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Abstract

This paper is dedicated to the simulation of two-phase flows on the basis

of an homogeneous model that allows to account for the disequilibrium

of the pressure, temperature and chemical potential (mass transfer). The

numerical simulations are performed using a fractional step method treat-

ing separately the convective part of the model and the source terms. On

the basis of analytical solutions for the convective part of the model, nu-

merical investigations are performed to compare different finite volume

schemes. Eventually, a test case of the heating of a mixture of steam and

water is presented.
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1 Introduction

In the nuclear domain, homogeneous models are often used to simulate the steam-
water flows in devices such as the core, the steam-generator or other heat exchangers.
One can for example cite, among others, the industrial codes THYC (EDF) [aub88,
gue03], FLICA (CEA) [tou95] and ATHOS (EPRI) [ath07]. The homogeneous mod-
els deal with the flow as a mixture of the two phases. They are based on the Euler
system of equations and then involve at least an equation for the mass conservation
of the mixture, one for the momentum conservation of the mixture and one for the
total energy of the mixture. These three PDE’s can be supplemented by additional
equations of transport of some fractions (most commonly one equation for the mass
fraction of the mixture). The system of equations is then closed by providing an
equation of state for the mixture [dow96, fau00] and, if necessary, closure laws for
the source terms.

In a practical point of view, the homogeneous models are often obtained from
two-fluid models [aub88, tou95]. The mixture equations for the mass, momentum
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and energy are issued from the sum of the corresponding phasic equations of the
two-fluid model. Algebraic closures are then proposed to get rid of the remaining
phasic equations. If this process seems natural, it leads to some difficulties in defin-
ing the entropy of the system. More precisely, the entropy of the mixture is not
always the sum of the phasic entropies. Another way of building an homogeneous
model starting from a two-fluid model has been proposed in [gui05, sau08]. Asymp-
totic derivation has been performed and the resulting model leads to a model whose
entropy is the sum of the phasic entropies. Nevertheless these models make the
assumption of pressure equilibrium between the phases.

When no entropy can be exhibited, the second principle of thermodynamics
might not hold, which could lead to non-physical behaviours of the model. This
point is crucial when focusing on two-phase flows with phase change. In [bar05,hel06]
a model built directly on the Euler system has been proposed. It is based on the sec-
ond principle of thermodynamics and on additivity principles. The thermodynamical
behaviour of the mixture and the thermodynamical exchanges between phases are
then a straightforward consequence of these choices. Moreover, the resulting model
is hyperbolic when two sufficient natural conditions hold for the equation of state
for the entropy of each phase: the phasic entropies have to be concave with respect
to the phasic specific volume and the phasic internal energy; and they must allow
to define a positive thermodynamical temperature through the Gibbs relation.

In the classical homogeneous models, one assumes at least that the pressure equi-
librium holds instantaneously ([kap01, ath07, aub88, tou95, dow96, fau00, gui05,
sau08]). In addition to this hypothesis, the assumption is sometimes made that the
mass transfer between the phases is instantaneous, leading to the so-called class of
the Homogeneous Equilibrium Models (HEM). One can for example refer to [fac08,
fac12, all07] where the thermodynamical equation of state for the mixture of the two
phases is built by assuming the thermodynamical equilibrium between the phases.
But in general, the homogeneous models do not account for the temperature dis-
equilibrium [ath07, dow96, fau00, tou95, aub88] (the model proposed in [sau08]
explicitely accounts for the temperature disequilibrium). The thermodynamical dis-
equilibrium between the phases is a complex phenomenon and though it has been
widely studied (see [bar05, hel06, mat10, hel11, jun13, fac08, fac12, all07, car04]
among others), it remains difficult to handle.

The model proposed in [bar05, hel06] allows to account for the thermodynamical
disequilibria between the phasic temperatures, the phasic pressures and the phasic
chemical potentials. In this model, the time-space evolution of these equilibria is
defined by three fractions (the volume, mass and energy fractions), each one being
associated with an advection/source equation. The return to equilibrium is deter-
mined by the source terms, which are based on six quantities: one equilibrium value
for each fraction and three time scales - characteristic of the time to return to equi-
librium. The former are obtained from the entropy of the mixture and thus depend
on the phasic equations of state, whereas the latter should be specified by the user
- on the basis of physical considerations. The definition of the mixture of the two
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phases through volume fration and mass fraction is classical ([kap01, gav07]) but the
novelty of the model [bar05, hel06] is to define explicitely a third fraction to define
the energy distribution between the phases. The authors then choose to express the
return to equilibrium by defining three equilibrium fractions, as it is usually done for
the sole mass fration ([fau00, dow96]). Classically these returns to equilibrium are
expressed by source terms that are explicitely written in term of the pressure gap,
temperature gap and chemical potential gap [gui05, sau08, kap01]. Nonetheless,
the latter forms of source terms often imply the development of more complex and
non-linear schemes to account for non-instantaneous or instantaneous relaxation of
the equilibria.

Numerical simulations have been performed using the model proposed in [bar05].
The results of some test cases dedicated to cavitation phenomena show a good be-
haviour of the model [bar05]. In these simulations, an instantaneous temperature
equilibrium has been imposed. This assumption is consistent with the cavitation
phenomenon which is often seen as the creation of vapour due to a sudden pressure
drop at an almost constant temperature. Our aim in the present paper is to test
the behaviour of the model when considering test cases involving the heating of a
mixture of steam and water. Indeed, these kinds of tests are representative of some
nuclear situations such as: the heating of the primary coolant fluid by the fuel bun-
dles, or the heating of the water in the steam generator device. Hence we do not
assume any temperature equilibrium in the sequel.

The simulations are performed with a fractional step method [yan68]. We first
account for the convective part of the system by using classical schemes: the Ru-
sanov scheme [rus61], VFRoe-ncv schemes [mas99, gal96, buf00], and an energy
relaxation method based on a VFRoe-ncv scheme [coq98]. The behaviour of these
schemes is compared focusing on two Riemann problems described in appendix 6.1.
The source terms are then taken into account through a straightforward integration
which is made possible thanks to the form of the source terms.

The paper is organised as follows. On the basis of the paper [bar05] we first
recall the model and its properties. Then, we propose a numerical scheme for the
discretization of the model applied to stiffened gas equations of state. Eventually,
an investigation is carried on an OECD/CSNI test case [csni80].

2 The homogeneous model

2.1 The system of equations

The velocity of the mixture is denoted by U , and since no kinematic disequilibrium
is taken into account, U also represents the velocity of each phase. We note: ρ = 1/τ
the density of the mixture, where τ is the specific volume, E = e+U2/2 the specific
total energy of the mixture, e the specific internal energy of the mixture, P the
pressure in the mixture.

International Journal on Finite Volumes 3



Simulation of two-phase flows

The fractions defining the manner in which the phases are mixed are denoted by
Y = (α, y, z)> with 0 ≤ Y i ≤ 1, i = 1..3. The volume fraction αl = α represents
the fraction of volume locally occupied by the liquid phase. Thanks to the volume
conservation, αv = 1− α represents the fraction of volume occupied by the vapour.
As a consequence, if ρl and ρv are respectively the liquid and vapour density, the
density of the mixture is then:

ρ = αρl + (1− α)ρv. (1)

For each phase k = l, v the mass fraction is defined as:

yk = αkρk/ρ,

and the energy fraction as:
zk = ykek/e.

Due to the relation (1), we have yl + yv = 1 and we then note y = yl. We impose
zl + zv = 1 and we note z = zl. This is in fact equivalent to assuming that the
internal energy of the mixture is the sum of the phasic internal energies weighted
by the mass fractions:

e = yel + (1− y)ev. (2)

We assume that the quantities ρ, U and E respectively fulfil the mass conserva-
tion equation, the momentum conservation equation and the equation for the total
energy conservation. Moreover, we assume that the fractions are advected with the
velocity U and are subject to source terms ΓY . We get then the following system of
equations: 

∂

∂t
(Y ) + U

∂

∂x
(Y ) = ΓY

∂

∂t
(ρ) +

∂

∂x
(ρU) = 0

∂

∂t
(ρU) +

∂

∂x

(
ρU2 + P

)
= 0

∂

∂t
(ρE) +

∂

∂x
(ρUE + UP ) = 0.

(3)

Obviously, this system is not in a closed form, the equation of state for the mixture
pressure P = P(Y, ρ, e) and the source terms ΓY = (Γ1

Y ,Γ
2
Y ,Γ

3
Y )> must be specified.

This will be achieved in the following sections.

