
HAL Id: hal-01114961
https://hal.science/hal-01114961v2

Submitted on 9 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMiRALE Formal Model
Vincent Autefage

To cite this version:
Vincent Autefage. AMiRALE Formal Model: A Service Discovery and Collaboration System For-
malism based on Dynamic Graph Relabeling. [Research Report] LaBRI - Laboratoire Bordelais de
Recherche en Informatique; Université de Bordeaux. 2015. �hal-01114961v2�

https://hal.science/hal-01114961v2
https://hal.archives-ouvertes.fr

AMiRALE Formal Model
A Service Discovery and Collaboration System Formalism based on Dynamic Graph Relabeling

Version 2 - July 2015

Vincent Autefage
autefage@labri.fr

Abstract

AMiRALE (Asynchronous Missions Relay for Autonomous and Lively Entities) is a service discovery
and collaboration mechanism dedicated to autonomous swarms of highly mobile and heterogeneous nodes.
AMiRALE is only based on asynchronous communications and local computations. This report details the
internal operations of AMiRALE based on dynamic graph relabeling.

Contents
1 Introduction 2

2 Overall Description 2
2.1 Node types . 2
2.2 Mission state . 2
2.3 Mission life . 2

3 Time synchronization consideration 3

4 Meta-Model 3
4.1 Overall description . 3
4.2 Meta-model rule types . 4

4.2.1 Sensor meta-rule . 4
4.2.2 Solver local computation meta-rule . 4
4.2.3 Solver local applicative event meta-rule . 4
4.2.4 Sending view meta-rule . 5
4.2.5 Receiving view meta-rule . 5

4.3 Mission description . 5
4.4 Filters . 5

5 AMiRALE rules 6
5.1 AMiRALE common rules . 6

5.1.1 Sensor rule . 6
5.1.2 Solver local computation rules . 6
5.1.3 Solver local applicative event rules . 7

5.2 Global timing model . 7
5.2.1 Sending view rule of the global timing model . 7
5.2.2 Solver view reception rules of the global timing model . 8
5.2.3 General view reception rules of the global timing model . 8

5.3 Relative timing model . 9
5.3.1 Sending view rule of the relative timing model . 9
5.3.2 Solver view reception rule of the relative timing model . 10
5.3.3 General view reception rule of the relative timing model . 10

5.4 Relative ordering model . 11
5.4.1 Sending view rule of the relative ordering model . 11
5.4.2 Solver view reception rule of the relative ordering model . 11
5.4.3 General view reception rule of the relative ordering model . 11

6 FSM diagrams of the state field for the various node types 13
6.1 Sensor node . 13
6.2 Forwarder node . 14
6.3 Solver node . 15

7 Acknowledgment 16

autefage@labri.fr

AMiRALE Formal Model Vincent Autefage

1 Introduction
A certain set of events (e.g., temperature threshold exceeded, suspicious movement, etc) requires a reaction

of the swarm (e.g., sending a signal to a control center, triggering an alarm, etc.). A mission is the set of
information that describes such an action to perform by the swarm. A sensor is a node that is able to detect
an event (through its sensors) and to create the relative mission. A solver is a node that is able to apply the
specific action required by the mission. Finally, a forwarder is just a node which forwards a mission through
the swarm.

2 Overall Description

2.1 Node types
For a specific event e, we call Sense (sensor) a node which can capture this event. This node generates a new

mission called mn:k
e where n is the identifier of the creator node and k is a mission sequence number relative to

this node.

This mission is described by a message (a view1 called vn:ke) that travels the network through intermediate
nodes called Forwe (forwarders), until it reaches a final node which can solve the mission mn:k

e . Such a final
node is called Solve (solver).

2.2 Mission state
One of the fields of the mission description mn:k

e is an internal state which evolves while the view travels
through the network. This state can take five different values which are strictly ordered:

1. start : the mission has been created but no node is currently trying to solve it;

2. will : the mission has been caught by a solver, and it is preparing to solve it (e.g., moving to the location
where the mission takes place);

3. do: the mission is currently being solved;

4. abort : the mission has been dropped because it has apparently already been solved (e.g., a target object
that the solver is supposed to remove has disappeared);

5. end : the mission is solved.

The start state is only set at mission creation time by the node that generates it. The other states can only
be set by solvers. A forwarder is a read-only node; i.e., it cannot modify the state field. As explained before,
states are strictly ordered: start < will < do < abort < end. A finite state machine of the evolution of the
state field is shown in Figure 1.

