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[1] Evaluating the representation of processes controlling tropical and subtropical
tropospheric relative humidity (RH) in atmospheric general circulation models (GCMs) is
crucial to assess the credibility of predicted climate changes. GCMs have long exhibited
a moist bias in the tropical and subtropical mid and upper troposphere, which could
be due to the mis-representation of cloud processes or of the large-scale circulation, or
to excessive diffusion during water vapor transport. The goal of this study is to use
observations of the water vapor isotopic ratio to understand the cause of this bias. We
compare the three-dimensional distribution of the water vapor isotopic ratio measured
from space and ground to that simulated by several versions of the isotopic GCM LMDZ.
We show that the combined evaluation of RH and of the water vapor isotopic composition
makes it possible to discriminate the most likely cause of RH biases. Models characterized
either by an excessive vertical diffusion, an excessive convective detrainment or an
underestimated in situ cloud condensation will all produce a moist bias in the free
troposphere. However, only an excessive vertical diffusion can lead to a reversed
seasonality of the free tropospheric isotopic composition in the subtropics compared to
observations. Comparing seven isotopic GCMs suggests that the moist bias found in many
GCMs in the mid and upper troposphere most frequently results from an excessive
diffusion during vertical water vapor transport. This study demonstrates the added value
of water vapor isotopic measurements for interpreting shortcomings in the simulation of
RH by climate models.

Citation: Risi, C., et al. (2012), Process-evaluation of tropospheric humidity simulated by general circulation models using water
vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics
and subtropics, J. Geophys. Res., 117, D05304, doi:10.1029/2011JD016623.

1. Introduction

[2] Despite continuous improvements in climate models,
uncertainties in the predicted amplitude of climate change
and in the magnitude of underlying feedbacks remain high
[Randall et al., 2007]. Because the water vapor feedback
constitutes one of the largest positive feedbacks in climate
models [Soden and Held, 2006], assessing the credibility of
predicted relative humidity (RH) changes by atmospheric
general circulation models (GCMs) is crucial. In addition,
RH strongly impacts the formation of cirrus clouds [Luo
and Rossow, 2004], boundary layer clouds [Slingo, 1980;
Wetzel et al., 1996; Betts, 2000] and deep convective clouds
[Redelsperger et al., 2002; Derbyshire et al., 2004]. Pre-
dicting the correct regional changes in RH is thus crucial
for a correct prediction of cloud feedbacks, which are still
among the largest sources of spread in climate change pro-
jections [Bony and Dufresne, 2005; Bony et al., 2006].
Therefore, the credibility of simulated climate change depends

1Department of Atmospheric and Oceanic Sciences, and Cooperative
Institute for Research in Environmental Sciences, University of Colorado
at Boulder, Boulder, Colorado, USA.

2LMD/IPSL, CNRS, Paris, France.
3Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California, USA.
4Institute for Meteorology and Climate Research, Karlsruhe Institute of

Technology, Karlsruhe, Germany.
5Instituto de Astrofísica de Andalucía, Granada, Spain.
6Department of Physics, University of Toronto, Toronto, Ontario,

Canada.
7Department of Chemistry, University of York, York, UK.
8CIAI, Agencia Estatal de Meteorología, Santa Cruz de Tenerife, Spain.
9Korea Polar Research Institute, Incheon, South Korea.
10Department of Geology and Geochemistry, Stockholm University,

Stockholm, Sweden.

Copyright 2012 by the American Geophysical Union.
0148-0227/12/2011JD016623

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D05304, doi:10.1029/2011JD016623, 2012

D05304 1 of 25

http://dx.doi.org/10.1029/2011JD016623


on the ability of atmospheric models to correctly simulate
the processes that control RH, although no evidence has
been shown so far for a systematic relationship between the
behavior of models at present and in the future [John and
Soden, 2007].
[3] Most GCMs exhibit a moist bias in the mid to upper

tropical and subtropical troposphere compared to a wide
range of data sets [Soden and Bretherton, 1994; Salathe and
Chester, 1995; Chen et al., 1996; Roca et al., 1997; Chen
et al., 1998; Allan et al., 2003; Brogniez et al., 2005; Pierce
et al., 2006; John and Soden, 2007; Sherwood et al., 2010;
Chung et al., 2011]. Some of these studies suggest this
problem can arise from the parameterization of deep con-
vection [Chen et al., 1996, 1998], others suggest it could be
related to an underestimated upper tropospheric large-scale
circulation [Chung et al., 2011]. This problem has persisted
for more than a decade and questions the capacity of GCMs
to accurately represent processes controlling RH. The trop-
ical and subtropical tropospheric RH results from a subtle
balance between different processes, among which are large-
scale radiative subsidence [e.g., Sherwood, 1996; Schneider
et al., 2006; Folkins and Martin, 2005], detrainment of
condensate from convective clouds and its subsequent
evaporation [e.g., Wright et al., 2009], evaporation of the
falling precipitation [e.g., Folkins and Martin, 2005] or lat-
eral mixing [e.g., Zhang et al., 2003]. Therefore, the repre-
sentation of many processes may potentially contribute to
the moist bias. Measurements of humidity alone are not
sufficient to diagnose which of this processes are the most
likely candidates.
[4] The water vapor stable isotopic composition is

