate γ as a function of Ha, for various values of
Pm; the right panel gives the same results in rescaled units: γa = Ha

√
Pm γ. Comparing

the dashed lines (configuration I) and the solid lines (configuration II), we observe that
both configurations behave very similarly for all the values of Pm and Ha explored. This
observation further supports the idea that the exact nature of the magnetic boundary
condition on the cylindrical sidewall is not so important for the Tayler instability. The
circles indicate the values measured from the numerical simulations in configuration
II. We observe a very good agreement between the numerics and the linear stability
theory, which cross-validates both approaches. The theoretical value for the threshold
is Hac = 21.58 in configuration II. This value is very close to the estimate Hac ≈ 21.7
obtained numerically with SFEMaNS (see table 1).

We now discuss the behavior of the theoretical curves in figure 12(a) as Ha goes from
Hac to +∞. The two curves labelled γqs correspond to the QS limit with Pm = 0.
The graph of γqs monotonically increases with Ha and converges to the non-viscous
horizontal asymptote as Ha → +∞. The approximate values for the non-viscous limit
are γnvqs = 0.0409 in configuration I and γnvqs = 0.0459 in configuration II. These values
closely match the value given by Rüdiger et al. (2012) (eq. 7), who studied configuration
I and found Γ ' 0.04.

We now consider the effect of Pm. When Pm � 1, the graph of γ follows that of the
QS limit over some interval of width depending on Pm, and it eventually bends down and
separates from the QS limit as Ha increases. Then the graph of γ reaches a maximum at a
transitional Hartmann number we note Hatr(Pm) and which value depends on Pm. This
behavior is due to the term PmHa2∂tb that is neglected in the QS regime. If Pm 6= 0,
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this term eventually gains weight in the induction equation when Ha is large enough. It
has been possible to go beyond the maximum for Pm ∈ {10−1, 10−2}, and we observe
that γ → 0 when Ha→ +∞. In this limit, the growth rate is better expressed in Alfvén’s
time-units γa = γ

√
PmHa as shown in figure 12(b). With this new scaling, all the graphs

appear in reversed order and we see that they all seem to converge towards the ideal
MHD horizontal asymptote, here found at γa,ideal = 0.7804.

The quantity labeled Hatr is informative in the sense that the Tayler instability is of
quasi-static nature over the interval [Hac,Hatr(Pm)]. In other words, as long as we keep
Ha < Hatr, numerical simulations done with Pm ∈ [10−3, 10−2] will give rise to Tayler
instabilities that are very similar in structure to those that would have been obtained by
using Pm = 10−6, which is a value of the Prandtl number that is more representative of
liquid metals. Obtaining a precise behavior of Hatr as a function of Pm is thus useful to
estimate when we can obtain the correct physics at a smaller computational cost using
SFEMaNS. We have computed Hatr for various values of Pm ∈ [10−4, 1]; the quantity
Hatr −Hac is shown in figure 13 as a function of Pm. We observe a scaling law

Hatr −Hac ∼ Pm−3±0.1, (4.25)

for small values of Pm. We have used this relation to extrapolate the curve in the range
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Pm 10−1 10−2 10−3 10−4 10−5 10−6

Hatr 49.0 71.6 124.5 231.9 ≈ 440 ≈ 940

Table 5. Hatr number indicating change in regime: the quasi-static approximation holds when
Ha < Hatr.
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Pm ∈ [10−6, 10−5] which is typical for liquid metals. The graph in figure 13 can be
interpreted as a phase diagram in some sense: under the curve the Tayler instability is
of quasi-static nature; above, the Tayler instability has the structure of the ideal MHD
limit. This tells us that the Tayler instability in liquid metal columns can be modeled
using the quasi-static approach up to very high Hartmann numbers. Numerical values of
Hatr are given in Table 5.

4.3.4. Non-viscous limits: γnvqs & γa,ideal as a function of l

Figure 12 illustrates well the importance of the non-viscous asymptotes γnvqs and
γa,ideal as Ha → +∞ for the particular value l = π. We now calculate the non-viscous
growth rates γnvqs and γa,ideal over a large interval of wavenumbers l. The results are
shown in figure 14(a) for γnvqs and figure 14(b) for γa,ideal; the computations are done
for both configuration I and configuration II using (4.22)-(4.23).

Figure 14(a) reveals 3 branches in the NVQS limit, each corresponding to an unstable
mode. The spatial structure of these modes is shown in the inset between the two panels.
The first, second and third Tayler modes are composed of 1, 3 and 5 rolls along the
radial direction, respectively. We do not focus on modes with more than one roll in the
radial direction in this paper, since the 1-roll pattern is always dominant in the viscous
regime. We observe also that each mode has a negative growth rate beneath a minimal
wavenumber l. This observation explains why the threshold Hac grows to infinity in figure
11 when l→ 0.

In the ideal MHD limit, figure 14(b) shows again three branches for γa,ideal, each of
these branches corresponding to a Tayler mode with 1, 3 and 5 rolls along the radial
direction.