2.3 Mission life
Each mission description contains a state, a creator identifier and creation date2, the date of modification

and the identifier of the last node that updated it.

At regular time intervals, the nodes of the swarm broadcast to their neighborhood the list of mission views
they are aware of in order to update each other. Note that nodes communicate only asynchronously and one
way.

When a Sense node catches an event e, it is possible that another mission initiated because of e already
exists. However, the decision to generate a new mission is application dependent, therefore a user function
called fe

ignore will decide if the event e has to be ignored or not.

When a node receives a newer view of one of the missions it is aware of, it updates this mission in its local
memory and broadcasts the new mission view.

1A view is a reduced form of a mission.
2We assume here that each node has a unique identifier and its own clock.

2/16

AMiRALE Formal Model Vincent Autefage

start

end

will

do

abort

Figure 1: Finite state machine of the state mission field

When a solver gets a mission in start state that it is able to solve, it turns the state field of the mission to
will and prepares itself to solve it (e.g., by moving to a specific location if required). When it begins solving the
mission, it turns its state field to do. If the solver detects that the mission has apparently already been solved
(e.g., a target object that the solver is supposed to remove has disappeared), it turns the state field to abort.
Finally, when it has succeeded in solving the mission, it turns the state field to end. A solver can be in will or
do mode for only one mission at a time.

Furthermore, a solver Solve can stay in the will (resp. do) state only for a limited time Ψe
will (resp. Ψe

do).
If one of these thresholds is exceeded, the solver leaves the mission if it is informed by another solver that this
last one is now taking care of the same mission.

Additionally, if a solver is informed that the mission it is dealing with (will or do state) has evolved to a
greater state, it leaves the mission and updates the relative description.

For a specific mission relative to an event e, if a node is not a Sense nor a Solve, it is considered as a Forwe.
By default, a forwarder is able to deal with a mission of type e even it has not been aware of this kind of event
before. Indeed, views contain specific information (i.e., thresholds, etc.) of the relative type. In other words, it
is possible to add several new mission types during the swarm operation.

3 Time synchronization consideration
Each node has its own internal clock and the time can thus drift differently from one node to the other. It

is thus necessary to take this problem into account in our discovery system. Consequently, we have developed
three versions of AMiRALE model, one for each synchronization technique:

• relative ordering where events are ordered without time reference;

• relative timing where nodes take into account the time drift relative to the others;

• global timing where all the clocks are synchronized (by using GPS information for instance).

4 Meta-Model

4.1 Overall description
To simplify the understanding of the different versions of AMiRALE, we define a meta-model which describes

the operations and communications used to solve the mission at the level of each entity.

3/16

AMiRALE Formal Model Vincent Autefage

As explained before, a node can have three different roles:

• Sense which means that the node can sense an event e and creates the relative mission mn:k
e ;

• Solve which means that the node can solve a mission mn:k
e ;

• Forwe which means that the node can forward a mission mn:k
e (default role if the node does not know the

type e).

We define an additional generic role called Anye that stands for any of the above roles and that we use to
simplify the description of the formal model.

Rules are used to describe the interactions of a node with a mission of type e. There are 5 different rule types.
For each of these rules, the 2 circles represent the role of the node before and after applying the rule. The set
under the circles represents the current value of the mission mn:k

e . The rule is applied only if the condition c is
satisfied.

4.2 Meta-model rule types
4.2.1 Sensor meta-rule

event e
Sense

{ ∅ }

<condition c>

Sense

{ <mn:k
e > }

This rule is the only one that causes a new mission to be created. A Sense node named n creates the mission
mn:k

e if condition c is true. This condition will be used in the instantiation to check if a similar mission initiated
because of the same event e is already being solved or under resolution.

4.2.2 Solver local computation meta-rule

Solve

{ <mn:k
e > }

<condition c>

Solve

{ <m′n:k
e > }

This rule enables a solver node to autonomously modify the state of a mission. After applying this rule, the
mission mn:k

e is updated to its new version m′n:k
e .

4.2.3 Solver local applicative event meta-rule

event app(mn:k
e)

Solve

{ <mn:k
e > }

<condition c>

Solve

{ <m′n:k
e > }

This rule enables a solver node to react to an applicative event app(mn:k
e) (e.g., action success, action aborted,

etc.) and to modify the related mission description.