affected by fractionation during phase changes. Measure-
ments of water vapor isotopologues therefore provide com-
plementary information on the water budget when combined

with humidity because they record the integrated history of
phase changes within a given air mass [Dansgaard, 1964].
In a companion paper [Risi et al., 2012] (hereafter P1), we
have analyzed various data sets (4 satellite, 16 ground-based
remote-sensing, 5 surface in situ and 3 aircraft) to document
the three-dimensional distribution of the tropospheric water
vapor composition and to derive robust characteristics that
could be used to evaluate models. For example, we have
identified that the dD seasonality in the subtropics and mid
latitudes (with higher dD in summer) was a robust charac-
teristic across all data sets and at all tropospheric levels. We
have used these data sets to evaluate the isotopic GCM
LMDZ and have identified some biases that are robust
compared to all data sets, such as the underestimated sea-
sonality in the subtropics. In addition, we have compared
7 GCMs from the SWING2 (Stable Water INtercomparison
Group phase) project, and have shown large discrepancies
between models regarding important features of the isotopic
distribution: meridional gradient, seasonality, and spatial
contrasts in the tropics. This suggests that water vapor iso-
topic measurements could be used to efficiently discriminate
models regarding their representation of the processes con-
trolling RH. Further, we have shown that differences in
isotopic behavior are not obviously linked to differences in
simulated humidity, confirming that water vapor isotopic
composition provides additional information compared to
humidity measurements. The goal of this paper is thus to
exploit the information provided by the combination of
water vapor isotopic measurements, to understand the cause
of the moist bias in GCMs.
[5] To do so, the approach is illustrated in Figure 1. First,

with the isotopic GCM LMDZ, we perform different sensi-
tivity tests that exhibit a moist bias for different causes.
From these simulations, we investigate how the different

Figure 1. Strategy for developing, testing and applying diagnostics based on the isotopic ratio to identify
the cause of the moist bias in models. Rectangles describe the different steps of the strategy used in this
paper, and circles explain the tools used at different steps.
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processes impact the isotopic composition, and how it hurts
the agreement with isotopic data sets. This allows us to
identify a discriminating diagnostic for the cause of the
moist bias that is robust across data sets. Second, we further
check the robustness of this diagnostic by creating a theo-
retical framework to understand the link between the moist
bias and isotopic behavior. The framework is used to show
that this link can be explained based on simple processes that
are represented in all models. We also use additional sensi-
tivity tests to show that the diagnostic does not crucially
depend on the model physics. Third, once we have accu-
mulated confidence in the robustness of the diagnostic,
we apply it to six other GCMs from the SWING2 project to
determine the most frequent cause of the moist bias in
models.
[6] We present the LMDZ GCM, the isotopic data sets and

the SWING2 database in section 2. We describe the theo-
retical framework used to interpret the sensitivity tests in
section 3. In section 4, we present the sensitivity tests and
their impact on RH in section 4. In section 5, we describe the
impact of the tests on the water vapor isotopic composition
and compare the simulations with the isotopic data. In
section 6 we further check its robustness and apply it to
SWING2 models. We conclude and propose perspectives for
future work in section 7.

2. General Circulation Models and Data Sets

2.1. The LMDZ4 Model and Control Simulation

[7] LMDZ4 (Laboratoire de Météorologie Dynamique-
Zoom) [Hourdin et al., 2006] is the atmospheric component
of the Institut Pierre-Simon Laplace coupled model: IPSL-
CM4 [Marti et al., 2005] used in CMIP3 (Coupled Model
Intercomparison Project) [Meehl et al., 2007] and IPSL-
CM5A (J.-L. Dufresne et al., Climate change projections
using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, submitted to Climate Dynamics, 2012) used in
CMIP5. It is used with a resolution of 2.5° in latitude, 3.75°
in longitude and 19 vertical levels. The physical package
includes the Emanuel convective scheme [Emanuel, 1991;
Emanuel and Zivkovic-Rothman, 1999], which represents
convective systems as an adiabatic updraft, an ensemble of
mixed updrafts and downdrafts, and an unsaturated down-
draft driven by rain reevaporation. A particular focus had
been placed on the parameterization and optimization of
microphysical processes, such as the precipitation efficiency
�p representing the proportion of condensate that is con-
verted to precipitation [Emanuel and Zivkovic-Rothman,
1999]. Large-scale condensation is represented by a statis-
tical cloud scheme based on the sub-grid-scale distribution
of water vapor [Bony and Emanuel, 2001]. Water vapor and
condensate are advected using a second order monotonic
finite volume advection scheme [Van Leer, 1977; Hourdin
and Armengaud, 1999]. The isotopic version of LMDZ is
described in detail by Risi et al. [2010b].
[8] LMDZ is forced by observed sea surface temperatures