The entropy of the system (3) is a concave function s depending on Y , τ and e
and is solution of the PDE:

∂

∂τ
(s)− P ∂

∂e
(s) = 0. (4)
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This constraint allows to ensure that s is advected with the velocity U without
source terms (i.e. ΓY = 0). Obviously, the entropy is not unique and several forms
might be proposed.

The differential of s reads:

ds(Y, τ, e) =
∂

∂Y
(s) dY +

∂

∂τ
(s) dτ +

∂

∂e
(s) de,

or in another form:(
∂

∂e
(s)

)−1

ds(Y, τ, e) =

(
∂

∂e
(s)

)−1 ∂

∂Y
(s) dY +

(
∂

∂e
(s)

)−1 ∂

∂τ
(s) dτ + de.

The classical Gibbs relation:

T ds = de+ P dτ + T
∂

∂Y
(s) dY,

can be retrieved by using (4) and by defining the thermodynamical temperature T
and pressure P of the mixture through the entropy s:

T−1 =
∂

∂e
(s) , (5)

P = T
∂

∂τ
(s) =

(
∂

∂e
(s)

)−1 ∂

∂τ
(s) . (6)

In fact, the caloric law (definition of the temperature) and the equation of state for
the pressure are fully defined by the definition of the mixture entropy s. This will
be achieved in section 2.3. We now turn to the specification of the source terms ΓY
which are obtained on the basis of the second law of thermodynamics.

2.2 Entropic characterisation of the source terms

We now use the second law of the thermodynamics to specify admissible forms for
the source terms ΓY . By using the equations (3) and (4), it can be shown that when
considering regular solutions the mixture entropy s(Y, τ, e) is ruled by the equation:

∂

∂t
(s) + U

∂

∂x
(s) =

∑
i

∂

∂Y i
(s) ΓiY . (7)

In order to ensure the non-decreasing of the entropy along all the streamlines, s and
ΓY must be chosen such that:∑

i

∂

∂Y i
(s) ΓiY ≥ 0,∀(Y, τ, e).

This specification remains general. We now choose a particular form for the source
terms ΓY . For each fraction Y i, we assume a classical “exponential” return to

International Journal on Finite Volumes 5



Simulation of two-phase flows

equilibrium form defined by a characteristic time scale λi > 0 and an equilibrium
value Y i

eq(τ, e):

ΓiY =
Y i
eq(τ, e)− Y i

λi
, (8)

This kind of form of source term is widely used in the literature, especially for
homogeneous models [dow96, fau00]. Given the form (8) and using the property of
the concavity of the entropy, we get:∑

i

∂

∂Y i
(s) ΓiY ≥

s(Yeq(τ, e), τ, e)− s(Y, τ, e)
λi

As a consequence, the increase of the entropy is ensured if the equilibrium fractions
are defined such that:

∀(τ, e), s(Yeq(τ, e), τ, e) ≥ s(Y, τ, e).

In [bar05], the authors proposed to define Yeq as the fractions realising the maximum
of the entropy for a given specific volume τ and a given internal energy e, in other
words:

s(Yeq(τ, e), τ, e) = max
{0≤Y≤1}

(s(Y, τ, e)). (9)

This definition of Yeq is of course in agreement with the second law of thermody-
namics.

It is an important point to be noted that the source terms defined by (8) and
(9) ensure the positivity of the fractions.

At this point of the paper, the entropy of the mixture s allows to close the sys-
tem. The time scales λi are not defined but they should be specified by the user.
Let us turn to the explicit choice of the entropy s.

2.3 Definition of the mixture entropy

We define now the entropy s(Y, τ, e) for the mixture following the approach of [bar05],
but other choices might be possible. We assume that the thermodynamical behaviour
of each phase is given by a phasic entropy sk = sk(τk, ek). Each phasic entropy allows
to define a phasic caloric law

T−1
k =

∂

∂ek
(sk) , (10)

and a phasic pressure law

Pk = Tk
∂

∂τk
(sk) , (11)

in agreement with the definitions (5) and (6). We then write the mixture entropy
as the mixing of the two phasic entropies:

s(τ, e, Y ) = ysl(τl, el) + (1− y)sv(τv, ev)
= ysl(

α
y τ,

z
ye) + (1− y)sv(

1−α
1−y τ,

1−z
1−ye).

(12)
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This proposition is classical for mixtures of non-miscible phases, since the en-
tropy of the union of two systems is the addition of the entropies of each system.
Moreover, if the entropies sk = sk(τk, ek) are concave with respect to (τk, ek) and
if they do not coincide, then the mixture entropy (12) is also concave with respect
to the fractions Y (see [hel06,jun13] or appendix 6.4 for details). This property is
mandatory to define a unique Yeq using (9). The mixture entropy is also concave
with respect to the variable (τ, e) (see [hel06,jun13] or appendix 6.4 for details).

Once the phasic entropy functions (τk, ek) → sk(τk, ek) and the time scales λi
are chosen, the whole system is closed and we can then study its properties.

2.4 Properties of the model

Given the mixture entropy (12), the mixture temperature (5) and the mixture pres-
sure (6) can be explicitly written in term of the phasic temperatures (10) and pres-
sures (11):

P =
αT

Tl
Pl +

(1− α)T

Tv
Pv and

1

T
=

z

Tl
+

1− z
Tv

. (13)

The mixture temperature is a geometric barycenter of the phasic temperatures.
Moreover, the pressure is not a barycenter of the phasic pressures, excepted in the
single-phase situations which is a degenerate situation. Indeed it can be written:

P =

α
Tl
Pl + (1−α)

Tv
Pv

z
Tl

+ 1−z
Tv

.

The equilibrium fractions are implicitly defined by the maximisation of the mix-
ture entropy (9). When the maximum is not reached on the boundary of the domain,
i.e. when 0 < Yeq < 1, the gradient of s with respect to Y evaluated at Y = Yeq
equals zero:

∂

∂α
(s)|Y=Yeq

=
∂

∂y
(s)|Y=Yeq

=
∂

∂z
(s)|Y=Yeq

= 0.

By using the definition (12), this yields:

∂

∂α
(s)|Y=Yeq

= 0⇔ τ

(
Pl
Tl
− Pv
Tv

)
= 0, (14)

∂

∂z
(s)|Y=Yeq

= 0⇔ e

(
1

Tl
− 1

Tv

)
= 0, (15)

∂

∂y
(s)|Y=Yeq

= 0⇔ −
(
µl
Tl
− µv
Tv

)
= 0, (16)

with the chemical potentials µk = ek + Pkτk − Tksk. The fraction Yeq is thus the
solution of the non-linear system:

Tl(τ, e, Yeq) = Tv(τ, e, Yeq)
Pl(τ, e, Yeq) = Pv(τ, e, Yeq)
µl(τ, e, Yeq) = µv(τ, e, Yeq).

(17)
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This system only makes sense when the maximum of the entropy is reached inside
the two-phase domain 0 < Yeq < 1. When the maximum is reached on the boundary
of the domain, the equalities in (17) become inequalities. Hence definition (9) should
be used to define Yeq: we then have Yeq = 0 if s(0, τ, e) > s(1, τ, e) or Yeq = 1 if
s(0, τ, e) < s(1, τ, e).

Remark. Note that when considering stiffened gas EOS, the system (17) can
have a solution with one or two equilibrium fractions equal to zero and the other
lying in ]0, 1[. Such a case is described in appendix 6.2 and more detailed explana-
tions can be found in [jun13].

The sound speed c for the system (3) is defined as:

c2 = −τ2 ∂

∂τ
(P )|s = −τ2 ∂

∂τ
(P ) + τ2P

∂

∂e
(P ) ,

and using the formula (13) it can be written:

c2

Tτ2
= − (−α, Pz) .s′′l .

(
−α
Pz

)
− (−(1− α), P (1− z)) .s′′v .

(
−(1− α)
P (1− z)

)
(18)

where s′′k stands for the Hessian matrix of the phasic entropies (τk, ek)→ sk(τk, ek).
We recall that the phasic sound speeds are defined as:

c2
k

Tkτ
2
k

= − (−1, P ) .s′′k. (−1, P )> (19)

It must be emphasised that the mixture celerity c is not a barycenter of the phasic
celerities ck. Some empiric formulations and some experiments tend to confirm this
behaviour for c [kar58, wal69, liu13]. Moreover, two natural sufficient conditions can
be expressed for the celerity c to be defined in the real space. If:

• each phasic entropy is concave with respect to the phasic specific volume and
to the phasic specific internal energy,

• and the mixture temperature is positive,

then c2 is non-negative, and hence c is real. These conditions are sufficient and not
necessary. With the present model, the mixture sound speed can be defined even
if one of the phasic celerities is not defined and/or if one phasic temperature is not
positive.