4/16

AMiRALE Formal Model Vincent Autefage

4.2.4 Sending view meta-rule

Anye

{ <mn:k
e > }

self : 〈 <vn:ke > 〉 <condition c>

Anye

{ <m′n:k
e > }

This rule enables a node to broadcast a mission view. This broadcast operation is described as self :: vn:ke

where self is the identifier of the current node and vn:ke the view of the current mission mn:k
e .

4.2.5 Receiving view meta-rule

<src> : 〈 <vn:ke > 〉
Anye

{ <mn:k
e > }

<condition c>

Anye

{ <m′n:k
e > }

This rule enables a node to modify a mission after being informed of a new version thereof. The received
message is described as src :: vn:ke where vn:ke is the view of the mission mn:k

e received from the sender called
src.

4.3 Mission description
Each mission mn:k

e is a 7-tuple {e, k, n, t, s, n′, t′} where e is the type of the mission (i.e., event type), k is a
mission sequence number relative to its initiator node and n is the identifier of the node that has created the
mission (the initiator node). The 3-tuple {e, k, n} is the identifier of the mission. t is the date of its creation, s is
its current state (i.e., start, will, etc.), n′ is the identifier of the last node that updated the current state, and t′

is the date of the last mission update. Dates are stored as integers representing the elapsed time since a common
starting point (e.g., the well known 1970-01-01 00:00:00 UTC). The data of the mission is not represented in
the formal model.

4.4 Filters
The model uses several user functions which are application dependent. We call those user functions filters.

The complete list of filters is detailed as follows:

• fe
ignore(m

n:k
e) is used to decide if a new mission should be created or not when a new event is captured by

a sensor node (i.e., a similar mission was perhaps already initiated because of the same event e).

• fe
select(self : mn:k

e , src : vn:ke) enables the local node self to decide if it has to leave the mission mn:k
e

because src, which has sent the view vn:ke , is also taking care of the mission and is more advanced in the
process.

• fe
blind(mn:k

e) is used to decide if a view should be broadcasted or not. This can help to reduce potential
network traffic and collisions.

• fe
pass(m

n:k
e) is used by a Solve to decide if the mission mn:k

e should not be selected. This function enables
to implement a mission selection scheduler and to prevent several nodes to select certain missions (e.g.,
battery is too weak to solve this mission, etc.).

• fe
check(x : vn:ke) is used by nodes to ignore a view sent by the node x. This function enables to implement
safety verifications or security policy (e.g., several nodes are not allowed to share or to modify certain
mission types, signature required in views, etc.).

5/16

AMiRALE Formal Model Vincent Autefage

5 AMiRALE rules
We detail here all the rules of the 3 versions of AMiRALE.

5.1 AMiRALE common rules
We describe here the common explicit rules shared between the 3 versions of AMiRALE. The underline fields

of the mission set under the second circle are those which have been modified by the current rule.

5.1.1 Sensor rule

(1)

e
Sense

{ ∅ }

!fe
ignore(m

n:k
e)

Sense

{ e, k, self, now, start, self, now }

In this rule, a sensor node creates a mission relative to the event e if the filter fe
ignore does not bypass the

mission creation. Creation date in the mission is set to the current date (i.e., the now flag).

5.1.2 Solver local computation rules

(2)

Solve

{ e, k n, t, start, n, t }

!fe
pass(m

n:k
e) & free()

Solve

{ e, k, n, t, will, self, now }

This rule is used by a solver to take a mission in the start state. A solver can be in the will or do state for
only one mission simultaneously (i.e., the free function). Also, the solver can take the mission only if the filter
fe
pass does not disallow the node to take it.

(3)

Solve

{ e, k, n, t, will, n′, t′ }

n′ 6= self & (now − t′) > Ψe
will & !fe

pass(m
n:k
e) & free()

Solve

{ e, k, n, t, will, self, now }

This rule is used by a solver to take a mission that has been already taken (in will state) but where the other
solver has overstayed the allowable threshold Ψe

will. Other conditions for taking are the same as for the rule 3.
A solver is not allowed to take back a mission that it is currently dealing with.

(4)

Solve

{ e, k, n, t, do, n′, t′ }

n′ 6= self & (now − t′) > Ψe
do & !fe

pass(m
n:k
e) & free()

Solve

{ e, k, n, t, do, self, now }

6/16

AMiRALE Formal Model Vincent Autefage

This rule is used by a solver to take a mission that has been already taken (in do state) but where the other
solver has overstayed the allowable threshold Ψe

do. Other conditions for taking are the same as for the rule 3.

