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ABSTRACT 

 

The stability diagrams are one of the most useful process planning tools to improve the 

productivity of the cutting processes when they are limited by chatter vibrations. There are 

many methods proposed in the literature to predict the stability of milling processes, but the 

main reference is the single frequency method [Altintas and Budak, 1995]. 

 

This work wants to be a tribute to the single frequency domain including the authors, 

remarking the positive properties, proposing an improvement to capture in a fast way the 

double period chatter, and maintaining the semi-analytical nature of the method. 
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1. INTRODUCTION 

 

The regenerative effect is the main origin of the chatter vibrations in machining operations 

[Tlusty and Polacek, 1957], [Tobias and Fishwick, 1958]. The pioneers introduced the 

concept of a directional factor, which is used to project the cutting forces to the mode 

direction and the vibration displacement to chip thickness. For milling processes, where 

these geometrical projections vary over time, Opitz proposed to calculate an average value 

of the coefficient during one period, and this way, he defined equivalent directional factors 
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[Opitz and Bernardi, 1970]. These models were used for years to obtain stability diagrams for 

milling. 

 

However, these semi-analytical solutions were not accurate enough, and Minis and 

Yanushevsky formulated a new frequency domain numerical solution for milling processes 

[Minis and Yanushevsky, 1993]. They used Floquet’s theorem and the Fourier series in their 

approach. Later on, Altintas and Budak [Altintas and Budak, 1995] developed the single 

frequency or zero-order solution method (ZOA), which gives a semi-analytical determination 

of stability limits. Nowadays, this method is the main reference in the field, and the 

performance of the different methods is always compared with it.  

 

Three aspects can be addressed to understand the success of this method. First of all, the 

stability of the milling process is related to an eigenvalue problem, and compared with 

previous methods, it provides good results in continuous cutting even when the frequencies 

of two dominant modes are close to each other. In the other hand, it drives to a semi-

analytical solution where the lobes can be obtained similarly to the method proposed by 

Tobias for turning [Tobias and Fishwick, 1958]. Therefore, practically, the stability diagram is 

obtained extremely fast. Finally, if the quality of the experimental FRFs is good enough with 

low noise levels, it is possible to introduce experimental frequency response functions (FRF) 

directly in the algorithm without any curve fitting. 

 

The main drawbacks of single frequency approach are related to some inaccuracies in 

interrupted cutting due to double period chatter [Davies et al, 2000], [Bediaga et al, 2006] 

and mode interactions [Munoa et al, 2009], and finally the method has some difficulties to 

handle complex geometries [Dombovari et al, 2009], [Stepan et al, 2011]. 

 

The stability of interrupted cutting has been determined by alternative methods. Davies et al, 

[Davies et al, 2000] used a discrete map model for highly interrupted milling processes, 

where the time in cut is considered infinitesimal and modeled as an impact. Insperger and 

Stepan developed the semi-discretization technique for systems ruled by delayed differential 

equations [Insperger and Stepan, 2000]. Bayly et al, [Bayly et al, 2002] obtained similar 

results using temporal finite elements.  

 



Double-period lobes can be calculated in the frequency domain by considering that chatter 

mechanism is composed of a dominant frequency and its harmonics spaced at positive and 

negative multiples of the tooth passing frequency. Multi frequency chatter stability models 

[Budak and Altintas, 1998], [Merdol and Altintas, 2004], [Zatarain et al, 2004], are able to 

predict double-period lobes that become more important as the milling becomes more 

intermittent.  

 

The presence of closed shapes related to flip bifurcation instability processes were described 

by for the case of interrupted turning [Szalay and Stepan, 2003]. Finally, Zatarain related the 

dimensions of the lenticular island to the tool pitch of the helical end mills using multi 

frequency model [Zatarain et al, 2006]. 

 

The aim of this work is to show that the single frequency approach provides fast and 

accurate predictions in many industrial applications. Finally, an improvement is proposed to 

capture the double period chatter using a semi-analytical solution, and therefore, maintaining 

the main advantages of the method.  

 

2. FREQUENCY DOMAIN MILLING STABILITY MODEL 

 

The characteristic equation for milling stability analysis in frequency domain was developed 

by Budak and Altintas [Budak and Altintas, 1998]. Their approach was based on Cartesian 

displacements between the tool and the workpiece. In order to describe the regenerative 

effect, the dynamic cutting force is considered and the relation between the force and the 

vibrations is developed. For face milling operations, the cutting force can be given in the 

following form [Altintas, 2003]; [Munoa et al, 2005]: 
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Figure 1. Cutting geometry. 