The eigenstructure of system (3) is the same as the eigenstructure of the Euler
system. The fields associated with the fractions Y i are linearly degenerated and the
corresponding eigenvalue is U . The mass, momentum, energy sub-system yields the
eigenvalues U and U ± c. The former is associated with a linearly degenerated field,
while the latter are genuinely non-linear waves.

Thanks to the form of the equations for the fractions Y and thanks to the equi-
librium fractions Yeq which, by definition, lie in [0, 1], the positivity of the fractions
is ensured.

International Journal on Finite Volumes 8
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3 Numerical schemes

We propose herein a finite volume scheme to simulate the model defined in the previ-
ous section. The general scheme relies on a classical fractional step method [yan68]:
we first account for the convective part of the system (3) and then the source terms
for the fractions are discretised. The latter step involves the computation of the
equilibrium fractions Yeq.

3.1 The Stiffened Gas EOS

In order to avoid numerical difficulties and to diminish the computational cost in the
computation of the equilibrium fractions, we focus on the stiffened gas equations of
state. This class of equation of state allows to obtain a rather satisfactory behaviour
for the liquid phase, and it degenerates naturally to the perfect gas equation of state
for the steam. The phasic entropies are then:

sk(τk, ek) = Cv,k ln
(

(ek −Πkτk)τ
γk−1
k

)
+ s0

k, (20)

where Πk > 0, and:

• Cv,k is the heat capacity,

• −Πk is the minimal pressure (the phasic entropy and the phasic sound speed
are defined for Pk > −Πk; and the phasic temperature is positive for Pk >
−Πk),

• γk > 1 is the adiabatic coefficient,

• s0
k is the reference entropy.

The phasic pressure and phasic temperature laws are respectively given by (11) and
(10), and for stiffened gas it yields:

Pk(τk, ek) =
ek
τk

(γk − 1)−Πkγk, or Pk(τ, e, Y ) =
zk
αk

e

τ
(γk − 1)−Πkγk, (21)

Tk(τk, ek) =
ek −Πkτk
Cv,k

, or Tk(τ, e, Y ) =

zk
yk
e−Πk

αk
yk
τ

Cv,k
. (22)

The thermodynamical variables of the system are (Y, τ, e). In the previous section
the thermodynamical pressure has been defined using these variables, so that the
calculus of (Y, τ, P ) is straightforward when (Y, τ, e) is known. In general, the inverse
variables change (Y, τ, P ) → (Y, τ, e) is not straightforward. In the particular case
of the stiffened gas EOS, an explicit variable change can be exhibited. By replacing
the definition of the phasic pressure (21) and the phasic temperature (22) in the the
definition of the mean pressure (13), a second degree polynomial in e can be formed:

A(Y, τ, P ) e2 +B(Y, τ, P ) e+ C(Y, τ, P ) = 0, (23)

International Journal on Finite Volumes 9
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with the coefficients:

A(Y, τ, P ) = z(1− z) 1
τ (αCv,l(γl − 1) + (1− α)Cv,v(γv − 1)) ,

B(Y, τ, P ) = −Pz(1− z)(yCv,l + (1− y)Cv,v)
−αCv,l ((1− α)z(γl − 1)Πv + y(1− z)γlΠl)
−(1− α)Cv,v (α(1− z)(γv − 1)Πl + (1− y)zγvΠv) ,

C(Y, τ, P ) = α(1− α)ΠlΠvτ (yCv,lγl + (1− y)Cv,vγv)
+Pτ ((1− α)yzCv,lΠv + α(1− y)(1− z)Cv,vΠl) .

For any non-negative pressure, P > 0, this polynomial has always two non-negative
solutions, and the smallest solution equals zero in the case of perfect gases Πk = 0.
We thus retain the greatest solution as the unique physical solution. When the
pressure is negative, no general result has been exhibited. Hence, if (Y, τ, P ) is
known with P > 0, (Y, τ, e) can be explicitly computed. This variable change will
be useful in the convection step and in the computation of an analytical solution
through the Hugoniot curve (see appendix 6.1).

3.2 The convection step

The convective part of the system (3) is based on the Euler system of equations and
a lot of Finite Volume schemes can be found in the literature to obtain numerical
approximations of its solutions. The main difficulty here lies in the complexity of
the equations of state. A strong jump of the fractions Y may lead to an important
jump in the thermodynamical functions which may lead to numerical difficulties on
coarse meshes as described in [gal02a]. In order to achieve this step, four different
first-order schemes have been tested here:

(i) the classical Rusanov scheme [rus61];

(ii) the VFRoe-ncv scheme [buf00] using the variables (Y, τ, U, e) with the entropic
correction [hel10];

(iii) the VFRoe-ncv scheme using the variables (Y, τ, U, P ) [buf00] with the entropic
correction [hel10];

(iv) the VFRoe-ncv scheme using the variables (Y, τ, U, P ) and the energy relax-
ation method [coq98, gal02a].

Despite its poor accuracy, the Rusanov scheme remains a reference scheme because
it is very easy to implement and very robust. The VFRoe-ncv schemes form a class
of accurate schemes. Depending on the choice of the non-conservative variables,
interesting properties can be obtained [gal96, gal02a, gal03]. In particular, when
choosing U and P , it allows to preserve unsteady contact discontinuities for a spe-
cific class of EOS [gal02b]. The last scheme (iv) is based on the VFRoe-ncv scheme
but it uses a relaxation of the EOS that is very convenient for the systems that
possess a complex EOS.

International Journal on Finite Volumes 10
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We set W = (Y, ρ, ρU, ρE) and F : W 7→ (ρY, ρU, ρU2 +P, ρUE +UP ). For any
quantity Φ, Φn

i stands for the Finite Volume [eym00] approximation of Φ in the cell
i at time tn. For the sake of simplicity, we assume that all the cells have the same
size ∆x. The time step ∆tn = tn+1−tn is chosen in agreement with a CFL condition
that depends on the scheme. For an approximation Wn

j of W at time tn and in the

cell j, the approximation Wn+1,∗
j at the end of the convection step is computed by

the scheme:

Wn+1,∗
i −Wn

i +
∆tn

∆x

(
F (Wn

i+1,W
n
i )− F (Wn

i ,W
n
i−1)

)
= 0, (24)

F (., .) is the two-point numerical flux and it is described for each scheme in the
sections below.

3.2.1 The Rusanov scheme

For the Rusanov scheme, we have:

F (Wl,Wr) =
1

2
(F(Wl) + F(Wr))−

max (Λr,Λl)

2
(Wr −Wl), (25)

where Λr (resp. Λl) denotes the spectral radius of the convection matrix ∇WF at
W = Wr (resp. W = Wl). The time step ∆tn must fulfil the CFL constraint:

∆tn

∆x
max (Λr,Λl) < 1/2.

3.2.2 The VFRoe-ncv scheme

Let us note V a set of variables such that a variable change Φ (diffeomorphism)
exists with: W = Φ(V ) and V = Φ−1(W ). For regular solutions, the convective
part of the system (3) can be written in a non-conservative form using the variable
V :

∂

∂t
(V ) +A(V )

∂

∂x
(V ) = 0,

where A = (∇V Φ)−1(∇WF)(∇V Φ) is the convection matrix. The numerical flux for
the VFRoe-ncv scheme then reads:

F (Wl,Wr) = F(Φ(V(x/t = 0,Φ−1(Wl),Φ
−1(Wr)))), (26)

where V(x/t, Vl, Vr) is the exact solution of the Riemann problem associated with
the system:

∂

∂t
(V ) +A(V )

∂

∂x
(V ) = 0, with V = (Vl + Vr)/2 (27)

and with the left state Vl and the right state Vr. The time step ∆tn must fulfil:

∆tn

∆x
Λl,r < 1/2.

where Λl,r is the spectral radius of A(V ).

International Journal on Finite Volumes 11



Simulation of two-phase flows

The scheme using the flux (26) can converge towards a wrong solution because
of the occurrence of non-entropic shocks in the fan of a rarefaction wave that crosses
x/t = 0. In order to ensure the convergence towards the right solution a simple
entropic correction has been proposed in [hel10]. It consists in modifying the flux
(26) by adding a diffusive term:

F (Wl,Wr) = F(Φ(V(x/t = 0,Φ−1(Wl),Φ
−1(Wr))))−

δ

2
(Wr −Wl). (28)

The correction coefficient δ is equal to: δ = min(−(U+c)l, (U+c)r) when (U+c)l < 0
and (U + c)r > 0; δ = min(−(U − c)l, (U − c)r) when (U − c)l < 0 and (U − c)r > 0;
otherwise δ = 0. Hence the additional diffusive term is activated only if necessary,
and does not decrease the global accuracy of the scheme.

