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AN IMPROVEMENT OF THE MIXING RATES IN A

COUNTER-EXAMPLE TO THE WEAK INVARIANCE PRINCIPLE

DAVIDE GIRAUDO

Abstract. In [1], the authors gave an example of absolutely regular strictly stationary
process which satisfies the central limit theorem but not the weak invariance principle.
For each q < /1/2, the process can be constructed with mixing rates of order N−q .
The goal of this note is to show that actually the same construction can give mixing
rates of order N−q for a given q < 1.

Résumé. Dans [1], les auteurs ont fourni un exemple de processus strictement station-
naire β-mélangeant vérifiant le théorème limite central mais pas le principe d’invariance
faible. Pour tout q < 1/2, le processus peut être construit avec des taux de mélange de
l’ordre de N−q . L’objectif de cette note est de montrer que la même construction peut
fournir des taux de mélange de l’ordre de N−q pour un q < 1 donné.

1. Notations and main result

We recall some notations in order to make this note more self-contained. Let (Ω,F , µ)
be a probability space. If T : Ω → Ω is one-to-one, bi-measurable and measure preserving
(in sense that µ(T−1(A)) = µ(A) for all A ∈ F), then the sequence

(

f ◦ T k
)

k∈Z
is strictly

stationary for any measurable f : Ω → R. Conversely, each strictly stationary sequence can
be represented in this way.

For a zero mean square integrable f : Ω → R, we define Sn(f) :=

n−1
∑

j=0

f ◦ T j, σ2
n(f) :=

E(Sn(f)
2) and S∗

n(f, t) := S⌊nt⌋(f)+ (nt−⌊nt⌋)f ◦T ⌊nt⌋, where ⌊x⌋ is the greatest integer
which is less than or equal to x.

Define the β-mixing coefficients by

(1) β(A,B) := 1

2
sup

I
∑

i=1

J
∑

j=1

|µ(Ai ∩Bj)− µ(Ai)µ(Bj)| ,

where the supremum is taken over the finite partitions {Ai, 1 6 i 6 I} and {Bj , 1 6 j 6 J}
of Ω of elements of A (respectively of B). They were introduced by Volkonskii and Rozanov
[4].

For a strictly stationary sequence (Xk)k∈Z
and n > 0 we define βX(n) = β(n) =

β(F0
−∞,F∞

n ) where Fv
u is the σ-algebra generated by Xk with u 6 k 6 v (if u = −∞ or

v = ∞, the corresponding inequality is strict).

Theorem. Let δ > 0. There exists a strictly stationary real valued process Y = (Yk)k>0 =
(

f ◦ T k
)

k>0
satisfying the following conditions:

a) the central limit theorem with normalization
√
n takes place;

b) the weak invariance principle with normalization
√
n does not hold;

c) σN (f)2 ≍ N ;
d) for some positive C and each integer N , βY (N) 6 C ·N−1+δ;
e) Y0 ∈ L

p for any p > 0.
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We refer the reader to Remark 2 of [1] for a comparison with existing results about the
weak invariance principle for strictly stationary mixing sequences.

2. Proof

We recall the construction given in [1]. Let us consider an increasing sequence of positive
integers (nk)k>1 such that

(2) n1 > 2 and

∞
∑

k=1

1

nk
< ∞,

and for each integer k > 1, let A−
k , A

+
k be disjoint measurable sets such that µ(A−

k ) =

1/(2n2
k) = µ(A+

k ).
Let the random variables ek be defined by

(3) ek(ω) :=











1 if ω ∈ A+
k ,

−1 if ω ∈ A−
k ,

0 otherwise.

We can choose the dynamical system (Ω,F , µ, T ) and the sets A+
k , A

−
k in such a way that

the family (ek ◦ T i)k>1,i∈Z is independent. We define Ak := A+
k ∪ A−

k and

(4) hk :=

nk−1
∑

i=0

U−iek − U−nk

nk−1
∑

i=0

U−iek, h :=

+∞
∑

k=1

hk.

Let i(N) denote the unique integer such that ni(N) 6 N < ni(N)+1.
We shall show the following intermediate result.

Proposition 1. Assume the sequence (nk)k>1 satisfies (2) and the following condition:

there exists η > 0 such that for each k, nk+1 > n1+η
k .(5)

Then:

a’) n−1/2Sn(h) → 0 in probability;
b’) the process (N−1/2S∗

N (h, ·))N>1 is not tight in C[0, 1];
c’) σN (h)2 . N ;
d’) for some positive C, N · βY (N) 6 Cni(N)+1/ni(N);
e’) h ∈ L

p for any p > 0.