4.3.5. Conclusions of the linear analysis

Close to threshold and for small Prandtl numbers, the Tayler instability is quasi-static
in nature; more precisely, in the region Hac ≤ Ha < Hatr(Pm), Pm� 1, the dimensional
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growth rate scales like

γqs(Ha)
σB2

0

ρ
= γqs(Ha)Ha2

ν

R2
= γqs(Ha)Ha

√
Pm

B0√
ρµ0R

, (4.26)

where the function γqs(Ha) is the QS growth rate; it is concave down, increases mono-
tonically and converges to the non-viscous horizontal asymptote as Ha → +∞. For the
reader’s convenience, we have written (4.26) using the time-unit, ρ/σB2

0 , the viscous time-
unit, R2/ν, and Alfvén’s time-unit,

√
ρµ0R/B0. Then, in addition to the Alfvén scaling

Ha
√
Pm, we recover the Ha2 scaling identified in Rüdiger & Schultz (2010); Rüdiger

et al. (2011, 2012). These expressions show that the time-unit ρ/σB2
0 is well adapted to

describe the quasi-static regime.
Considering that the magnetic Prandtl number in liquid metals is usually very small,

say in the range [10−8, 10−5], and that it is very difficult to reach very high Hartmann
numbers in experiments with liquid metals, we conclude that the QS regime is relevant
for the analysis of the Tayler instability in liquid metal batteries. Numerical codes that
adopt the QS approximation as in Weber et al. (2013) are thus well adapted to capture
the dynamics in these systems in the range 0 ≤ Ha . 103 (see Table 5), since as argued in
Weber et al. (2013) adopting a time marching strategy to solve the induction equation in
this regime can be time consuming due to severe time step restrictions. Still this does not
exclude that other numerical codes like SFEMaNS, which are based on time-stepping,
cannot track the Tayler instability in the QS limit. Actually, Table 5 shows that the
QS behavior is well captured when 0 ≤ Ha . Hatr(Pm); this is the case for Hartmann
numbers in the range 0 ≤ Ha . 102 when Pm ∈ [10−3, 10−2]. This range is well within
reach of time-stepping codes.

4.4. Nonlinear regime

The linear stability analysis is valid only in the infinitesimal limit, i.e., it cannot predict
the nonlinear saturation level of instabilities. The purpose of this section is to use a
weakly nonlinear equilibrium theory to estimate the nonlinear amplitude of the Tayler
instability in the QS limit. We do not perform a detailed analysis but instead sketch a
plausible scenario leading to a particular scaling of the amplitude of the flow.

To simplify the notation, we introduce the state vector X = [u, b, q]T and rewrite the
nonlinear perturbation problem (4.2) as

∂tJX + LX = N (X,X). (4.27)

The QS limit is obtained by neglecting all the terms that are proportional to PmHa2 � 1.
We then have J = diag(1, 1, 1, 0, 0, 0, 0), and L is a linear differential operator involving
only spatial derivatives. The nonlinear operator reduces to N (X,X) = (−(u·∇)u,0, 0).
Let us then first return to the linear stability analysis problem. The unstable Tayler
mode computed in the previous section, say XT = YT (x) eγqst, is such that YT solves
the eigenvalue problem

LYT = −γqsJYT . (4.28)

Recall that the eigenspace is four-dimensional, i.e., YT is a (real) superposition of 4
fundamental modes.

Let us now imagine that a stationary weakly nonlinear equilibrium solution Ye exists
so that the following nonlinear equation holds:

LYe = N (Ye,Ye). (4.29)

We have indeed observed saturated states in our numerical simulations (see figures 4, 7,
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9), but we also have seen that they can become unstable. In both cases, the simulations
show that the unstable Tayler mode composes the dominant part of the solution. We
then propose the following ansatz

Ye = ATYT +A1Y1 +A2Y2 + ... (4.30)

where the parameters

1� AT � A1 � A2 � . . . (4.31)

keep track of the order of magnitude of the Tayler mode and the first and second order
harmonics Y1 and Y2. To understand how the nonlinear equilibrium settles, we insert this
ansatz into (4.29) and isolate the equations that the harmonics must satisfy. The first
order harmonics is directly forced by the nonlinear self-interaction of the Tayler mode:

A1 LY1 = A2
T N (YT ,YT ). (4.32)

This linear problem is solvable since the right-hand side forces spatial structures with
wavenumbers m = 0,±2 and 0,±2l, that are necessarily in the orthogonal of the kernel
of LT . As consequence, we have

A1 ∼ A2
T . (4.33)

Less trivial and only after a good deal of analytical hard work, one can indeed calculate
the harmonic Y1, but this is not the aim of the present study.