In the sequel we have chosen two different sets of variables for V , leading to
two different schemes. With the first choice V = (Y, τ, U, e) the resulting convec-
tion matrix has a lot of non-zero terms with a complex expression. Whereas with
the second choice, V = (Y, τ, U, P ), the convection matrix is more sparse and the
expressions associated with the solution of the linearised Riemann problem (27) are
simpler. Moreover, it has been shown in [gal02b] that choosing U and P in the set a
variables V ensure the preservation of an unsteady contact discontinuity, provided
that the equation of state is of the form:

ρe = ρG1(P ) + ραG2(P ) + ρyG3(P ) + ρzG4(P ) + G5(P ).

Unfortunately, in the present case, the internal energy (23) can not be written in
the form above.

An important point to be quoted is that it is mandatory to express the inter-
nal energy with respect to (Y, τ, P ) (23) in order to compute (26) for the choice
V = (Y, τ, U, P ).

3.2.3 The VFRoe-ncv scheme with energy relaxation

This scheme is based on a VFRoe-ncv (Y, τ, U, P ) scheme [buf00] with a method of
relaxation for the energy [coq98] that allows to account for complex EOS. In [gal02a]
the complex EOS is replaced by a perfect gas EOS and the pressure must then re-
main positive. With the complex EOS described in the section above, the pressure
may become negative and the scheme [gal02a] should be modified by introducing
another parameter Π to replace the perfect gas EOS by a stiffened gas EOS.

As in [gal02a] we define Γ1 and Γ2 such that:

Γ1 = max
(i)

(
1 + τi

∂

∂e
(P ) (Yi, τi, ei)

)
,

and

Γ2 = max
(i)

(
− τi
Pi

∂

∂τ
(P ) (Yi, τi, ei) + τi

∂

∂e
(P ) (Yi, τi, ei)

)
,
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and we choose Γ > max(Γ1,Γ2) (in practice we have chosen Γ = 1.01×max(Γ1,Γ2)).
A modified energy ε is introduced:

ε = e−
(
τ

P

Γ− 1

)
as well as the system:

∂

∂t

(
W#

)
+

∂

∂x

(
F#(W#)

)
= 0, (29)

with

W# =

(
ρY, ρ, ρU,

ρU2

2
+

P

Γ− 1
, ρε

)
and

F#(W#) =

(
ρUY, ρU, ρU2 + P,U

ρU2

2
+ U

ΓP

Γ− 1
, ρUε

)
.

System (29) corresponds to system (3) (without the source terms) for a perfect gas
EOS with parameter Γ, supplemented by an advection equation for ε.

If F#,V FRoe
j (W#

l ,W
#
r ), j = 1..5, stands for the jth component of the VFRoe-ncv

(Y, τ, U, P, ε) flux described above (26) for system (29), Fj the jth component of flux
corresponding to the Coquel-Perthame energy relaxation scheme is:

F1(Wl,Wr) = F#,V FRoe
1 (W#

l ,W
#
r ),

F2(Wl,Wr) = F#,V FRoe
2 (W#

l ,W
#
r ),

F3(Wl,Wr) = F#,V FRoe
3 (W#

l ,W
#
r ),

F4(Wl,Wr) = F#,V FRoe
4 (W#

l ,W
#
r ) + F#,V FRoe

5 (W#
l ,W

#
r ).

Three important points must be emphasised:

(i) this scheme does not need an entropy correction, the fluxes F V FRoe(Wl,Wr)
are computed with (26) and it is not mandatory to use fluxes (28);

(ii) the computation of the internal energy with respect to (Y, τ, U, P ) (23) is
not needed (this is the case for the VFRoe-ncv (Y, τ, U, P ) without energy
relaxation, see the section 3.2.2).

(iii) In [bar05], the temperature equilibrium is enforced and the resulting mixture
pressure EOS is a Stiffend Gas EOS. The Coquel-Perthame relaxation proce-
dure is then unnecessary in that case.
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3.3 The source terms step

The source terms of the system (3) are accounted for by discretising the system of
ODE: 

∂

∂t
(α) =

αeq(τ, e)− α
λ(1)

∂

∂t
(y) =

yeq(τ, e)− y
λ(2)

∂

∂t
(z) =

zeq(τ, e)− z
λ(3)

∂

∂t
(ρ) = 0

∂

∂t
(ρU) = 0

∂

∂t
(ρE) = 0

(30)

We first remark that it can be written in an equivalent manner:

∂

∂t
(α(t)) =

αeq(τ(0), e(0))− α(t)

λ(1)(t)
∂

∂t
(y(t)) =

yeq(τ(0), e(0))− y(t)

λ(2)(t)
∂

∂t
(z(t)) =

zeq(τ(0), e(0))− z(t)
λ(3)(t)

∂

∂t
(τ(t)) = 0

∂

∂t
(U(t)) = 0

∂

∂t
(e(t)) = 0

(31)

It can thus be noticed that if the parameters λ(j) are constant, the system (31) can
be integrated exactly. We then approach system (31) by replacing λ(j)(t) by its
value λ(j)(0). It yields for the fractions:

∂

∂t
(α(t)) =

αeq(τ(0), e(0))− α(t)

λ(1)(0)
∂

∂t
(y(t)) =

yeq(τ(0), e(0))− y(t)

λ(2)(0)
∂

∂t
(z(t)) =

zeq(τ(0), e(0))− z(t)
λ(3)(0)

(32)

The numerical approximation Wn+1 is the exact solution of the system (32) at
time t = ∆t and with the initial condition Wn+1,∗, the values obtained after the
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convection step. The final approximation Wn+1 then reads:

αn+1 = e(−∆t/λ(1),n+1,∗)αn+1,∗ − αn+1,∗
eq

(
e(−∆t/λ(1),n+1,∗) − 1

)
yn+1 = e(−∆t/λ(2),n+1,∗)yn+1,∗ − yn+1,∗

eq

(
e(−∆t/λ(2),n+1,∗) − 1

)
zn+1 = e(−∆t/λ(3),n+1,∗)zn+1,∗ − zn+1,∗

eq

(
e(−∆t/λ(3),n+1,∗) − 1

)
ρn+1 = ρn+1,∗

Un+1 = Un+1,∗

en+1 = en+1,∗

(33)

Remark. If the time scales λi only depend on e and τ , system (32) is equiv-
alent to the first three equations of (31) and scheme (33) corresponds to an exact
integration. But when the time scales depend on the fractions, the exact integration
might become impossible.

It now remains to compute the equilibrium fractions αeq, yeq and zeq for a given
couple (τ, e). In the particular case of the stiffened gas EOS, the non-linear system
(17) for Yeq can be reduced to a resolvant equation on the fraction αeq. Indeed, the
pressure equilibrium Pl(τ, e, Yeq) = Pv(τ, e, Yeq) gives an explicit expression of zeq
with respect to αeq:

zeq(αeq) =
αeq(γv − 1)− αeq(1− αeq)(Πvγv −Πlγl)τ/e

αeq(γv − 1) + (1− αeq)(γl − 1)
,

and the temperature equilibrium Tl(τ, e, Yeq) = Tv(τ, e, Yeq) gives an explicit expres-
sion of yeq with respect to αeq and zeq:

yeq(αeq, zeq) =
(ezeq −Πlαeqτ)/Cv,l

(ezeq −Πlαeqτ)/Cv,l + (e(1− zeq)−Πl(1− αeq)τ)/Cv,v
.

Finally, the equilibrium of the chemical potentials can then be written as a non-linear
equation on αeq:

µl(τ, e, αeq, yeq(αeq, zeq(αeq)), zeq(αeq))
= µv(τ, e, αeq, yeq(αeq, zeq(αeq)), zeq(αeq)).

(34)

In practice, equation (34) is solved using a dichotomy algorithm. If the dichotomy
algorithm fails finding a zero for (34), the two phases do not co-exist for (τ, e). We
then use definition (9) to determine Yeq: Yeq = 0 if s(τ, e, 0) > s(τ, e, 1); and Yeq = 1
if s(τ, e, 0) < s(τ, e, 1).

For more complex EOS it could be more convenient to compute the equilibrium
fractions by using definition (9) and an optimisation algorithm instead of solving
(17).

4 Numerical simulations

4.1 Comparison of the behaviour of the convection schemes

We first verify the numerical schemes of section 3.2 by using the two Riemann
problems described in appendix 6.1. The results computed with the different schemes
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are obtained with the same CFL constraint of 0.45.