Adding a mean-zero nondegenerate independent sequence (m ◦ T i)i∈Z with moments
of any order greater than 2, the variance of the Nth partial sum of ((m + h) ◦ T i)i>1 is
bounded above and below by a quantity proportional to N . Defining f := m+ h, we have
the following corollary:

Corollary 2. Assume the sequence (nk)k>1 satisfies (5). Then (f ◦T i)i>0 satisfies a), b),
c), d’) and e).

For k > 1 and N > nk, the N partial sum of hk admits the expression

(6) SN (hk) =

nk
∑

j=1

jU j+N−2nkek +

nk−1
∑

j=1

(nk − j)U j+N−nkek

−
nk
∑

j=1

jU j−2nkek −
nk−1
∑

j=1

(nk − j)U j−nkek.

Let us prove Proposition 1. Item a’) follows from the fact that h is a coboundary (see
the explanation before Section 2.2 of [1]).

For b’), we recall the following lemma (Lemma 10, [1]).
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Lemma 3. There exists N0 such that

(7) µ

{

max
2nk6N6n2

k

|SN (hk)| > nk

}

> 1/4

whenever nk > N0.

The following proposition improves Lemma 11 of [1] since the condition on the sequence
(nk)k>1 (namely, (5)) is weaker than both conditions (11) and (12) of [1].

Proposition 4. Assume that the sequence (nk)k>1 satisfies (5). Then we have for k large
enough

(8) µ

{

1

nk
max

2nk6N6n2
k

|SN (h)| > 1/2

}

> 1/8.

Proof. Let us fix an integer k. Let us define the events

(9) A :=

{

1

nk
max

2nk6N6n2
k

|SN (h)| > 1

2

}

,

(10) B :=







1

nk
max

2nk6N6n2
k

∣

∣

∣

∣

∣

∣

SN





∑

j>k

hj





∣

∣

∣

∣

∣

∣

> 1







and

(11) C :=







1

nk
max

2nk6N6n2
k

∣

∣

∣

∣

∣

∣

SN





∑

j6k−1

hj





∣

∣

∣

∣

∣

∣

6
1

2







.

Since the family
{

ek ◦ T i, k > 1, i ∈ Z
}

is independent, the events B and C are indepen-
dent. Notice that B ∩ C ⊂ A hence

µ(A) = µ

{

1

nk
max

2nk6N6n2
k

|SN (h)| > 1

2

}

> µ(B)µ(C).

In order to give a lower bound for µ(B), we define Ek :=
⋃n2

k

N=2nk

⋃

j>k+1 {SN (hj) 6= 0};
then

µ(B) > µ(B ∩Ec
k)(12)

= µ

({

1

nk
max

2nk6N6n2
k

|SN (hk)| > 1

}

∩Ec
k

)

(13)

> µ

({

1

nk
max

2nk6N6n2
k

|SN (hk)| > 1

})

− µ(Ek).(14)

Let us give an estimate of the probability of Ek. As noted in [1] (proof of Lemma 11
therein), the inclusion

(15)

n2
k
⋃

N=2nk

{SN (hj) 6= 0} ⊂
n2
k
⋃

i=−2nj+1

T−iAj

takes place for j > k, hence

(16) µ





n2
k
⋃

N=2nk

{SN (hj) 6= 0}



 6
n2
k + 2nj

n2
j

,

and it follows that

(17) µ(Ek) 6

+∞
∑

j=k+1

2nk

nj
.
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By (5), we have nk 6 n
1/(1+η)
j for j > k, hence by (17),

(18) µ(Ek) 6 2

+∞
∑

j=k+1

n
− η

1+η

j .

As condition (5) implies that nk > 2k for k large enough, we conclude that the following
inequality holds for k large enough:

(19) µ(Ek) 6 2

+∞
∑

j=k+1

2−j η
1+η

Thus, by Lemma 3 and (19), we have for k large enough

(20) µ

{

1

nk
max

2nk6N6n2
k

|SN (h)| > 1

2

}

>





1

4
− 2

+∞
∑

j=k+1

2−j η
1+η







1− µ







1

nk
max

2nk6N6n2
k

∣

∣

∣

∣

∣

∣

SN





∑

j6k−1

hj





∣

∣

∣

∣

∣

∣

>
1

2









 .