 

Here, {r(t)} is the relative regenerative vibration between the tool (t) and the workpiece (w), 

ap is the depth of cut, Kt is the tangential cutting coefficient, τ is the tooth passing period, Z is 

the number of flutes,  is the lead angle and [A(t)] is the Cartesian directional factor matrix. 

The directional factor matrix concentrates the projection of the cutting force onto the mode 

direction and the projection of the vibration onto the chip thickness. The Cartesian approach 

leads to the use of the corresponding directional coefficient matrix [A(t)]. The exact 

expression of the directional coefficient matrix can be found in the literature [Altintas, 2003]; 

[Munoa, 2007]. 

 

In stable stationary milling, the dynamic cutting force is periodic at tooth passing period τ. In 

case of unstable stationary cutting, an additional dominant frequency (ωc) arises close to one 

of the essential natural frequencies combined with some modulations ωc,k= ωc

to the tooth passing frequency Ω =2π/τ. The next formulation can be considered for the 

modal milling force and vibration: 

 

 







k

tk

kFtF
)(j ce}{)}({


         (3)  



and  







r

tr

krtr
)(j ce}{)}({


.             (4) 

 

Considering this frequency pattern and operating, the regenerative term can be rewritten as 
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The Cartesian directional matrix is also time periodic and, consequently, a discrete Fourier 

development is possible, thus 
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Taking into account all the different developments at (3) and (4) operating with the different 

harmonics as a product of (1), (5) and (6), the next expression is obtained 
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The dynamic modal forces and displacements can be related using the dynamic properties of 

the mechanical structure. Therefore, considering the relative frequency response function 

(FRF) of the system [] between tool (t) and workpiece (w), the next expression can be 

written for each harmonic component: 
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Following Budak and Altintas’ development, it is possible to obtain a closed loop formulation 

[Budak and Altintas, 1998]. The main equation relates different harmonics of the 

displacement vector rk taking into account the Cartesian directional factor matrices (7) for 

each harmonic and FRF matrices (8) evaluated at different harmonics. Therefore: 
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Finally, the stability problem results in an infinite dimensional matricial expression, that is, 
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where {rk} are the amplitudes of vibration of all the considered modes for the kth modulated 

frequency, and [Φk]=[Φ(ωc+kΩ)] and [Bk] the Frequency Response Function (FRF) matrix 

and the modal directional factor matrix evaluated at the kth modulated chatter frequency. 

 

In a theoretical basis, the size of the matrices is infinite, but in practice the FRF takes very 

small values for frequencies far from the considered natural frequencies. Therefore, the 

system can be truncated without noticeable loss of accuracy. 

 

The solution of this equation results in an eigenvalue problem where the obtained 

eigenvalues are related to the spindle speeds Ω/ Z and depth of cuts ap. There is not a 

semianalytical general multi-frequency solution for this spindle speed dependent equation, 

but different numerical methods have been proposed [Budak and Altintas, 1998], [Merdol and 

Altintas, 2004]. 

 

In general, the accuracy of the modeling of the dynamic milling force increases with the 

number of harmonics. The magnitude of the harmonics depends on the engagement, the 

direction of the milling force and the mode and the number of flutes. In interrupted cutting, 

the high order harmonics are important, while in continuous cutting their influence is low.  



 

3. SEMI-ANALYTICAL SOLUTIONS 

 

3.1. Hopf Bifurcation: Zero Order Approximation (ZOA). 

 

If only the zeroth order term is considered a fast semi-analytical solution is possible to trace 

the linear stability border related to Hopf-bifurcation. This simplification provides a spindle 

speed independent equation and therefore it can be solved considering different chatter 

frequencies and obtaining for each one the corresponding depth of cut and spindle speeds 

[Altintas and Budak, 1995]. 

 

      000

j

0 )e1(
sinπ2

c rA
ZaK

r
pt













 


. 

(11) 

 

Following Altintas and Budak, the stability analysis drives to an eigenvalue problem where 

the eigenvalues (=R+Ii) can be related with the maximum stable depth of cut and 

different cutting speeds. 
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Different values for the integer value k form different lobes formed by series of spindle 

speeds with the same depth of cut.  

 

3.2 Flip Bifurcation: New semi-analytical approach 

The period doubling chatter related to flip bifurcation produces an independent family of 

lobes with some particularities that can help in the definition of the stability boundary. The 



main characteristic of this double period chatter is that there is a linear relationship between 

the chatter frequency and the tooth passing frequency and the spindle speed. When a 

double period or flip bifurcation appears, the chatter frequency follows a straight line in the 

chatter frequency diagram (see Figure 1). 