In the next step, the second harmonics Y2 needs to satisfy the balance equation:

A2 LY2 = γqsAT JYT +A3
T [N (YT ,Y1) +N (Y1,YT )] . (4.34)

This linear problem is not solvable for arbitrary choices of the amplitude AT . The solv-
ablity condition will fix the amplitudes of the m = ±1 and ±l components of the Tayler
mode YT . Obtaining these amplitude equations is complicated and requires a lengthy
calculation, but it is clear that the two terms in the right-hand side can be of the same
order of magnitude only if

γqsAT ∼ A3
T . (4.35)

In other words, if the classical cubic Landau-saturation approximation for a supercritical
bifurcation applies to the Tayler instability in the QS regime, the amplitudes must scale
as follows:

AT = C
√
γqs =⇒ UT = C

√
γqs

σB2
0R

ρ
. (4.36)

where C is a O(1) non-dimensional constant and UT is the dimensional amplitude of the
velocity field at saturation. This relation can also be rewritten in terms of the Reynolds
number associated to the perturbations

Re =
UTR

ν
= C

√
γqs(Ha)Ha2. (4.37)

The scaling Re ∼ Ha2 has been observed in the recent work of Weber et al. (2014).
We now compare the scaling (4.37) with the numerical results obtained with SFE-

MaNS and those published in Weber et al. (2014). We calculate the growth rates γqs(Ha)
for various values of the Hartmann number in the range 0 ≤ Ha ≤ 50 using l = π.
We show in figure 15(a-b) the graph of Re = C

√
γqs(Ha)Ha2 and urms = ReHa−2 =

C
√
γqs(Ha). We also show in these two figures the results obtained with SFEMaNS

with Pm ∈ {10−4, 10−2} using the formulae Re(Ha) = urms,aHaPm
− 1

2 and urms(Ha) =

urms,aHa
−1 Pm−

1
2 , where urms,a is computed with (3.9). There is a reasonable agreement
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Figure 15. Weakly nonlinear saturation of the Tayler instability: theory vs. numerics. Theoret-
ical curves for various values of C. Numerical results obtained using SFEMaNS (a) & (b), using
the data of Weber et al. (2014) (c) & (d). Note that in panel (d), Hac = 19.7 for the theory and
Hac = 29 from Weber et al. (2014).

between the theoretical predictions of the weakly nonlinear model and the numerical
simulations for C ≈ 0.6. We have restricted ourselves to Ha ≤ 50 to be close to the QS
limit as specified in Table 5.

In figure 15(c-d), we show the graph of Re = C
√
γqs(Ha)Ha2 and urms = ReHa−2 =

C
√
γqs(Ha) where γqs(Ha) is computed using l = π/1.2. We also report in this figure

results published in Weber et al. (2014, figure 6) for a cylinder of aspect ratio h = 2.4. The
numerical results were obtained using a quasi-static code and with the no-slip boundary
condition enforced at the top and bottom lids. These are not exactly the same boundary
conditions as those that we have imposed, which explains the slight difference on the
value of the threshold. We nonetheless observe that our theoretical predictions work well
in this case also for a large range of Hartmann numbers with C ' 0.3.

5. Tayler instability in Liquid Metal Batteries

We apply the theories developed above to Mg-based liquid metal batteries. After a
discussion on material properties, we calculate a critical lateral size of a Mg-based battery
and also discuss how large the electrolyte layer should be to avoid a short-circuit.
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Liquid ρ (kg.m−3) η (Pa.s) σ (S.m−1) Pm Ha/Ha top

Mg 1.58×103 1.23×10−3 3.57×106 3.49×10−6 1
MCl2-KCl-NaCl 1.67×103 1.40×10−3 2.13×102 2.24×10−9 7.24×10−3

Sb(Mg) 6.53×103 1.30×10−3 2.56×106 6.4×10−7 0.82

Table 6. Density ρ, dynamic viscosity η, conductivity σ, Pm and relative Hartmann number
Ha/Ha top of the three fluids composing a Magnesium-based Liquid Metal Battery.

5.1. Physical properties

Liquid metal batteries (LMBs) are usually composed of three liquid phases with different
densities. The top and bottom layers assume the role of the electrodes and the middle
layer is the electrolyte. The densities of the liquid metals composing the three layers
are chosen so that the assembly is stable under the action of gravity. Three types of
assemblies have been considered in the literature for possible industrialization in the
near future (Kim et al. 2013; Wang et al. 2014):

(a) Magnesium batteries: Mg (light) for the top electrode, MCl2-KCl-NaCl for the
electrolyte (intermediate density) and the alloy Sb(Mg) for the bottom (heavy) electrode.

(b) Sodium batteries: with Na, NaF-NaCl-NaI and Bi(Na) for the top, middle and
bottom material, respectively.

(c) Lithium batteries: with Li, LiF-LiCl-LiI and a Sb-Pb alloy for the top, middle and
bottom material, respectively.

The physical properties of the magnesium LMB at 700◦C are listed in table 6 (see
also Crawley & Kiff (1971) and Sohal et al. (2013)). We also report in this table the
corresponding magnetic Prandtl numbers and the relative Hartmann numbers using the
Hartmann number of the top layer as a reference, Ha top. All the fluids have very low
Prandtl numbers and, upon inspection of the relative Hartmann numbers, we conjecture
that the Tayler instability is likely to occur first in the top layer, as already suggested in
Weber et al. (2013).