4.1.1 Test case with initial conditions of table (13)

The approximations obtained by the four schemes have been compared with the
analytical solution (see appendix 6.1 for details) in terms of the L1 error:

err(φ, T ) =

∑N
i=1 |φapprox(T, xi)− φexact(T, xi)|∑N

i=1 |φexact(T, xi)|
, (35)

where N stands for the number of cells on [0, 1], xi is the centre of the cell i
and T is the final time (here T = 0.001 s). The CFL number is equal to 0.45,
except in the first time steps where it increases from 0.05 to 0.45. The mesh
size is uniform ∆x = 1/N , and different values for N have been used: N =
{102, 5 102, 103, 5 103, 104, 5 104, 105}. Due to the important oscillations observed
in the approximations of the VFRoe-ncv (Y, τ, U, e) scheme for coarse meshes, it
has been necessary to increase the number of cells to N = {2 105, 5 105, 106} in
order to recover the asymptotic convergence rate. These oscillations are stable in
L1-norm and L∞-norm with respect to the mesh size. On coarse meshes, N < 105

for the present test case, they appear in the ghost wave region and in front of the
discontinuities. The error (35) has been plotted on figure (1). It can be seen that
we get the expected convergence rate of 1/2 due to the presence of the contact wave
[gal02a].

The approximations are plotted on figures (2), (3) and (4) for respectively N =
103, N = 105 and N = 106 with a zoom on the ghost wave location. Numerical
approximations obtained with the four schemes contain perturbations around the
expected ghost-wave except for the fractions Y . VFRoe-ncv (Y, τ, U, e) and Rusanov
schemes are indeed sensitive whereas the two VFRoe-ncv (Y, τ, U, P ) provide smaller
overshoots. Concerning the preservation of the unsteady contact discontinuity for
U and P , the two latter schemes have a satisfactory behaviour even if the EOS does
not allow an exact preservation. However, the results obtained with the VFRoe-ncv
(Y, τ, U, e) exhibit strong peaks and/or oscillations in the vicinity of the contact wave
at the front location of the shock. This is particularly true on coarse meshes, which
explains the very poor accuracy for U , ρ and P . Nevertheless the magnitude of the
peaks and oscillations decreases when the mesh size decreases.

The computational efficiency of the different schemes has been investigated by
plotting the error (35) with respect to the CPU time in seconds. The results can
be seen on figure (5). The first remark is that the Rusanov scheme has a very poor
efficiency in comparison with the VFRoe-ncv (Y, τ, U, P ) schemes (with or without
the energy relaxation). Nevertheless, it remains interesting versus the VFRoe-ncv
(Y, τ, U, e) scheme for coarse meshes. Despite its poor accuracy on coarse meshes
(except for α), the latter is quite efficient on very fine meshes. The two VFRoe-ncv
(Y, τ, U, P ) have very similar performances, with a slight advantage for the energy
relaxation method.
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Figure 1: Convergence curves for the test of the section 4.1.1, logarithm of the error
(35) versus the logarithm of the mesh size. The meshes contain respectively 102,
5 102, 103, 5 103, 104, 5 104 and 105 cells. Additional meshes with 5 105, 5 105

and 106 cells have been used for the VFRoe-ncv (Y, τ, U, e) scheme. The circles
correspond to the fractions, the square to the density, the diamond to the velocity
and the “X” to the pressure. The plain line represents the slope 1/2.
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Figure 2: Approximated solutions for N = 103 obtained with: Rusanov (dot),
VFRoe-ncv (Y, τ, U, e) (dot-dash), VFRoe-ncv (Y, τ, U, P ) (dash), and VFRoe-ncv
(Y, τ, U, P ) with energy relaxation (plain line).

4.1.2 Test case with initial conditions of table (14)

Another analytical test case is investigated now. It is also based on the solution
proposed in appendix 6.1, but the EOS parameters are those of section 4.3. These
parameters are representative of high-pressure high-temperature water and lead to a
very stiff mixture where the two phasic EOS parameters strongly differ. In fact the
partial derivative of the pressure with respect to the specific volume, ∂P/∂τ , has an
order of magnitude of 1015 which corresponds to a very low compressibility. This
term is involved in the computation of the flux of the VFRoe-ncv (Y, τ, U, e) scheme
and the resulting convection matrix is ill-conditioned. As a consequence, unstable
(with respect to time and with respect to the mesh size) oscillations are observed
for this scheme, leading to the blow-up of the code for the meshes up to 5 102 cells.

The Rusanov scheme, the VFRoe-ncv (Y, τ, U, P ) scheme and the VFROE-ncv
(Y, τ, U, P ) scheme with energy relaxation do not encounter any particular problem
to handle this test case. The convergence curves are plotted on figure (6). The
VFRoe-ncv (Y, τ, U, e) scheme can not handle this test case for a mesh containing
more than 5 102 cells and it has thus not been considered here. For the present
test case, the final time is small and the contact wave only travels on a distance of
1.46 10−4 m to the left. This explains the flatness of the convergence curves for the
two VFRoe-ncv schemes on coarse meshes. Indeed, the accuracy does not change
until the mesh size becomes of the order of magnitude of 1.46 10−4 m, which corre-
sponds to a mesh with 6.8 103 cells. As shown by figure (6), the order of convergence
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Figure 3: Approximated solutions for N = 105 obtained with: Rusanov (dot),
VFRoe-ncv (Y, τ, U, e) (dot-dash), VFRoe-ncv (Y, τ, U, P ) (dash), and VFRoe-ncv
(Y, τ, U, P ) with energy relaxation (plain line).
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Figure 4: Approximated solutions for N = 105 obtained with: Rusanov (dot),
VFRoe-ncv (Y, τ, U, e) (dot-dash), VFRoe-ncv (Y, τ, U, P ) (dash), and VFRoe-ncv
(Y, τ, U, P ) with energy relaxation (plain line). Zoom on the ghost wave.
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Figure 5: Computational efficiency of the different schemes: error (35) with respect
to the CPU time in seconds computed for the meshes N = {5 103, 104, 5 104, 105}
and with the additional points N = {2 105, 5 105, 106} for the VFRoe-ncv (Y, τ, U, e)
scheme. The circles stand for Rusanov, the squares for VFRoe-ncv (Y, τ, U, e), the
diamonds for VFRoe-ncv (Y, τ, U, P ), and the crosses for VFRoe-ncv (Y, τ, U, P )
with energy relaxation.
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Figure 6: Convergence curves for the test of the section 4.1.2, logarithm of the error
(35) versus the logarithm of the mesh size. The meshes contain respectively 102,
5 102, 103, 5 103, 104 and 5 104 cells. The circles correspond to the fractions, the
square to the density, the diamond to the velocity and the “X” to the pressure. The
plain line represents the slope 1/2.

1/2 is recovered on the finest meshes.

The error (35) versus the computational time in seconds is plotted on the figure
(7). It can be noted that the gap between the two VFRoe-ncv (Y, τ, U, P ) schemes
has increased. Even if the time step can be 3 times greater with the VFRoe-ncv
(Y, τ, U, P ) scheme with energy relaxation, one time-step costs less CPU-time. Hence
the VFRoe-ncv (Y, τ, U, P ) scheme with energy relaxation is a more efficient (see ap-
pendix 6.3 for a discussion on that point).

Remark. On the basis of theses remarks, the VFRoe-ncv (Y, τ, U, P ) schemes
seem to be the most appealing for industrial purposes. The VFRoe-ncv (Y, τ, U, P )
with energy relaxation has the great advantage to avoid the computation of e with
respect to (Y, τ, P ), which can be tricky and CPU-consuming when considering real
EOS. For complex EOS, the CPU-efficiency between the two schemes would thus
probably increase, in favour of the energy relaxation method.
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Figure 7: Computational efficiency of the different schemes: error (35) with respect
to the CPU time in seconds computed for the meshes N = {103, 5 103, 104, 5 104}.
The circles stand for Rusanov, the diamonds for VFRoe-ncv (Y, τ, U, P ), and the
crosses for VFRoe-ncv (Y, τ, U, P ) with energy relaxation.

4.2 Realistic test cases

4.3 Parameters for the EOS

Stiffened gas EOS (section 3.1) have been retained for each phase. The param-
eters γk, Cv,k, Πk and s0

k must be specified in order to obtain a satisfactory be-
haviour. We proceed by defining a reference point in the thermodynamical plane,
(P ref , T ref ), and by defining the EOS parameters that ensure the equilibrium of
the pressure, temperature and chemical potentials of each phase for the reference
point (P ref , T ref ). When some additional information is needed, as for example
the density at (P ref , T ref ), we use an industrial thermodynamical tool (tabulated
laws). It must be emphasised that the parameters s0

k are defined at the end of the
procedure: they allow to set the equilibrium of the chemical potentials. Indeed, the
other quantities do not depend on s0

k. Obviously, other methods can be proposed as
in [bar05, sau08, liu13].