(SST) and sea ice following the AMIP (Atmospheric Model
Inter-comparison Project) protocol [Gates, 1992] from 1978
to 2009. The year 2010 is forced by NCEP (National Center
for Environmental Prediction) SSTs [Kalnay et al., 1996]
because the AMIP SSTs were not yet available. To facilitate

the comparison between simulations and observations on
a daily basis, horizontal winds at each vertical level are
nudged by ECMWF reanalyses [Uppala et al., 2005] with a
relaxation time scale of 1h as in work by Risi et al. [2010b].
This nudging procedure has been shown to enable the model
to capture the daily weather and isotopic variability well
[Risi et al., 2010b; Vimeux et al., 2011; Gao et al., 2010].
For example, in summer 2006 in average over the tropics,
the daily correlation at each grid point for the large-scale
vertical velocity at 500 hPa is 0.45 between the ECMWF
reanalyses and the nudged simulation, compared to only
0.006 between the ECMWF reanalyses and the free-running
simulation.

2.2. Data Sets and Comparison Methodology

[9] We focus on evaluating the HDO/H2O ratio as quan-
tified by the variable dD in‰: dD = ( R

RSMOW
�1) � 1000, where

R is the HDO/H2O ratio of the water vapor and RSMOW is the
Vienna Standard Mean Ocean Water (VSMOW) isotopic
ratio [Craig, 1961]. To evaluate the simulated three-dimen-
sional water vapor dD distribution from the surface up to the
upper-troposphere, we combine various data sets that sample
different parts of the atmosphere. We use several satellite
data sets, which provide a global coverage: SCIAMACHY
(a short-wave infra-red spectrometer) mainly sensitive to
the lower troposphere, TES (a nadir-viewing thermal infra-
red spectrometer) which is mainly sensitive to the mid-
troposphere, and ACE-FTS (an infrared solar-occultation
instrument) and MIPAS (a limb infrared sounder) which are
sensitive in the upper troposphere and above. In addition,
we use ground-based remote-sensing (Fourier Transform
Infrared) data sets derived from mid-infrared (NDACC, for
which water isotopologue retrievals are performed in the
framework of the projectMUSICA) or near-infrared (TCCON)
solar absorption spectra, and in situ measurements made at
the surface and by aircraft. These data sets are listed in
Table 1 and described in detail in section 3 of P1. Here we
use observations made at lower latitudes (45°N–45°S).
[10] The different data sets show significant differences in

their absolute dD values, meridional gradients and seasonal
amplitudes (section 4.1 of P1), due to the effects of spatio-
temporal sampling, instrument sensitivity and measurement
errors (section 4.2 of P1). Since remote-sensing data has
limited calibration and validation, we will focus the analysis
on spatial and temporal variations. It is possible that those
variations themselves may be in error, but the use of multiple
data sets helps ensure that we draw only conclusions that are
robustly supported.
[11] We follow a model-to-satellite approach to estimate

what the instruments would observe if operated in the
model. First, to take into account the spatiotemporal sam-
pling of the data, we collocate the model output with the data
at the daily scale. Second, to take into account the sensitiv-
ities of the different remote-sensing instruments to the true
state, we apply averaging kernels to model output. Averag-
ing kernels define the sensitivity of the retrieval at each level
to the true state at each level. In P1, the model-data com-
parison methodology for each data set is extensively
explained (section 3, Appendix C) and sources of model-
data differences are quantified (section 5.1). We will focus
the analysis on signals that are larger than these potential
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source of errors (i.e. larger than 10 or 20‰) and that are
robust across data sets.