Defining ck := µ
{

1
nk

max2nk6N6n2
k

∣

∣

∣SN

(

∑

j6k−1 hj

)∣

∣

∣ > 1
2

}

, it is enough to prove that

(21) lim
k→∞

ck = 0.

Using (6) (accounting N > 2nk > nj for j < k), we get the inequalities

ck 6

k−1
∑

j=1

µ

{

1

nk
max

2nk6N6n2
k

|SN(hj)| >
1

2(k − 1)

}

(22)

6

k−1
∑

j=1

µ

{∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}

+
k−1
∑

j=1

µ

{∣

∣

∣

∣

∣

nj−1
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}

(23)

+

k−1
∑

j=1

µ

{

max
2nk6N6n2

k

UN

∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}

+

+

k−1
∑

j=1

µ

{

max
2nk6N6n2

k

UN

∣

∣

∣

∣

∣

nj−1
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}

6 n2
k





k−1
∑

j=1

µ

{∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}

+

k−1
∑

j=1

µ

{∣

∣

∣

∣

∣

nj−1
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}



 .(24)

Notice that for each j 6 k − 1,

(25) µ

{∣

∣

∣

∣

∣

nj−1
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}

6 µ

{∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

16k

}

+ µ
{

|njU
njej| >

nk

16k

}

.

Condition (5) implies the inequality 16k · nk−1 < nk for k large enough, hence keeping in
mind that Unjej is bounded by 1, inequality (25) becomes for such k’s,

(26) µ

{∣

∣

∣

∣

∣

nj−1
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

8k

}

6 µ

{∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

16k

}

.
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Combining (24) with (26), we obtain

ck 6 2n2
k

k−1
∑

j=1

µ

{∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

>
nk

16k

}

(27)

6 2n2
k

(16k)p

np
k

k−1
∑

j=1

E

∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

p

,(28)

where p > 2 + 1/η. By Rosenthal’s inequality (see [3], Theorem 1), we have

E

∣

∣

∣

∣

∣

nj
∑

i=1

iU iej

∣

∣

∣

∣

∣

p

6 Cp





nj
∑

i=1

ipE |ej |+
( nj
∑

i=1

E[i2e2j ]

)p/2


(29)

6 Cp(n
p+1−2
j + n

3p/2
j /np

j )(30)

6 2Cpn
p−1
j(31)

as p > 2. Therefore, for some constant K depending only on p,

(32) ck 6 K · n2−p
k kp

k−1
∑

j=1

np−1
j 6 K · kp+1

np−1
k−1

np−2
k

,

and by (5),

(33) ck 6 K · kp+1n
p−1−(p−2)(1+η)
k−1 .

Since p− 1− (p− 2)(1 + η) = 1− (p− 2)η < 0 and nk−1 > 2k−1 for each k > 2, we get

(34) ck 6 K · kp+12(1−(p−2)η)(k−1).

This concludes the proof of Proposition 4 hence that of b’). �

For c’), we follow the computation in the proof of Proposition 13 of [1], using the fact

that supk
∑k−1

j=1 nj/nk is finite.

We now provide a bound for the mixing rates. Corollary 6 of [1] states the following.

Proposition 5. For each integer k, we have

(35) β(N) 6
∑

j:2nj>N

4

nj
.

Then d’) follows from the bounds

(36) β(2N) 6
4

ni(N)
+

∑

k>i(N)

4

nk+1
=

4

ni(N)



1 +
∑

j>1

nj

nj+1



 .

In Proposition 14 of [1], it was proved that for each q > 2, there exists a constant Cq

such that for each k > 1, ‖hk‖q 6 Cqn
−1/q
k . Condition (5) implies that nk > 2k for k large

enough, hence e’) is satisfied.
This concludes the proof of Proposition 1 and that of Corollary 2.

In order to prove the main result, we shall make some particular choices of sequence
(nk)k>1 which satisfy conditions (2) and (5).

We define for a positive δ

(37) nk := ⌊2(1+η)k+1⌋.
The sequence (nk)k>1 satisfies (5) and by Proposition 11 of [2], we have β(N) 6

CN−1/(1+η) for some universal constant C.
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[4] V. A. Volkonskĭı and Yu. A. Rozanov, Some limit theorems for random functions. I, Teor. Veroyatnost.

i Primenen 4 (1959), 186–207. MR 0105741 (21 #4477)

Université de Rouen, LMRS, Avenue de l’Université, BP 12 76801 Saint-Étienne-du-Rouvray
cedex, France.

E-mail address: davide.giraudo1@univ-rouen.frr

6


	1. Notations and main result
	2. Proof
	References