5.1.3 Solver local applicative event rules

(5)

mn:k
e ready

Solve

{ e, k, n, t, will, self, t′ }

Solve

{ e, k, n, t, do, self, now }

This rule is used by a solver to update the will state to do when it received the applicative event indicating
that the solver can immediately start the solving process.

(6)

mn:k
e finished

Solve

{ e, k, n, t, do, self, t′ }

Solve

{ e, k, n, t, end, self, now }

This rule is used by a solver to update the do state to end when it received the applicative event indicating
that the mission is now solved.

(7)

mn:k
e aborted

Solve

{ e, k, n, t, do, self, t′ }

Solve

{ e, k, n, t, abort, self, now }

This rule is used by a solver to update the do state to abort when it received the applicative event indicating
that the mission is not solvable anymore (e.g., already solved).

5.2 Global timing model
In the global timing model, views are equal to local missions; i.e., mn:k

e = vn:ke . Indeed, nodes are supposed
to be timely synchronized in this version. Thus the model can operate on absolute time information without
jeopardizing the integrity of dates. The following rules round off the common rules focusing one interactions
between a view and its relative mission.

5.2.1 Sending view rule of the global timing model

(8)

Anye

{ e, k, n, t, s, n′, t′ }

self : 〈 e, k, n, t, s, n′, t′ 〉 !fblind(mn:k
e)

Anye

{ e, k, n, t, s, n′, t′ }

This rule is used to share a view with other nodes if the filter fblind does not forbid the mission diffusion.
This rule does not modify the content of the mission. As explained here before, in the global timing model
mn:k

e = vn:ke .

7/16

AMiRALE Formal Model Vincent Autefage

5.2.2 Solver view reception rules of the global timing model

(9)

n′ : 〈 e, k, n, t, will, n′, t′ 〉
Solve

{ e, k, n, t, will, self, t′′ }

n′ 6= self & fe
check(n′ : vn:ke) & (now − t′) < Ψe

will & [fe
select(self : mn:k

e , n′ : vn:ke) = n′ ‖ (now − t′′) > Ψe
will]

Solve

{ e, k, n, t, will, n′, t′ }

This rule is used to make a local election between two solvers treating the same mission, in the will state, at
the same time. This rule is only applied if the communication is direct between the two solvers. In other words,
the local election is not proceeded if the view is sent by a forwarder, a sensor node or even another solver which
is not dealing with the current mission. The filter fe

select is used to perform the local election (i.e, no need to
use symmetric nor synchronized communication). In the case that only one solver received the view from the
other, the local election mechanism can lead to two different situations:

• The solver which received the view keeps the mission. Thus, the two solvers continue to treat the mission.

• The solver which received the view leaves the mission. Thus, the second solver continue to treat the
mission.

In both cases, the mission is treated by at least one solver. Therefore, we assume that the local election
cannot lead a mission to be orphaned. This last assumption is true only if the filter fe

select is consistent.

(10)

n′ : 〈 e, k, n, t, do, n′, t′ 〉
Solve

{ e, k, n, t, do, self, t′′ }

n′ 6= self & fe
check(n′ : vn:ke) & (now − t′) < Ψe

do & t′′ > t′

Solve

{ e, k, n, t, do, n′, t′ }

This rule is similar to the rule 9 but referring to the do state. Here, the difference of set times is used instead
of the filter fe

select. Indeed, the solver which has set the do state first will keep the mission if it has not exceeded
the threshold Ψe

do.

5.2.3 General view reception rules of the global timing model

(11)

x : 〈 e, k, n, t s, n′, t′ 〉
Anye

{ ∅ }

fe
check(x : vn:ke)

Anye

{ e, k, n, t, s, n′, t′ }

This rule is applied to integrate an unknown mission from a view. This rule is applied only if the filter fe
check

does not bypass the mission integration.

8/16

AMiRALE Formal Model Vincent Autefage

(12)

x : 〈 e, k, n, t, s′, n′, t′ 〉
Anye

{ e, k, n, t, s, n′′, t′′ }

n′ 6= self & s′ > s & fe
check(x : vn:ke)

Anye

{ e, k, n, t, s′, n′, t′ }

This rule is used to update a mission when the node receives a view indicating that the mission has evolved
(i.e., state advanced).