In the following, all the quantities with a subscript ref are obtained with a ther-
modynamical tabulated EOS for (P ref , T ref ). The subscript m stands for mixture.
We are interested in almost single-phase liquid configurations. Hence we can assume
that the enthalpy hrefm and the density ρrefm are almost equal to the value of the en-
thalpy and the density of the liquid phase: hrefm ∼ hrefl and ρrefm ∼ ρrefl .

We intend to perform steam-liquid water simulations so that the vapour can be
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modelled by a perfect gas EOS and we thus impose Πv = 0. For the vapour, the
temperature law (22) and the definition of the phasic sound speed (19) are then:

(γv − 1)ρrefv Cv,vT
ref = P ref and ρrefv (crefv )2 = γvP

ref .

Hence, these equations allow to determine γv and Cv,v:

γv =
ρrefv (crefv )2

P ref
and Cv,v =

P ref

(γv − 1)ρrefv T ref

We now turn to the liquid phase. The phasic sound speed (19), the pressure law
(21) and the temperature law (22) give γl, Πl and Cv,l respectively:

γl = 1 +
(crefl )2

hrefm

Πl = ρrefm erefm (γl)−P ref
γl

Cv,l = erefm −Πl/ρ
ref
m

T ref

where erefm = hrefm − P ref/ρrefm . The parameters s0
k only play a role in the chemi-

cal potential, and then for the computation of the chemical potential equilibrium, in
which they appear as the difference (s0

v−s0
l ). We then set s0

l = 0 and we choose s0
v to

get small values of the equilibrium fractions (we recall that we have used ρrefm ∼ ρrefl ,
which holds for small fractions). This step is achieved using the equilibrium of the
chemical potentials together with the pressure-temperature equilibrium.

This procedure gives the parameters of the phasic EOS and the initial condition
of the computations. With the following choices:

P ref = 71.41 105 (Pa), T ref = 559.0 (K),

ρrefv = 37.0 (kg/m3), crefv = 490.0 (m/s),

hrefl = 1.3 106 (J/kg), ρrefl = 739.8 (kg/m3), crefl = 978.6 (m/s),

we get the parameters:

Cv,v = 2.3083917370268987 103 (J/kg/K), γv = 1.2542537313432836,
Πv = 0 (Pa), s0

v = −1.85 104 (J/kg/K),

Cv,l = 1.3391115339515329 103 (J/kg/K), γl = 1.7366599692307694,
Πl = 4.0046334099937820 108 (Pa), s0

l = 0 (J/kg/K),

and the equilibrium fractions:

αeq = 1.68370180282557914 10−4,
yeq = 5.01034544638372543 10−6,
zeq = 5.01093788583719112 10−6.

The temperature T ref = 559 (K) is close to the saturation temperature for the
pressure P ref .
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Figure 8: Sketch of the CSNI test case.

4.4 The heating pipe test case

This test case has been the object of the OECD/CSNI benchmark [csni80] and has
emerged from discussions in the CSNI working group on Emergency Core Cool-
ing of Water Reactors. It is representative of the cooling of the core of a nuclear
power plant and has thus been widely used as a reference test case for the code
THYC [lec89] in the 80’s. In the present test case, there are two differences with the
OECD/CSNI test case. We have our own EOS whereas in the benchmark a EOS is
provided. Moreover the heating scenario is different: the heating begins sooner and
the maximum of the heating is reached sooner. In fact, the scenario proposed in the
benchmark was longer to be sure to start the heating with a stationary state. In
our case, the initial condition already corresponds to a stationary state.

As depicted on figure (8), the domain is x ∈ [0, 7.316 m]. The heating is uniform
on the interval [2.690 m, 5.971 m] and it starts at t = 10−4 s. The power Φ increases
linearly from 0 to 1.4 106 W during 10−3 s. The term Φ represents the source term
of the total energy in system (3) and is explicitly integrated. The initial conditions
are those described in the previous section with the velocity:

U = 1.46845391999612396 (m/s).

We focus on long time simulations with the two VFRoe-ncv (Y, τ, U, P ) schemes. In-
deed, we are interested in the stationary state which is reached after a few seconds
on a coarse mesh, which corresponds to the industrial need. In fact we use here a
mesh containing 102 uniform cells.

The choice of the time scales λi is crucial but we lack of physical information
on their value. We thus choose arbitrarily all the time scales λi = 10−8 s. We
recall that, since the λi are constant, the numerical scheme for the integration of
the source terms is exact whatever the time step is.

The results are plotted for the time Tend = 5 s on figure (9) and the results
obtained at the outlet of the pipe are plotted with respect to the time on figure
(10). An offset can be observed for the fractions computed by the two schemes.
This offset is also quite important for the pressure and the velocity and almost
negligible for the density. The origin of the difference has not been clearly identified
but some hypothesis can be proposed. First, the inlet state is enforced without
considering local Riemann problem and outgoing waves. This method is rough and
a more subtle way of computing this inlet state should probably be tested, as the
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Figure 9: Numerical approximations
for the heating pipe test case at time
t = 5 s and for a mesh with 102 cells.
Plain line: VFRoe-ncv (Y, τ, U, P )
scheme with energy relaxation, dashed
line: VFRoe-ncv (Y, τ, U, P ) scheme
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Figure 10: Values at the outlet of the
pipe x = 7.316 m versus the time for
the heating pipe test case for a mesh
with 102 cells. Plain line: VFRoe-
ncv (Y, τ, U, P ) scheme with energy
relaxation, dashed line: VFRoe-ncv
(Y, τ, U, P ) scheme

classical one proposed in [aud13]. Secondly, considering the mesh size, the time step
for the VFRoe-ncv (Y, τ, U, P ) has the same order of magnitude as λi, whereas for
the VFRoe-ncv (Y, τ, U, P ) scheme with energy relaxation it is much larger than λi.
This probably leads to a different (de)coupling of the convection and source effects
through the fractional step method.

When focusing on this test case, and using the same CFL constraint of 0.45, the
time step for the VFRoe-ncv (Y, τ, U, P ) scheme with energy relaxation is 30 times
greater than the time step for the VFRoe-ncv (Y, τ, U, P ). An obvious consequence
is that the total CPU time for the simulation is considerably shorter. We insist
that this gain strongly depends on the test case and on the EOS parameters (see
appendix 6.3 for some details). It is due to the complex EOS for the mixture and
to the relaxation terms. Indeed, when considering a convective case without source
terms, it can be recovered that the VFRoe-ncv (Y, τ, U, P ) scheme with energy re-
laxation has a smaller time-step than the VFRoe-ncv (Y, τ, U, P ) scheme.

With a more physical point of view, the heating of the steam-water mixture leads
to steam creation (the fractions increase). The quantity of steam that is generated
remains small. This is probably due to the phasic stiffened gas EOS which may be
too simple in this test case. Some stable oscillations can be observed on the velocity
at the beginning of the simulation (10), during the transient heating period. They
are probably due to the interaction of waves coming upstream from the heating zone
with the boundary conditions that are too rough. The amplitude of these oscilla-
tions is smaller for the VFRoe-ncv (Y, τ, U, P ) scheme with energy relaxation.

International Journal on Finite Volumes 26



Simulation of two-phase flows

5 Conclusion

In the present paper, a complete scheme has been proposed to perform two-phase
flow simulations. The underlying model [bar05,hel06] takes into account the pres-
sure, temperature and chemical potential disequilibria. Some interesting features
have been exhibited.

• The source terms can be accounted for using an exact integration when con-
sidering constant relaxation time scales λi. This is an important feature since
this allows to handle all the ratios λi/∆t, from λi/∆t� 1 (i.e. almost instan-
taneous relaxation) to λi/∆t � 1 (i.e. almost negligible relaxation effects).
When the time scales are not constant (i.e. when they depend on the frac-
tions), an exact integration is not always possible and the scheme proposed
here gives a first-order approximation of the solution.

• Concerning the convection part of the model, the results obtained with four ex-
isting schemes have been compared. The two-phase flow model has a complex
non-linear EOS and the following remarks can be made.

– For VFRoe-ncv schemes, the results confirm that the choice of the set of
variables (Y, τ, U, P ) must be prefered to the variables (Y, τ, U, e), espe-
cially on coarse meshes.