Let us now specify some typical dimensions. In the Mg-based LMBs studied in Bradwell
et al. (2012), the lateral size R and height H of the top and bottom electrodes are
nearly 10−2m. Larger prototypes now reach 5×10−2m ≤ R ≤ 15×10−2m for a total
height around Htop + He + Hbottom = 5×10−2m. The electrolyte layer is always rather
thin, He ≤ 5 . 10−3m, since the voltage drop over the resistive electrolyte layer must
be smaller than the open circuit voltage of the cell, Weber et al. (2014). LMBs are
potentially interesting in comparison to other battery technologies if they can be scaled up
to larger sizes (possibly reaching R > 1m), but the Tayler instability becomes potentially
hazardous as the size increases, Stefani et al. (2011).

An important quantity in LMBs is the typical current density J0. Although it would
be desirable to be able to reach high values for J0, this quantity is limited in practice.
For instance, high current densities increase internal resistance losses, which then lower
the efficiency of the battery. Also, high J0 require fast ion-exchange rates on the inter-
faces; this can lead to local depletion/accumulation of the migrating ions (Bradwell et al.
(2012)), which may further reduce the efficiency of the battery. Presently, Mg-based LMB
prototypes operate with current densities up to J0 = 3 × 103A/m2, see Bradwell et al.
(2012); Kelley & Sadoway (2014). The more recent Li-based LMBs of Wang et al. (2014)
have been efficiently cycled with current densities up to J0 = 104A/m2. These numbers
remain far below the current densities J0 = 105−106A/m2 that are reached in the liquid
metal column experiments of Seilmayer et al. (2012), but it is reasonable to think that
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larger values of J0 can be reached in the future in the LMB technology. In the rest of the
paper we consider the following three scenarios:

(i) J0 = 3× 103A/m2 , (ii) J0 = 104A/m2 , (iii) J0 = 105A/m2. (5.1)

to estimate the importance of Tayler’s instability in LMBs.

5.2. Critical size of battery Rc for the Tayler instability

We identify in this section under which conditions the threshold for the Tayler instability
can be reached in Mg-based LMBs. As emphasized in Rüdiger et al. (2012), the Hartmann
number

Ha =
µ0I0
2π

√
σ

ρν
, (5.2)

is proportional to the total current I0 = J0πR
2 passing through the system. Using

the physical parameters of the top layer and the minimal critical Hartmann number
Hac,∗ = 19.296 corresponding to the lowest possible threshold (see (4.24)), we estimate
the minimal critical current

Ic ' 1.78 kA (5.3)

that is necessary to trigger the Tayler instability in the top Mg-layer. This order of mag-
nitude matches the experimental value reported in Seilmayer et al. (2012) and Rüdiger
et al. (2012) for a column of liquid Galinstan. Given Ic and the three scenarios for J0
defined above, we can estimate the order of magnitude for critical lateral battery sizes

(i) Rc ' 0.436m , (ii) Rc ' 0.239m , (iii) Rc ' 0.075m. (5.4)

The Tayler instability is not to be expected to occur in LMBs with lateral dimension
R < Rc. For instance, the prototype Mg-based batteries currently available on the market
fall into the category (i). Since for these batteries R . 0.15m, so far, it is safe to say that
the Tayler instability cannot occur in these cells. However, if LMB technology should
reach higher standards on J0 like in case (iii), the Tayler instability might occur in cells
as small as the present prototypes.

As observed by Weber et al. (2013, 2014), the critical Hartmann number increases
sharply in cells with small aspect ratios; hence, one needs to take into account the in-
fluence of the aspect ratio h of the cells to make better estimates. Using the data of
Figure 11 and the wavenumber-aspect ratio relation l = nπ/h, we can calculate the crit-
ical current Ic(h) as a function of the aspect ratio h of the top electrode and for different
numbers of rolls in the vertical direction, say n = 1, 2, 3. Given J0, we then calculate
the critical lateral size Rc(h) as a function of the aspect ratio h of the electrode. We
show in Figure 16 the marginal stability curves thus obtained (we take the lowest Rc(h)
number for n ∈ {1, 2, 3}). Flat cells have to be very large to become Tayler unstable, but
as the aspect ratio reaches 1, all the curves level off to the optimal values given in (5.4).
These curves give an idea on the possibilities of the occurrence of the Tayler instability
in LMBs using present day and future technology. All the prototype cells (represented by
rectangles in Figure 16) are well beneath the marginal stability curve corresponding to
case (i), i.e., J0 = 3× 103A/m2. The Tayler instability is not an issue for these batteries.