(13)

x : 〈 e, k, n, t, will, n′, t′ 〉
Anye

{ e, k, n, t, will, n′′, t′′ }

n′ 6= n′′ 6= self & t′ > t′′ & fe
check(x : vn:ke)

Anye

{ e, k, n, t, will, n′, t′ }

This rule is used to update a mission in the will state when the node receives a view indicating that the solver
dealing with the mission has changed. This operation is based on absolute dates. The rule is applied only if the
current node is not dealing with the current mission itself in order to not collide with the rule 10.

(14)

x : 〈 e, k, n, t, do, n′, t′ 〉
Anye

{ e, k, n, t, do, n′′, t′′ }

n′ 6= n′′ 6= self & t′ > t′′ & fe
check(x : vn:ke)

Anye

{ e, k, n, t, do, n′, t′ }

This rule is used to update a mission in the do state when the node receives a view indicating that the solver
dealing with the mission has changed. This operation is also based on absolute dates. The rule is applied only
if the current node is not dealing with the current mission itself in order to not collide with the rule 11.

5.3 Relative timing model
In the relative timing model, views are different from local missions; i.e., mn:k

e 6= vn:ke . Indeed, nodes are
not timely synchronized in this version. Thus the model cannot operate on absolute time information without
jeopardizing the integrity of dates. Consequently, this model uses relative deviations (∆) instead of absolute
dates. In other words, views contain delta deviation times. Apart from this difference, rules of the relative
timing model are equivalent to those of the global timing model. The following rules round off the common
rules focusing one interactions between a view and its relative mission.

5.3.1 Sending view rule of the relative timing model

(8)

Anye

{ e, k, n, t, s, n′, t′ }

self : 〈 e, k, n, now − t, s, n′, now − t′ 〉 !fe
blind(mn:k

e)

Anye

{ e, k, n, t, s, n′, t′ }

9/16

AMiRALE Formal Model Vincent Autefage

5.3.2 Solver view reception rule of the relative timing model

(9)

n′ : 〈 e, k, n, ∆, will, n′, ∆′ 〉
Solve

{ e, k, n, t, will, self, t′′ }

n′ 6= self & fe
check(n′ : vn:ke) & ∆′ < Ψe

will & [fe
select(self : mn:k

e , n′ : vn:ke) = n′ ‖ (now − t′′) > Ψe
will]

Solve

{ e, k, n, t, will, n′, now −∆′ }

(10)

n′ : 〈 e, k, n, ∆, do, n′, ∆′ 〉
Solve

{ e, k, n, t, do, self, t′′ }

n′ 6= self & fe
check(n′ : vn:ke) & ∆′ < Ψe

do & ∆′ > (now − t′′)

Solve

{ e, k, n, t, do, n′, now −∆′ }

5.3.3 General view reception rule of the relative timing model

(11)

x : 〈 e, k, n, ∆ s, n′, ∆′ 〉
Anye

{ ∅ }

fe
check(x : vn:ke)

Anye

{ e, k, n, now −∆, s, n′, now −∆′ }

(12)

x : 〈 e, k, n, ∆, s′, n′, ∆′ 〉
Anye

{ e, k, n, t, s, n′′, t′′ }

n′ 6= self & s′ > s & fe
check(x : vn:ke)

Anye

{ e, k, n, t, s′, n′, now −∆′ }

(13)

x : 〈 e, k, n, ∆, will, n′, ∆′ 〉
Anye

{ e, k, n, t, will, n′′, t′′ }

n′ 6= n′′ 6= self & ∆′ < (now − t′′) & fe
check(x : vn:ke)

Anye

{ e, k, n, t, will, n′, now −∆′ }

(14)

x : 〈 e, k, n, ∆, do, n′, ∆′ 〉
Anye

{ e, k, n, t, do, n′′, t′′ }

n′ 6= n′′ 6= self & ∆′ < (now − t′′) & fe
check(x : vn:ke)

Anye

{ e, k, n, t, do, n′, now −∆′ }

10/16

AMiRALE Formal Model Vincent Autefage

5.4 Relative ordering model
In the relative ordering model, views are a subset of local missions; i.e., vn:ke ∈ mn:k

e . Indeed, nodes are
not timely synchronized in this version. Thus the model cannot operate on absolute time information without
jeopardizing the integrity of dates. Consequently, this model does not use any time information in views. The
following rules round off the common rules focusing one interactions between a view and its relative mission.

