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AN IMPROVEMENT OF THE MIXING RATES IN A
COUNTER-EXAMPLE TO THE WEAK INVARIANCE PRINCIPLE

DAVIDE GIRAUDO

AsstrACT. In [I], the authors gave an example of absolutely regular strictly stationary
process which satisfies the central limit theorem but not the weak invariance principle.
For each ¢ < /1/2, the process can be constructed with mixing rates of order N=9 .
The goal of this note is to show that actually the same construction can give mixing
rates of order N~ for a given g < 1.

ResuME. Dans [I], les auteurs ont fourni un exemple de processus strictement station-
naire S-mélangeant vérifiant le théoréme limite central mais pas le principe d’invariance
faible. Pour tout g < 1/2, le processus peut étre construit avec des taux de mélange de
l'ordre de N~9. L’objectif de cette note est de montrer que la méme construction peut
fournir des taux de mélange de 'ordre de N~ 7 pour un ¢ < 1 donné.

1. NOTATIONS AND MAIN RESULT

We recall some notations in order to make this note more self-contained. Let (Q, F, p)
be a probability space. If T: 2 — € is one-to-one, bi-measurable and measure preserving
(in sense that u(T~'(A)) = p(A) for all A € F), then the sequence (foT"), _, is strictly
stationary for any measurable f: 2 — R. Conversely, each strictly stationary sequence can
be represented in this way.

n—1
For a zero mean square integrable f: Q — R, we define S,,(f) := Z foTi o%(f) :=
§=0

E(Sn(f)?) and Sy (f,t) := Spne) (f) + (nt — [nt]) fo T where 2] is the greatest integer
which is less than or equal to z.
Define the S-mixing coefficients by

I J
1
(1) B(A,B) := §SHPZZ|N(AWBJ‘) — p(Ai)p(B;)l,
i=1 j=1

where the supremum is taken over the finite partitions {A4;,1 <i < I} and {B;,1<j < J}
of 2 of elements of A (respectively of B). They were introduced by Volkonskii and Rozanov
[4].

For a strictly stationary sequence (Xi),c;, and n > 0 we define fx(n) = B(n) =
B(FC o, F°) where F? is the o-algebra generated by Xj with v < k < v (if u = —o00 or
v = 00, the corresponding inequality is strict).

Theorem. Letd > 0. There exists a strictly stationary real valued process Y = (Yk)k>0 =
(f o Tk)k>0 satisfying the following conditions:

a) the central limit theorem with normalization \/n takes place;

b) the weak invariance principle with normalization \/n does not hold;
C) JN(f)2 XN;

d) for some positive C and each integer N, By (N) < C - N~1+9;

e) Yo € L? for any p > 0.
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We refer the reader to Remark 2 of [1] for a comparison with existing results about the
weak invariance principle for strictly stationary mixing sequences.

2. PROOF

We recall the construction given in [I]. Let us consider an increasing sequence of positive
integers (ny),, such that

o
1
(2) ny > 2 and ;n—k<oo,

and for each integer k > 1, let A; , Al be disjoint measurable sets such that u(4;) =
1/(2n2) = u(A).
Let the random variables ej be defined by
1 ifwe Ag,
(3) er(w): =9 -1 ifweA,
0 otherwise.

We can choose the dynamical system (€2, F, 4, T) and the sets A, A in such a way that
the family (e 0 T%)>1,icz is independent. We define Ay, := AZ U A, and

ne—1 ni—1 +oo

(4) hio= 3 UTley—U™ > Uley, hi=> .
=0 1=0 k=1

Let i(IN) denote the unique integer such that nyNy N < ny(vy41-
We shall show the following intermediate result.

Proposition 1. Assume the sequence (ni)ix>1 satisfies @) and the following condition:

(5) there exists n > 0 such that for each k, npy1 > n,ljn.

Then:

a’) n=Y28,(h) — 0 in probability;

b’) the process (N~Y/28% (h,-))N>1 is not tight in C[0,1];

C}) JN(h)2 5 N;

d’) for some positive C, N - By (N) < Cni(ny+1/Mi(n);

e’) h e LP for any p > 0.

Adding a mean-zero nondegenerate independent sequence (m o T%);cz with moments

of any order greater than 2, the variance of the Nth partial sum of ((m + h) o T%);>; is

bounded above and below by a quantity proportional to N. Defining f := m + h, we have
the following corollary:

Corollary 2. Assume the sequence (ng)g>1 satisfies ). Then (f oT%);>o satisfies[a)]
€ ] and e

For k > 1 and N > ny, the N partial sum of h; admits the expression

ng ne—1
(6) Sn(hi) = JUITNT2mep 4N " (ng — j)UITN gy
Jj=1 Jj=1
ng ne—1
=D U e = Y (g — U e
j=1 j=1

Let us prove Proposition [l Item follows from the fact that h is a coboundary (see
the explanation before Section 2.2 of [I]).
For we recall the following lemma (Lemma 10, [1]).
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Lemma 3. There exists Ny such that

(7) u{ max |SN(hk)|>nk}>1/4

2np KNN3
whenever ng > Ny.

The following proposition improves Lemma 11 of [I] since the condition on the sequence
(nk)k>1 (namely, (@) is weaker than both conditions (11) and (12) of [I].