 

Figure 2. Stability diagram for a single mode case for different engagements (%) for down 

milling operations [Munoa, 2007]. 
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In terms of frequency domain, the double period chatter or the flip bifurcation happens when 

the chatter frequency and one of the modulated chatter frequencies are exciting the same 

mode. Only the odd modulated chatter harmonics can create the double period chatter. The 

regenerative term explains this effect. This term can be rewritten in function of the involved 

harmonic and is null for all the even harmonics. 
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Applying these effects in the main equation: 
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The eigenvalue problem is now independent from tooth passing frequency and spindle 

speed. Therefore, it is possible to obtain the limit of the double period chatter scanning the 

frequency range like in the method proposed by Altintas and Budak or more straighforward 

scanning the spindle speed range. For each frequency or spindle speed the eigenvalue 

problem is solved. This eigenvalues should fulfill these conditions to define a border of the 

stability lobe. 
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The stability limits for double period are defined using the eigenvectors with only real values. 

In fact, the different double period are obtained scanning different lines (m) in frequency 

domain diagram (m=1,3,5,…). 
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The truncation of the main equation is an important issue to obtain efficiently the exact 

solution for the double period chatter lobes. A proper frequency domain and number of 

harmonics is selected in this truncation process. First of all, a frequency range for scanning 



(ωstart, ωend) is selected considering the main flexibility of the dynamical systems and 

eliminating frequencies where the system is really stiff compared with the most flexible 

frequency. Considering the spindle speed range and/or stability lobe order (Nlob), the amount 

of double period chatter scannings is determined (see equation 21). 

 

For each chatter frequency and/or spindle speed, the oriented frequency response matrix is 

truncated ([][A]) calculating automatically the number of positive and negative significant 

harmonics, and of course, considering always a positive scanning in the chatter frequency 

range. 
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3.3 Combined semi-analytical frequency method 

 

Both frequency domain methods can be combined to create a new semi-analytical frequency 

domain algorithm. This new method improves the accuracy of the ZOA but the main 

advantages are maintained: experimental FRF can be introduced directly and the calculation 

speed is not strongly punished. The combined method adds exact double period chatter 

lobes (flip bifurcation) to the approximated solution (Hopf bifurcation) proposed by ZOA). The 

algorithm is described in Figure 3. 

 

4. COMPARATION BETWEEN METHODS. 

 

The accuracy of this new method has been compared with traditional ZOA approximation, 

multifrecuency solution and semidiscretization method. Several works have been compared 

semidiscretization and multifrequency methods concluding that the two methods are 

providing the same result [Munoa et al, 2009]. The conparation has been carried out 

selecting three representative examples from the literature. The ZOA simulations has been 

carried out using the algorithm described by Altintas and Budak [Altintas and Budak, 1995], 

the multifrequency solution has been obtained following Budak and Altintas [Budak and 

Altintas, 1998], and finally the semi-discretization model has been implemented considering 

the method proposed by Insperger and Stepan [Insperger and Stepan, 2000]. 



 

Figure 3. Combined semi-analytical frequency method algorithm  

4.1. Case 1: Heavy duty milling with face milling cutter. 

 



The case of a heavy duty operation with a face milling cutter has been considered first 

[Munoa, 2007]. The dynamic properties have been obtained making a curvefitting on DS630 

machining center for different positions. In this machine, the dynamic behaviour is changing 

inside the workspace, and hence, the workspace has been discretized in 16 different 

positions. In each position 8 cutting process simulations have been performed for different 

cutting directions with high engagement (80%). C45 steel has been chosen in these 

simulations. 

 

Table 1. Parameters for simulation of case 1 [Munoa, 2007]. 

Tool 

Diameter (D) Number of flutes (Z) Lead angle () Helix angle 

125mm 8 45º 
º0 

Cutting conditions & Coefficients 

Engagement Feed Direction Kt [N/mm2] Kr  Ka  

100mm (Down Milling) (1,0,0) 1889 0.4105 0.1928 

Dynamic Parameters 

Mode 0 [Hz]  [%] k [N/m] m [kg] Orientation 

1 36.1 5.1 56.6 1105 (0.128,-0.674,0.728) 

2 50.6 3 42 415 (0,1,0) 

3 84.6 2.5 52.6 186 (0.969,-0.246,-0.013) 

4 89.8 4.3 48.9 154 (0.267,0.961,-0.075) 

5 135.1 2.6 30.6 42.5 (1,0,0) 

 

In all this simulations the ZOA approximation is able to predict accurately the stability 

compared with semi-discretization and multi frequency. A representative example is 

presented in Figure 4.  