– For complex EOS, the VFRoe-ncv scheme with energy relaxation can
be more efficient that the VFRoe-ncv scheme. In particular, the former
avoids to compute complex variable changes that can be expensive in
terms of CPU-time. Nevertheless, the overall gain in CPU-time is difficult
to foresee and it strongly depends on the test case, on the mesh size and
on the EOS parameters.
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Figure 11: Sketch of the Riemann
problem, with a (U−c) ghost-wave and
a (U + c)-shock.
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Figure 12: The analytical solution
plotted at t = 0.001 s for the first Rie-
mann problem (13).

6 Appendix

6.1 Analytical solutions for the convection system

We consider here the convective part of the system (3) and we propose to construct
an analytical solution of the system for a Riemann problem [god96]. We use a classi-
cal technique which consists in choosing the left state, and to define the intermediate
states from the left state to the right state. For the sake of simplicity in expression
of the solution, we only consider a contact discontinuity and a (U + c)-shock. It
should be noticed that even if the (U − c)-wave is a ghost-wave it leads to a severe
test case.

Let us note Z = (Y, ρ, U, P ). As depicted in figure (11), ZL and ZR denote the left
and the right states, Z1 and Z2 are the intermediate states. Since the (U − c)-wave
is a ghost-wave, we obviously have Z1 = ZL. Through the contact discontinuity the
velocity and the pressure are constant: P2 = P1 and U1 = U2, and we must specify
Y2 and ρ2. In order to define ZR from Z2 we use the Rankine-Hugoniot relations:

−σ[ρY ] + [ρUY ] = 0

−σ[ρ] + [ρU ] = 0

−σ[ρU ] + [ρU2 + P ] = 0

−σ[ρE] + [ρUE + UP ] = 0

(36)

where σ stands for the velocity of the shock and [φ] = φR − φ2. We have omitted
the jump relations for the fractions since they are obvious and lead to YR = Y2. The
system (36) yields one degree of freedom, and we choose to specify ρR. The system
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(36) can be written: 

[Y ] = 0

J2 = − [P ]

[τ ]

J = − [P ]

[U ]

[e] + [τ ]
PR + P2

2
= 0

(37)

with J = ρ(U − σ), which thanks to the mass equation is such that [J ] = 0. For a
shock wave, J is negative. Since we have chosen to specify ρR the third equation of
(37) is a resolvant equation for PR:

e(YR, τR, PR)− e(Y2, τ2, P2) + (τR − τ2)
PR + P2

2
= 0 (38)

In our particular case, the EOS for the internal energy leads to a non-linear equa-
tion for (38) and it must be solved using some classical numerical algorithm (New-
ton, Quasi-Newton, dichotomy, etc ...). Once PR is computed, σ and UR are ob-
tained through relations (37). The first equation of (37) gives J , and then the
second equation of (37) gives UR. The velocity σ is obtained by the relation
J = ρR(UR − σ)(= ρ2(U2 − σ)).

We apply the previous procedure with the following thermodynamical parame-
ters:

Cv,v = 2.0, γv = 1.5, Πv = 1500, Cv,l = 1.0, γl = 1.4, Πl = 1000,

and we obtain the states gathered in table (13) (the values in red are those specified,
and the values in blue are those that have been computed). The velocity of the
(U + c)-shock is then equal to σ = 53.4429721063797913 (m/s). The solution is
plotted on the figure (12) at time 0.001 s.

ZL(= Z1) Z2 ZR
α 0.1 0.8 0.8

y 0.1 0.7 0.7

z 0.1 0.6 0.6

τ 1.0 0.05 0.1

U -5.0 -5.0 -63.4429721063797771

P 105 105 31688.3802274582995

Figure 13: States for the first Riemann problem, the values in red are those specified
and the values in blue are those that have been computed from the red values.

When applying the previous procedure with the thermodynamical parameters
of the section 4.3 we obtain the states gathered in the table (14) (the values in red
are those specified, and the values in blue are those that have been computed). The
velocity of the (U + c)-shock is then equal to σ = 965.891668252039835 (m/s). The
solution is plotted on the figure (16) at time 7.3 10−5 s.
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ZL(= Z1) Z2 ZR
α 1.68370180282557914 10−4 1.7 10−3 1.7 10−3

y 5.01034544638366529 10−6 5.1 10−5 5.1 10−5

z 5.01093788583713013 10−6 5.1 10−5 5.1 10−5

τ 1.35300183074677709 10−3 1.34228187919463080 10−3 1.35501355013550135 10−3

U -2.0 -2.0 -11.1805442788134375

P 7141636.39642549586 7141636.39642549586 521736.019901064807

Figure 14: States for the Riemann problem with the EOS parameters of the section
4.3, the values in red are those specified and the values in blue are those that have
been computed from the red values.
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Figure 15: Sketch of the Riemann
problem, with a (U−c) ghost-wave and
a (U + c)-shock.
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Figure 16: The analytical solution
plotted at t = 7.3 10−5 s for the second
Riemann problem (14) with the EOS
parameters of the section 4.3.

6.2 The vanishing of the energy fraction with stiffened gas EOS

Let us consider two stiffened gas EOS. We now express the pressure and temperature
equilibria with definitions (21) and (22):{ z

α
e
τ (γl − 1)−Πlγl = 1−z

1−α
e
τ (γv − 1)−Πvγv

z
y
e−Πl

α
y
τ

Cv,l
=

1−z
1−y e−Πv

1−α
1−y τ

Cv,v
.

We now assume that the energy fraction z is equal to zero but that the volume
fraction is not null: z = 0 and 0 < α < 1. The pressure and temperature equilibria
respectively lead to: {

e
τ = (1− α)Πv − Cv,v

Cv,l
Πl

(1−y)α
y .

e
τ = (Πvγv−Πlγl)(1−α)

γv−1 .
(39)

Hence, the pressure-temperature equilibrium is possible if the two left hand side
terms of (39) are equal. This equality is equivalent to defining a mass fraction y
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such that:

y =
1

1 +A
, with A =

Cv,l
Cv,v

Πl −Πv

Πl

1− α
γv − 1

. (40)

Hence, if the parameters Πk are such that Πl − Πv > 0, A is also positive and the
fraction y defined by the pressure-temperature equilibrium (40) is defined in ]0, 1[.
Moreover, the potential equilibrium can be ensured through the adequate choice of
the parameters s0

k without modifying (40).

As a consequence, when considering stiffened gas EOS and depending on the
choice of the values of the parameters, it is possible to get the equilibrium fractions
Y eq such that αeq and yeq are in ]0, 1[ and zeq = 0. Further explanations can be
found in [jun13].

6.3 Influence of the test case and of the EOS parameters on the
time steps

For stiffened gas EOS (see section 3.1), we can exhibit explicitely the two quantites:

Γ1 = 1 + τ
∂

∂e
(P ) and Γ2 = − τ

P

∂

∂τ
(P ) + τ

∂

∂e
(P ) ,

that appear in the VFRoe-ncv scheme with energy relaxation presented in section
3.2.3. Focusing on the pressure and temperature formula (13) we have:

1

T

∂

∂τ
(P ) =

αvΠv(αvPv − zvP )

yvCv,vT 2
v

+
αlΠl(αlPl − zlP )

ylCv,lT
2
l

− zvev(γv − 1)

τ2
vTv

− zlel(γl − 1)

τ2
l Tl

and

1

T

∂

∂e
(P ) =

zv(zvP − αvPv)
yvCv,vT 2

v

+
zl(zlP − αlPl)
ylCv,lT

2
l

+
zv(γv − 1)

τvTv
+
zl(γl − 1)

τlTl
.

These expressions are very complex and it is very difficult to predict the behaviour
of Γ1 and Γ2 for a given test case. These parameters are used to choose the time
step for the VFRoe-ncv scheme with energy relaxation. Numerical simulations have
shown different behaviours depending on the test case and on the EOS parameters.
In fact, the mixture EOS is very complex and non-linear. The sound of speed c
for the mixture strongly depends on the fractions, especially for small fractions for
which the derivative of c with respect to the fractions is huge. It has a U-shape and
the mixture sound of speed can be less that the sound of speed in each pure phase.
It can explain some of the descrepancies observed for the time steps computed for
the schemes VFRoe with or without energy relaxation.

The test cases of sections 4.1.1 and 4.1.2 are pure convection problems. In such
cases, the time-step of the VFRoe scheme is 3 times greater than the time step of
the VFRoe scheme with energy relaxation. In other words, for these cases the wave
speeds computed for the VFRoe scheme with energy relaxation bound the wave
speeds computed for the VFRoe scheme. The difference of efficiency is then mainly
due to the computation of the thermodynamical quantities that is more expensive
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for the VFRoe scheme without relaxation. This is more sensitive with the stiff EOS
of section 4.1.2 than with the parameters of section 4.1.1.