Proposition 4. Assume that the sequence (ny),~, satisfies ). Then we have for k large
enough

1
8 — Sn(h)|=1/23 > 1/8.
® i s ISwO0] > 172} > 1/

1
(10) B:=<¢— max |Sy Zhj >1, and

Nk 2ng gNgni

Proof. Let us fix an integer k. Let us define the events

N | =

9) A:{i max _|Sy(h)| =

ng 2nk<N<ni

i>k
(11) =2 svl S m)|<2
= e max ; -
g 2np<N<nz |\ N A )
j<k—1

Since the family {ek oTHk>1,i€ Z} is independent, the events B and C are indepen-
dent. Notice that BN C C A hence

u(A)u{i ma |SN(h>|>§}>u<B>u<c>.

Nk 2np KN<n?
In order to give a lower bound for u(B), we define Ej, := U?j‘:%k Ujskrr 198 (hy) # 0}
then
(12) n(B) = p(B N E)

1
(13) :,u({— max |SN(hk)|>1}ﬂE,§>
N 2nk<N<ni

(14) >u<{i max |SN<hk>|>1}>u<Ek>-

Nk 2np KN<n?

Let us give an estimate of the probability of Ej. As noted in [I] (proof of Lemma 11
therein), the inclusion

n? n?
(15) U {svm)#0rc | 1774
N=2n i=—2n;+1

takes place for j > k, hence

i n2 + 2n.;
(16) pl U {Snhy) #0}] < %a
N=2ny J
and it follows that
= 2nk
(17) p(Ey) < Y



By (@), we have nj < 1/(1+") for § > k, hence by (7)),

+00 n
(18) p(Ep) <2 > ny o

j=k+1

As condition () implies that nj > 2" for k large enough, we conclude that the following
inequality holds for k large enough:

+oo
(19) p(Ey) <2 Y 2777
j=k+1

Thus, by Lemma Bl and ([I9), we have for k large enough

(20) At{—L max _|Sy(h)| > 1}

NE 2np<KN<n2 2

1 X i 1
> Z—QZQJHW 1—p¢ — max |Sy Zhj >

ng 2 <N<Kn?
=kt 1 k 2ne SNS™E j<h—1

Defining ¢ := p {— MaXg,, < N<n2 SN (ngkq hj)‘ > %}, it is enough to prove that

(21) lim ¢, = 0.

k—o0

Using (6) (accounting N > 2ny > n; for j < k), we get the inequalities

k—1
1
22 S hi)| > ————
k—1 n]—l

Z iUle;| >

(23) AL{

. k—1
k}+, ”{
j=1

=1
k—1
+ ,u{ max eJ >—}
2nk§N<nk
Jj=1
1 nj—1
rri ng
+ max WUej| > —
]Zlu{2nng<n ; J 8k

j

Z iUiej

n;—1

k-1
(24) <ni ] { Z iUle;| >
j=1

Notice that for each j <k — 1,
(25) /L{
=1

ZiUiej >—} { 16k}+u{|n]U iej| > 16k}

Condition () implies the inequality 16k - nx—1 < ny for k large enough, hence keeping in
mind that U™ e; is bounded by 1, inequality (2E) becomes for such k’s,

S e
sk SH

BEAE

njfl

e]

njfl

(26) /t{

Z iUiej




Combining (24) with (2€]), we obtain

k—1
(27) o <miy {

j

> il'e;

i=1

ng
” 16kz}
n; p
ZiUiej
=1

where p > 2+ 1/5. By Rosenthal’s inequality (see [3], Theorem 1), we have

16k)P
(28) < 2n§( np) Y E
k

)

p n;j . p/2
(29) ej| <Cp|D i"Eles| + (Z E[ﬁﬁ])
i=1 i=1
(30) < C’p(néﬂrk2 + n?pm/n’;)
-1
(31) < 200"
as p > 2. Therefore, for some constant K depending only on p,
k—1 p—l
2— 1
(32) o <K -mp PRPY nPTI <K k;P“np .,
j=1 k
and by (@),
(33) cx < K - pHiphZimem

Sincep—1—(p—2)(1+n)=1—(p—2)n <0 and ng_ > 257! for each k > 2, we get
(34) cr < K - kPtigt—(p=2)n)(k-1)
This concludes the proof of Proposition @] hence that of (I

For we follow the computation in the proof of Proposition 13 of [I], using the fact
k—1
that sup,, Z —, nj/ny is finite.
We now prov1de a bound for the mixing rates. Corollary 6 of [I] states the following.

Proposition 5. For each integer k, we have

(35) BN < >0

Then follows from the bounds

— Y

k>i (N

1+Z e

]>1

(36) B2N) <

Ti(N) Ti(N)

In Proposition 14 of [I], it was proved that for each ¢ > 2, there exists a constant C,
such that for each k > 1, [[hx[|, < Cqny, ~1/4 Condition (@) implies that ny > 2* for k large

enough, hence is satisfied.
This concludes the proof of Proposition [[l and that of Corollary

In order to prove the main result, we shall make some particular choices of sequence
(nk)r>1 which satisfy conditions [2)) and (@).
We define for a positive §

(37) ny = |20

The sequence (ny)r>1 satisfies (@) and by Proposition 11 of [2], we have S(N) <
CN~'/0+4) for some universal constant C.
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