 

Considering the machinability issues for the selected tool, spindle speeds 300 and 800 rpm 

are suitable for steel machining. Hence, the ZOA provides a fast and precise solution at the 

same time. There is an anecdotic discrepancy around 1800rpm due to the presence of a 

closed flip instability region. The combined frequency method offers the exact solution. 

 



 

Figure 4. Stability diagram for case 1 comparing ZOA (blue line), combined frequency 

method (red line) and Multi frequency (shadow zone). 

 

The ZOA is a powerful tool for heavy duty cutting where the engagement and the number of 

flutes is high, perfect to make series of simulation taking into account different positions, 

cutting planes, cutting directions and milling senses. 

 

3.2. Case 2: Highly interrupted cutting. 

 

Insperger and Stepan reported an example of highly interrupted cutting using 1 fluted tool. 

This is example is far from a real cutting case but it has been experimentally verified and 

used for comparison with the multi frequency model in the literature [Merdol and 

Altintas,2004]. 

 

Milling tests were performed with an experimental flexure designed to mimic a single .d.o.f. 

system. Aluminium (7075-T6) test samples of width 6.35 mm were mounted on the flexure 

and centrally milled by a 19.05 mm diameter carbide end mill with a single flute (the second 

flute was ground off to remove any effects due to asymmetry or runout).  

 

Table 2. Parameters for case 2 [Insperger et al, 2003][Merdol and Altintas, 2003]. 



Tool 

Diameter (D) Number of flutes (Z) Lead angle () Helix angle 

19.05mm 1 90 
0 

Cutting conditions & Coefficients 

Engagement Feed Direction Kt [N/mm2] Kr  Ka  

6.35mm (Centered) (1,0,0) 550 0.364 0 

Dynamic Parameters 

Mode 0 [Hz]  [%] k [N/m] m [kg] Orientation 

1 146.8 0.38 2.2 2.586 (1,0,0) 

 

 

Figure 5. Stability diagram for case 2 comparing ZOA (blue line), combined frequency 

method (red line) and Semi-discretization (shadow zone). 

 

In this example, the double period chatter (flip bifurcation) defines the minimum stability. In 

general, the flip lobes are as important as the lobes related to the Hopf bifurcation. 

 

In this case ZOA is not able to describe the double period chatter and therefore important 

discrepancies are found. The combined method is able to predict exactly the chatter related 

to the flip bifurcation and therefore this fast prediction is good enough and can have practical 

applications. The combined method uses the ZOA to predict the traditional chatter (Hopf 

bifurcation) and it does not capture changes in the shape of the traditional lobes. 

 



3.3. Case 3: Interrupted cutting with mode coupling. 

Finally a third example has been chosen considering mode couplings due to existence of 

more than one significant vibration mode when an interrupted milling process is performed. 

 

Table 3. Parameters for simulation of case 3 [Munoa et al, 2009]. 

Tool 

Diameter (D) Number of flutes (Z) Lead angle () Helix angle 

50mm 4 90 0 

Cutting conditions & Coefficients 

Engagement Feed Direction Kº [N/mm2] Kr  Ka  

12.5mm (Down Milling) (1,0,0) 2000 0.3 0 

Dynamic Parameters 

Mode 0 [Hz]  [%] k [N/m] m [kg] Orientation 

1 
45 4 30 375 (1,0,0) 

2 
60 4 30 211 (0,1,0) 

 

 

Figure 6. Stability diagram for case 3 comparing ZOA (blue line), combined frequency 

method (red line) and Semi-discretization (shadow zone). 

 



The combined method is able to improve the accuracy of the ZOA method introducing exact 

double period lobes, but it is not able to capture the variations due to mode couplings. 

Therfore, important discrepancies are found in some regions.  

 

5. CONCLUSIONS 

 

The single frequency or zero order approximation method is the main reference in milling 

stability because it provides an accurate determination of the stability for continuous cutting 

making possible the introduction of experimental FRF function without any fitting. This 

method is accurate enough to predict stability in industrial problems like a heavy duty face 

milling. 

 

In this work, the double period chatter has been calculated directly in frequency domain 

similarly to the ZOA. This algorithm provides exactly the double period chatter even in the 

most complex cases. A combined frequency domain method has been proposed based in a 

single frequency scanning. This combined method has improved the accuracy of the ZOA 

approximation in milling conditions with interrupted cutting maintaining the main advantages 

of the ZOA. 
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