5.4.1 Sending view rule of the relative ordering model

(8)

Anye

{ e, k, n, t, s, n′, t′ }

self : 〈 e, k, n, s, n′ 〉 !fblind(mn:k
e)

Anye

{ e, k, n, t, s, n′, t′ }

5.4.2 Solver view reception rule of the relative ordering model

(9)

n′ : 〈 e, k, n, will, n′ 〉
Solve

{ e, k, n, t, will, self, t′ }

n′ 6= self & fe
check(n′ : vn:ke) & [fe

select(self : mn:k
e , n′ : vn:ke) = n′ ‖ (now − t′) > Ψe

will]

Solve

{ e, k, n, t, will, n′, now }

This rule enables to perform the local election between two solvers in the will state for the same mission.
Here, the time information is relative. This means that the respect of the threshold (i.e., Ψe

will) is computed
from the date of mission integration. It means that, durations are evaluated from the date when the current
node has last updated the local mission.

(10)

n′ : 〈 e, k, n, do, n′ 〉
Solve

{ e, k, n, t, do, self, t′ }

n′ 6= self & fe
check(n′ : vn:ke) & (now − t′) > Ψe

do

Solve

{ e, k, n, t, do, n′, now }

5.4.3 General view reception rule of the relative ordering model

(11)

x : 〈 e, k, n, s, n′ 〉
Anye

{ ∅ }

fe
check(x : vn:ke)

Anye

{ e, k, n, now, s, n′, now }

11/16

AMiRALE Formal Model Vincent Autefage

(12)

x : 〈 e, k, n, s′, n′ 〉
Anye

{ e, k, n, t, s, n′′, t′′ }

n′ 6= self & s′ > s & fe
check(x : vn:ke)

Anye

{ e, k, n, t, s′, n′, now }

(13)

x : 〈 e, k, n, will, n′ 〉
Anye

{ e, k, n, t, will, n′′, t′′ }

n′ 6= n′′ 6= self & (now − t′′) > Ψe
will & fe

check(x : vn:ke)

Anye

{ e, k, n, t, will, n′, now }

(14)

x : 〈 e, k, n, do, n′ 〉
Anye

{ e, k, n, t, do, n′′, t′′ }

n′ 6= n′′ 6= self & (now − t′′) > Ψe
do & fe

check(x : vn:ke)

Anye

{ e, k, n, t, do, n′, now }

12/16

AMiRALE Formal Model Vincent Autefage

6 FSM diagrams of the state field for the various node types
In this section, we provide finite state machines representing the life of the state field of a mission in function

of the node type. The finite state machines indicate also the rule applied in order to update the state filed.

6.1 Sensor node

start

1|11

end

11

will

11

do

11

abort

11

8

12

12

12

12

8

12

8|13

12

12

12

8|14

12

12

8

13/16

AMiRALE Formal Model Vincent Autefage

6.2 Forwarder node

start

11

end

11

will

11

do

11

abort

11

8

12

12

12

12

8

12

8|13

12

12

12

8|14

12

12

8

14/16

AMiRALE Formal Model Vincent Autefage

6.3 Solver node

start

11

end

11

will

11

do

11

abort

11

8

12

12

will_self

2

12

12

8

12

8|13

3

12

12

12

9

8

12

do_self

5

12

12

8|14

4

12

6|12

10

8

7|12

8

8

15/16

AMiRALE Formal Model Vincent Autefage

7 Acknowledgment
This work is co-funded by the Direction Générale de l’Armement3 and the Région Aquitaine4.

3http://www.defense.gouv.fr/dga
4http://aquitaine.fr

16/16

http://www.defense.gouv.fr/dga
http://aquitaine.fr

	Introduction
	Overall Description
	Node types
	Mission state
	Mission life

	Time synchronization consideration
	Meta-Model
	Overall description
	Meta-model rule types
	Sensor meta-rule
	Solver local computation meta-rule
	Solver local applicative event meta-rule
	Sending view meta-rule
	Receiving view meta-rule

	Mission description
	Filters

	AMiRALE rules
	AMiRALE common rules
	Sensor rule
	Solver local computation rules
	Solver local applicative event rules

	Global timing model
	Sending view rule of the global timing model
	Solver view reception rules of the global timing model
	General view reception rules of the global timing model

	Relative timing model
	Sending view rule of the relative timing model
	Solver view reception rule of the relative timing model
	General view reception rule of the relative timing model

	Relative ordering model
	Sending view rule of the relative ordering model
	Solver view reception rule of the relative ordering model
	General view reception rule of the relative ordering model

	FSM diagrams of the state field for the various node types
	Sensor node
	Forwarder node
	Solver node

	Acknowledgment