5.3. Critical electrolyte thickness He,c for short-circuit

It is essential in LMBs to avoid short-circuits between the top and bottom layers (Stefani
et al. 2011; Weber et al. 2014). Short-circuits are possible when the fluids move sufficiently
fast so that the thickness of the electrolyte layer becomes negligible at some point, thereby
allowing the fluid from the top electrode to get in contact with the fluid from the bottom
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Figure 16. Estimated phase diagram for the occurrence of the Tayler instability in Mg-based
LMBs in terms of physical dimensions and for the three J0-scenarios: (i) J0 = 3 × 103Am−2,
(ii) J0 = 104Am−2 , (iii) J0 = 105Am−2. There is a risk of Tayler instabilities only in batteries
of horizontal size r > Rc. Various flows with different numbers of cells n = 1, 2, 3 in the vertical
direction can occur at the onset of instability. Rectangles indicate estimated dimensions of LMB
prototypes.

electrode. Using a simple energy argument, we now estimate the critical thickness of the
electrolyte layer, He,c, above which short circuits caused by the Tayler instability should
not happen.

Considering the nonlinear scaling (4.36), compatible with the results of Weber et al.
(2014), we estimate the kinetic energy density of the flow:

ekin =
ρU2

T

2
=
C2γqs

2

σ2B4
0R

2

ρ
=
C2γqs

32

σ2 µ4
0 J

4
0R

6

ρ
, (5.5)

where γqs(Ha) is the non-dimensional quasi-static growth rate calculated using the linear
stability analysis. Parts of this kinetic energy will be transformed into gravitational
potential energy as the fluid interfaces start moving. Since the fluid composing the bottom
layer is significantly heavier than both that of the electrolyte and the top layer, wavy
motions of the interfaces are more likely to occur at the upper electrode-electrolyte
interface. We therefore consider a simplified short-circuit model in which a parcel of fluid
from the top electrode moves across the electrolyte layer towards the lower electrode.
This event increases the density of gravitational potential energy of the amount

epot = (ρe − ρtop)gHe. (5.6)

It seems reasonable then to assume that a short-circuit happens when all the available
kinetic energy is transformed into potential energy. The statement ekin = epot yields a
critical thickness of the electrolyte layer:

He,c =
C2γqs(Ha)

32

σ2
top µ

4
0 J

4
0R

6

ρtop(ρe − ρtop)g
. (5.7)

A configuration where He > He,c has not enough kinetic energy available to allow for
a short-circuit and may thus be considered safe. Conversely, it is unlikely that He <
He,c immediately implies that short circuits will happen, but the configuration starts
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Figure 17. Critical height of the electrolyte layer He,c vs. R for three current density
J0-scenarios : (i) J0 = 3 × 103Am−2, (ii) J0 = 104Am−2 , (iii) J0 = 105Am−2. Dimensions
are in meters. Dashed lines correspond to the high Hartmann number range: Ha ∈ [300, 1000]
(calculated using the asymptotical value of γnvqs). Arrows indicate critical battery sizes Rc.

to be unsafe. Note finally that the above argument is essentially the same as applying
Bernoulli’s conservation law to the three layer fluid system.

Since the above formula suggests a very fast increase of He,c ∼ R6 with respect to the
horizontal size of the battery, one may be led to think that He,c quickly becomes very
large, thereby excluding the possibility of building very large LMBs. To evaluate this
idea quantitatively, let us apply the estimate (5.7) to Mg-based LMBs using the three
scenarios stated in (5.1) for J0.

We calculate γqs(Ha) for a large range of Hartmann numbers using the linear theory
for the optimal cylinder height htop = 2.77, with wavenumber l = 2π/2.77. This is
the worst case scenario since it gives the smallest threshold for the configuration that
fits two counterrotating vortices in the box. For very large Ha ∈ [300, 1000] we use the
asymptotical value γnvqs = 0.0512. Then we compute He,c as a function of the horizontal

size R by using the different material properties, the relation Ha = 1
2µ0J0R

2
√
σ/η,

C = 0.6, g = 9.81m/s2 and the three values of J0 defined in (5.1). The results are
shown in Figure 17; the highlighted band shows the typical range of the thickness of the
electrolyte, He,c ∈ [1, 5]×10−3m. This figure clearly shows the steep increase ∼ R6 and
the dependence on J0; it also shows that LMBs with radius such that

(i) R ≤ 3.14m (ii) R ≤ 1.40m (iii) R ≤ 0.30m (5.8)

should not suffer from short circuits induced by the Tayler instability with an electrolyte
layer of only one millimeter thick, He,c = 10−3m. Short-circuits can be expected only in
very large batteries, R > 3m, with the present day technology of Mg-based LMBs (case
(i)). But if the standards evolve so much that J0 can be as high as in case (iii), cells of
radius exceeding 0.30m may become unsafe.