When turning to test cases involving source terms, as the test case of section
4.1.2, results may become different. In such test cases the interaction between source
terms and convection can lead to important differences in the computed fractions,
especially on coarse meshes. Due to the dependence of the celerity on the fractions
and its U-shape, the computed time steps may become different for the two schemes.
For the test case of section 4.1.2 the time-step for the VFRoe scheme is 30 times
smaller than that computed for the VFRoe scheme with energy relaxation. The
same test case has been examined for a different set of EOS parameters:

Cv,v = 2632.943644231272 (J/kg/K), γv = 1.12985176056338,
Πv = 0 (Pa), s0

v = −24952.69807920495 (J/kg/K),

Cv,l = 85.54318061310099 (J/kg/K), γl = 5.0,
Πl = 1.345950717616000 108 (Pa), s0

l = 10000 (J/kg/K),

and with the initial fractions:

αv = 0.05,
y = 0.00263245655737121,
z = 0.016644487003907305.

The time step computed with the VFRoe scheme is then only 4 times smaller than
the time-step computed for the VFRoe scheme with energy relaxation.

6.4 Concavity of the mixture entropy

In this section we investigate the concavity of the mixute entropy (12). A less
computational demonstration can be found in [jun13]. We assume that each phasic
entropy sk is strictly concave. Thus the Hessian s′′k of sk with respect to τk and ek
is symmetric definite strictly negative at any point (τk, ek):

∀(τk, ek) > 0, ∀(x1, x2) 6= (0, 0), (x1, x2).s′′k(τk, ek).(x1, x2)> < 0. (41)

Hence we have for (x1, x2) 6= (0, 0):

(x1, x2).s′′k(τk, ek).(x1, x2)> = x2
1

∂2 (sk)

∂τk∂τk
+ 2x1x2

∂2 (sk)

∂τk∂ek
+ x2

2

∂2 (sk)

∂ek∂ek
< 0.

Let us define sk(α, y, z, τ, e) = yksk(
αkτ
yk
, zkeyk ) and s′′k the Hessian of sk with respect to

(α, y, z, τ, e). It can be shown after some calculus that for any X = (x1, x2, x3, x4, x5)
we have:

X.s′′k(α, y, z, τ, e).X
> = X2

a,k

∂2 (sk)

∂τk∂τk
+ 2Xa,kXb,k

∂2 (sk)

∂τk∂ek
+X2

b,k

∂2 (sk)

∂ek∂ek
+ ξk

(
2x1x4

Pk
Tk

+ 2x3x5
1
Tk

)
,

(42)
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with ξl = 1, ξv = −1, and

Xa,l =
√
y
(
τl
αx1 − τl

y x2 + α
y x4

)
,

Xb,l =
√
y
(
− el
y x2 + el

z x3 + z
yx5

)
,

Xa,v =
√

(1− y)
(
− τv

1−αx1 + τv
1−yx2 + 1−α

1−y x4

)
,

Xb,v =
√

(1− y)
(

ev
1−yx2 − ev

1−zx3 + 1−z
1−yx5

)
.

(43)

We denote by Hk(X) the quadratic part of X.s′′k.X
> at (α, y, z, τ, e):

Hk(X) = X2
a,k

∂2 (sk)

∂τk∂τk
+ 2Xa,kXb,k

∂2 (sk)

∂τk∂ek
+X2

b,k

∂2 (sk)

∂ek∂ek

Since s = sl + sv, the Hessian s′′ of s with respect to (α, y, z, τ, e) is s′′ = s′′l + s′′v .
Thus, thanks to the concavity of the phasic entropies sk (41) we have:

∀(α, y, z, τ, e) ∈]0, 1[3×R+, ∀X /∈ D(α,y,z,τ,e), Hl(X) +Hv(X) < 0.

The degeneracy manifold D(α,y,z,τ,e) at the point (α, y, z, τ, e) ∈]0, 1[3×R+ is the set
of X = (x1, x2, x3, x4, x5) such that X 6= 0 and such that Xa,l = Xb,l = Xa,v =
Xb,v = 0, which gives:

x2 = x1
y(1−y)
α(1−α) ,

x3 = x1
z(1−z)
α(1−α) ,

x4 = x1τ
α−y

α(1−α) ,

x5 = x1e
z−y

α(1−α) .

(44)

using (43). The concavity of the mixture entropy s with respect to the whole vari-
able (α, y, z, τ, e) is thus not easy to investigate.

If we define the function (τ, e) → ν(α,y,z)(τ, e) = s(α, y, z, τ, e), then for any
Z = (x1, x2) 6= (0, 0), the Hessian ν ′′(α,y,z) of ν(α,y,z) is such that:

Z.ν ′′(α,y,z)(τ, e).Z
> =

∑
k=l,v

(
Z2
a,k

∂2 (sk)

∂τk∂τk
+ 2Za,kZb,k

∂2 (sk)

∂τk∂ek
+ Z2

b,k

∂2 (sk)

∂ek∂ek

)
,

(45)
with

Za,l = α√
yx4, Zb,l = z√

yx5, Za,v = 1−α√
(1−y)

x4, Zb,v = 1−z√
(1−y)

x5. (46)

It can be noted that the degeneracy manifold associated to ν ′′(α,y,z) is thus empty.

Thanks to (41) this implies that the function ν(α,y,z) is strictly concave.

We now focus on the definition of the equilibrium fractions (9). Let us define
the function (α, y, z)→ η(τ,e)(α, y, z) = s(α, y, z, τ, e). It can be shown that for any
V = (v1, v2, v3) the Hessian η′′(τ,e) of η(τ,e) satisfies:

V.η′′(τ,e)(α, y, z).V
> =

∑
k=l,v

(
V 2
a,k

∂2 (sk)

∂τk∂τk
+ 2Va,kVb,k

∂2 (sk)

∂τk∂ek
+ V 2

b,k

∂2 (sk)

∂ek∂ek

)
,

(47)
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with
Va,l =

√
y
(
τl
α v1 − τl

y v2

)
,

Vb,l =
√
y
(
− el
y v2 + el

z v3

)
,

Va,v =
√

(1− y)
(
− τv

1−αv1 + τv
1−yv2

)
,

Vb,v =
√

(1− y)
(

ev
1−yv2 − ev

1−zv3

)
.

(48)

Thus, thanks to the concavity of the phasic entropies sk (41) we have:

∀(α, y, z) ∈]0, 1[3, ∀V /∈ D′(α,y,z), V.η′′(τ,e)(α, y, z).V
> < 0.

The degeneracy manifold D′(α,y,z) at the point (α, y, z) ∈]0, 1[3 is the set of V =

(v1, v2, v3) such that V 6= 0 and such that Va,l = Vb,l = Va,v = Vb,v = 0, which using
(48) gives:

v1 = v2 = v3 and α = y = z.

As a consequence, if the three fractions are not equal D′(α,y,z) is empty; and when

α = y = z the degeneracy manifold is D′(α,y,z) = {v 6= 0, v(1, 1, 1)}. The latter

situation may lead to the non-uniqueness of the equilibrium fraction (9) if D′(α,y,z) is
not empty when the gradient of η(τ,e) vanishes. If we assume that αeq = yeq = zeq,
we have el = ev = e, τl = τv = τ and relations (14), (15) and (16) give the system:


Tl(τ, e) = Tv(τ, e),
Pl(τ, e) = Pv(τ, e),
µl(τ, e) = µv(τ, e),

⇔


∂

∂τl
(sl) (τ, e) =

∂

∂τv
(sv) (τ, e),

∂

∂el
(sl) (τ, e) =

∂

∂ev
(sv) (τ, e),

sl(τ, e) = sv(τ, e).

(49)

Hence system (49) has no solution if there does not exist a point (τ, e) such that the
two phasic entropies and their derivative coincide. Eventually, if (49) has no solution
the degeneracy manifold D′(α,y,z) is empty when the gradient of η(τ,e) vanishes. Since

the function η(τ,e) is concave with respect to (α, y, z), it implies that η(τ,e) is strictly
concave when the gradient of η(τ,e) vanishes. In such a case, the equilibrium fraction
(9) is thus unique.
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[mas99] Masella J.-M., Faille I., Gallouët T., (1999), “On an approximate Godunov
scheme”. Int. J. of Comp. Fluid Dynamics, Vol. 12 pp. 133–149.
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