5.4. Simulation of the Tayler instability in a model LMB under low gravity

We now want to simulate a multiphase configuration resembling a LMB in order to test
the reliability of the critical electrolyte thickness criterion (5.7). For this purpose, we re-
write (3.2) to account for the action of gravity and the fact that the density, the dynamic
viscosity and the electrical conductivity are no longer constant. The new non-dimensional
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Figure 18. Profiles of the level set functions Φ1 and Φ2 in a vertical cut of the cylinder at rest
for Hatop = 15.8. The level set functions jump sharply from 0 to 1.

system (3.2) takes the following form:

ρ(∂tU + U ·∇U) = −∇P + (∇×B)×B + 2

√
Pmtop

Hatop
∇· (η∇sU)− 1

Frtop
ρez,

∂tB = ∇×(U×B)− 1

Hatop

√
Pmtop

∇×
(
1
σ∇×B

)
,

∇·U = 0,

(5.9)

where ∇sU = 1
2 (∇U +∇UT ) is the strain rate tensor, and the Hartmann and Prandtl

numbers are computed using the conductivity and dynamic viscosity of the top layer.
The Froude number is here defined by

Frtop =
µ0J

2
0R

4ρtopg
. (5.10)

The fields ρ, σ, η are non-dimensionalized by using the values of the top liquid layer and
are reconstructed in SFEMaNS by using two level set functions Φi, one for the bottom
interface, i = 1, and one for the top interface, i = 2 with 0 ≤ Φi ≤ 1. For instance, the
density is reconstructed as follows:

ρ =

(
(1− Φ1)

ρbot
ρtop

+ Φ1
ρe
ρtop

)
(1− Φ2) + Φ2, (5.11)

and η and σ are reconstructed similarly. Both level set functions are advected by the flow
and are thus computed by solving the transport equations

∂tΦi + U ·∇Φi = 0, i = 1, 2. (5.12)

The computation is done in SFEMaNS by augmenting (5.12) with an artificial diffusion
based on entropy residuals; we refer to Guermond et al. (2011b) for more details. The
profiles of the interfaces are kept sharp (but smooth) by using a compression technique.
Typical profiles at rest of Φ1 and Φ2 along the vertical direction are shown in Figure 18;
the thickness of the electrolyte layer is he = 0.1. The boundary conditions at r = 1−

are the same as in (3.4) and the TB-BC are chosen to be stress-free in the simulations
reported below. No boundary condition is needed for Φi, since we enforce U ·n = 0 over
the entire boundary of the container.

Let us now test the critical electrolyte thickness criterion (5.7) in a Mg-based LMB
with J0 = 3×103Am−2. We use the parameters listed in table 7, which correspond to
realistic Mg-batteries except for Pm, σe/σtop and Fr. In its current form the time-stepping
code cannot handle Prandtl numbers as low as 2.24×10−9 ≤ Pm ≤ 3.49×10−6, but the
analysis of the Tayler instability suggests that we should obtain the same dynamics by
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Hatop Pmtop Frtop
ρe
ρtop

ηe
ηtop

σe
σtop

ρbot
ρtop

ηbot
ηtop

σbot
σtop

he,c

Mg-LMB 15.8 3.49×10−6 7.2×10−5 1.057 1.138 5.97×10−5 4.133 1.057 0.717 −
23.7 idem 8.8×10−5 idem idem idem idem idem idem 8.0×10−9

47.3 idem 12.5×10−5 idem idem idem idem idem idem 1.2×10−7

Model 15.8 2.65×10−3 0.633 idem idem 3.17×10−2 idem idem 0.706 −
23.7 idem idem idem idem idem idem idem idem 0.044
47.3 idem idem idem idem idem idem idem idem 0.45

Table 7. Non-dimensional parameters for the Mg-based LMB and the numerical model.

using Pmtop = 2.65×10−3 when Ha is not too large (see Table 5). We also reduced the
conductivity ratio between the top electrode and the electrolyte for numerical stability
reasons, but we expect this modification to have little impact since the electrolyte layer
is thin.

We focus on three cases: Hatop = 15.8, 23.7, 47.3 corresponding to batteries with radii
R = 0.394, 0.483, 0.682m, respectively. The aspect ratios of the electrodes at rest are
htop = hbot = 2.77. We re-write the pinch criterion (5.7) in non-dimensional form as
follows:

he,c =
C2γqs(Hatop)

2

FrtopHa
2
topPmtop

ρe/ρtop − 1
(5.13)

As previously discussed, a short-circuit event in a Mg-based LMB at low Ha-number
would require tiny electrolyte layers of aspect ratios h < he,c ' 10−8 − 10−7 (see Table
7). Since these values are numerically unfeasible, we are going to work with a larger
value of Frtop in the numerical model, i.e., we choose Frtop = 0.633. This is equivalent
to underestimating g by many orders of magnitude, thereby making it easier for the
interfaces to undergo large deformations. By letting the thickness electrolyte to be he =
0.1, we expect no breaking of the electrolyte layer for Hatop = 23.7, since (5.13) gives
he,c = 0.044 < he; however, we should come close to short-circuit for Hatop = 47.3 since
(5.13) gives he,c = 0.45 > he.

Figure 19(a) shows the time evolution of urms,a for the three cases considered, Hatop =
15.8, 23.7, 47.3. The kinetic energy remains at a very low level and the system essentially
stays at rest for Hatop = 15.8. Above the Tayler instability threshold, the energy increases
exponentially and saturates for Hatop = 23.7. The third curve in Figure 19(a) shows the
time evolution of urms,a for the solution corresponding to Hatop = 47.3 using as initial
data the asymptotic state for Hatop = 23.7 at time t = 4000; we observe a sharp increase
of the energy until the electrolyte layer pinches at time t = 4050.

The three insets in Figure 19(b) show the two iso-interfaces Φ1 = Φ2 = 0.5 in a
meridian section; there is one inset for each value of Hatop. No deformation is noticeable
on both interfaces for Hatop = 15.8. For Hatop = 23.7, the interface between the top
layer and the electrolyte is deformed, whereas the interface between the bottom layer
and the electrolyte remains almost flat. In agreement with our critical electrolyte height
criterion, the deformation is not large enough to pinch the electrolyte layer. Doubling
the Hartmann number to Ha = 47.3, creates a more vigorous flow in the top layer which
succeeds in washing away parts of the electrolyte to a point where the two interfaces
nearly osculate. The occurrence of a pinch for this set of parameters is compatible with
our estimate (5.13), since he = 0.1 < he,c.

Figure 20 finally shows some 3D snapshots of the system. In 20(a), we see the two
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Figure 19. Tayler instability in a LMB: (a) time evolution of the rms velocity for
Hatop = 15.8, 23.7 and 47.3; (b) Final time Interface deformation for Hatop = 15.8 at time
t = 2000, for Hatop = 23.7 at time t = 4000 and for Hatop = 47.3 at time t = 4050 (after
restarting). The top interface is deformed by the flow in the top layer for Hatop = 23.7 while
the two interfaces osculate for Hatop = 47.3.
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Figure 20. Tayler instability in a LMB: (a) Initial condition (b)-(c) t = 4000 and (d)-(e)
t = 4050. Bz contours visualize ±10% of the maximum and minimum value, velocity field plots
are colored by Uz. The top and bottom interfaces are visualized by isosurfaces Φ1 = 0.5 (yellow
or light gray) and Φ2 = 0.5 (green or black).

interfaces separating the three fluids at the beginning of the computation for Ha = 15.8
and 23.7. For Hatop = 15.8 there is no Tayler instability and the interfaces remain flat
at all times. In contrast, for Hatop = 23.7, the Tayler mechanism destabilizes the top
layer, see figures 20(b) and 20(c). There are two counter-rotating vortices and a pair of
magnetic field perturbations in quadrature in the top layer. Only small motions occur in
the bottom layer. For Hatop = 47.3, the Tayler counter-rotating vortices in the top layer
are so strong that a contact is established between the two interfaces and a short-circuit
occurs.

6. Conclusion

We have studied the Tayler instability in liquid metal columns and in liquid metal
batteries using numerical and theoretical approaches.

The main conclusions from the numerical investigations on single-phase simulations are
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the following. In agreement with previous results (Rüdiger et al. (2011, 2012); Weber et al.
(2013, 2014)), we find only m = 1 unstable modes, which can be helical or phase fixed
depending on the initial conditions and the boundary conditions at the top and bottom
lids. The use of simplified boundary conditions at the cylindrical boundary r = 1− seems
to have a small impact on Tayler’s instability. We have observed saturated states and seen
how different unstable modes compete in the nonlinear regime. Secondary instabilities
have also been observed and can be induced by the use of periodic boundary conditions.
Finally we have produced quantitative data to allow careful comparisons with theoretical
models.

In the theoretical section devoted to the liquid metal column, we have performed a
linear stability analysis using the method of Tayler (1957, 1960). We observe excellent
agreements with the numerical simulations. We also explain why helical modes do not
spontaneously emerge in finite cylinders with impermeable walls. Near threshold, the
Tayler instability always appears in quasi-static form, and m = 1 modes grow on the
time-scale ρ/σB2

0 in agreement with previous work (see Rüdiger et al. (2011, 2012)).
We observe that there exists a transitional Hartmann number Hatr(Pm) such that the
quasistatic approximation applies when Ha ∈ [Hac,Hatr(Pm)]. This information allows us
to perform numerical simulations with larger Pm than in reality without compromising
the physics. In a short discussion on the nonlinear regime, we show that the Landau
saturation scenario explains the scaling Re ∼ Ha2 observed in Weber et al. (2014) and
in our own numerical simulations.

In the section devoted to LMBs, we collect physical parameters and dimensions of Mg-
based LMBs and evaluate some orders of magnitude of parameters controlling the Tayler
instabilty in these batteries. In present day Mg-based LMB technology, the maximal
current density is of the order J0 = 3× 103A/m2, which is roughly 100 times lower than
the current densities that have been reached in liquid metal experiments on Tayler’s
instability (Seilmayer et al. (2012)). This implies that critical Hartmann numbers for the
Tayler instability can only be reached in large Mg-based LMBs with radii R > 0.43m.
This critical size is large with respect to currently available prototypes, but large LMBs
are likely to be necessary in devices adapted to power-grid standards. In previous works
on LMBs (Stefani et al. (2011); Weber et al. (2013, 2014)), the Tayler instability has
been said to be potentially detrimental to the integrity of LMBs, since it might induce
fluid motions so strong that they could compromise the layered structure of the battery
and create short-circuits between the two electrodes. Using the Landau-saturation scaling
for the amplitude of the nonlinear Tayler flow and a simple energy argument, we have
evaluated a critical height for the electrolyte layer above which short-circuits should not
occur. Applying this criterion to present day Mg-based LMBs with J0 = 3 × 103Am−2,
we have found that only very large batteries (R > 3m) are exposed to short-circuits.
However, LMB technology will likely evolve and larger maximal current densities J0
will be possible; this will decrease the maximal lateral size for a safe device. Already
J0 = 104Am−2 has been reached in a Li-based LMB (Wang et al. (2014)). We hope that
J0 will increase with time and that our simple critical electrolyte layer height formula
may serve to provide a safe upper bound for the size of LMBs.

Finally, we have demonstrated that direct numerical simulations of the Tayler instabil-
ity in LMBs can be done. We have developed for this purpose a new multiphase version
of SFEMaNS. We have used these simulations to test the critical electrolyte layer height
criterion, and we have found that the electrolyte layer can pinch if its thickness is below
the critical one calculated from our model.

In the future, we plan to include the effects of convective heat transfer and non-
homogenous current densities. Inhomogeneity of B0 or J0 can significantly alter the
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Lorentz force J0 × B0. Joule dissipation of the large electrical currents introduces a
heat source localized around the electrolyte layer. This can lead to convective motions
in the upper electrode which might become as intense as the flow induced by the Tayler
instability (Kelley & Sadoway 2014).
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Appendix A. Decoupling of the linearized perturbation equation

We express the perturbation equations in cylindrical cooordinates using components
u± = ur ± iuθ, b± = br ± ibθ and a modified pressure field q = p+ bθ r + 1

2PmHa2‖b‖2.
The perturbation equations are

(∂t −Ha−2∆±)u± = −(∂r ± ir−1∂θ)q + (∂θ ± 2i)b± (A 1a)

(∂t −Ha−2∆)uz = −∂zq + ∂θbz (A 1b)

(PmHa2∂t −∆±)b± = ∂θu± (A 1c)

(PmHa2∂t −∆)bz = ∂θuz, (A 1d)

with

∆± = ∆± 2i

r2
∂θ −

1

r2
, ∆ = ∂2rr + r−1∂r + r−2∂2θθ + ∂2zz. (A 2)

Gauss’ law becomes

1

2
(∂r − ir−1∂θ + r−1)b+ +

1

2
(∂r + ir−1∂θ + r−1)b− + ∂zbz = 0. (A 3)

Applying ∂θ to the first two equations of (A 1), and using the third and fourth equations,
we eliminate the flow-variables and find:[

(∂t −Ha−2∆±)(PmHa2∂t −∆±)− ∂θ(∂θ ± 2i)
]
b± = −(∂r ± ir−1∂θ)∂θq (A 4)[

(∂t −Ha−2∆)(PmHa2∂t −∆)− ∂2θθ
]
bz = −∂z∂θq (A 5)

Next using the properties

(∂r − ir−1∂θ + r−1)∆+ = ∆(∂r − ir−1∂θ + r−1) (A 6a)

(∂r + ir−1∂θ + r−1)∆− = ∆(∂r + ir−1∂θ + r−1) (A 6b)

(∂r ∓ ir−1∂θ + r−1)(∂r ± ir−1∂θ) = ∆⊥, (A 6c)

where ∆⊥ is the 2D transverse Laplacian operator, and applying (∂r ∓ ir−1∂θ + r−1) to
(A 4) and ∂z to (A 5), we obtain[

(∂t−Ha−2∆±)(PmHa2∂t−∆±)− ∂θ(∂θ ± 2i)
]

(∂r ∓ ir−1∂θ + r−1)b± = −∆⊥∂θq
(A 7)[

(∂t −Ha−2∆)(PmHa2∂t −∆)− ∂2θθ
]
∂zbz = −∂2zz∂θq.

(A 8)

Applying[
(∂t −∆)∆ +Ha2∂θ(∂θ + 2i)

] [
(∂t −∆)∆ +Ha2∂θ(∂θ − 2i)

] [
(∂t −∆)∆ +Ha2∂2θθ

]
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to Gauss’ law (A 3) and using (A 7)–(A 8), we eliminate the dependent variables b±, bz
and finally obtain the master equation for the pressure variable,{[

(∂t −Ha−2∆)(PmHa2 ∂t −∆)− ∂2θθ
]2

∆ + 4∂2θθ∂
2
zz

}
∂θq = 0. (A 9)
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