2.3. SWING2 Models

[12] We compare seven simulations by six other GCMs
participating in the SWING2 inter-comparison project
(http://people.su.se/�cstur/SWING2/). Some of them are

nudged by reanalyses, some of them are not (i.e. they are
free-running) (Table 2). The LMDZ control simulations is
one of the SWING2 simulations and has been rigorously
compared with each data set through collocation with the
data (see P1). Since daily values are not available in the
SWING2 archive, it is not possible to collocate other model
outputs with the data. Therefore, we use the LMDZ control

Table 1. The Different Data Sets of Water Vapor Isotopic Composition Used for Model-Data Comparisona

Data Set or Network Reference Level
Spatial Coverage or
Location; Footprint Period Precision

Comparison
Methodology

Satellite Measurement
SCIAMACHY Frankenberg et al. [2009] total column,

mainly sensitive
in the boundary layer

global; footprint
120 � 20 km

2003–2005 40‰–100‰,
reduced by
averaging

collocation

TES Worden et al. [2007] 600 hPa global; footprint
5.3 � 8.5 km

2004–2008 about 40‰,
reduced

by averaging

collocation,
application
of kernels

ACE Nassar et al. [2007] down to 500 hPa global, but small
number of

measurements;
limb measurement

2003–2008 about 50‰,
reduced

by averaging

collocation,
smoothing

MIPAS Steinwagner et al. [2010] down to 300 hPa global; limb
measurement

September 2002–
March 2004

about 50‰,
reduced

by averaging

collocation,
application
of kernels

Ground-Based Remote-Sensing
TCCON network Wunch et al. [2010] total column 8 stations:

Lauder,
Wollongong,

Darwin,
Park Falls,
Pasadena,
Lamont,

Bremen and
Ny Alesund

between 1.5
and 6 years

between 5
and 35‰

collocation,
application
of kernels

NDACC network Schneider et al. [2010] total column
and profiles
up to 10 km

8 stations:
Arrival Heights,

Lauder,
Wollongong,

Izaña,
Jungfraujoch,
Karlsruhe,
Kiruna and
Eureka

between 0.5
and 13 years

5‰ for total
column

and 10–25‰
for profiles

collocation,
application
of kernels

Ground-Based in Situ
GNIP-vapor network
of monthly samples

IAEA web site surface 3 stations:
Vienna,

Ankara, Manaus

between 2
and 13 years

undocumented collocation

Isolated data sets
of daily samples

Angert et al. [2008];
Risi et al. [2010b]

surface 2 stations: Rehovot
and Saclay

daily samples
during 1 to 2 years

1‰ collocation

Picarro in Hawaii Johnson et al. [2011] surface at 680 hPa Hawaii 3 weeks 5 to 10‰ collocation
Southern Ocean
surface samples

Uemura et al. [2008] surface Southern Ocean 1 month 1‰ collocation

Aircraft
Flights in the 60s Ehhalt et al. [2005] profiles between

1.5 km and 9.2 km
3 sites in the
United States:
Nebraska,

Santa Barbara
and the

Death Valley

a few isolated days 1‰ collocation

CR-AVE and TC4
campaigns

Sayres et al. [2010] profiles between
475 hPa and 64 hPa

near Costa-Rica 1 week in
winter 2006,
10 days in

summer 2007

17‰ for ICOS and
50‰ for Hoxotope

collocation

aWe detail the levels at which the measurements are performed or are the most sensitive, the location for ground-based data sets, the footprint for satellite
data sets, the period over which we use the measurements, the precision specified in the reference papers or calculated in Appendix B of P1, and the
methodology that we use for model-data comparison.
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simulation as a reference against which we compare the
SWING2 models’ monthly outputs.

3. Theoretical Framework to Understand
Processes Controlling Humidity and Isotopic
Composition

[13] We develop a simple single-column theoretical
framework to understand the sensitivity tests with the
LMDZ GCM. Given its simplicity, we aim to provide
qualitative insights into the main effects on humidity and
water vapor isotopic composition of the different micro-
physical and macro-physical processes tested in the experi-
ments, rather than to make quantitative predictions.

3.1. Principle

[14] The theoretical framework components and notations
are illustrated in Figure 2a. It is inspired by the last satura-
tion theory as explained by Sherwood [1996]. Sherwood
[1996] sets RH to a given value near saturation in convec-
tive regions, leading to a fixed profile of specific humidity
(q) in convective regions. Specific humidity is then con-
served in the air masses that leave the convective regions
and slowly subside, leading to a decrease in RH. This
framework is also consistent with the simple single-column
model of Folkins and Martin [2005] in which the tropical
mid and upper troposphere is moistened by convective
clouds detrainment and dried by radiative subsidence outside

the clouds. Here we extend these previous frameworks in
two ways. First, we calculate the water vapor isotopic
composition in addition to the humidity. Second, we take
into account additional processes that are crucial for the
water budget of GCMs, such as cloud microphysics, water
vapor transport at the large-scale and the associated
diffusion.
[15] In the real world in convective regions, ascent is

concentrated in convective cores and cloud-free regions are
subsident [Emanuel et al., 1994], and this was the basis for
frameworks such as that of Folkins and Martin [2005]. In
GCMs however, water vapor transport by large-scale ascent
is resolved by the large-scale advection scheme. The large-
scale upward transport of water vapor is partly compensated
(and sometimes over-compensated) by the compensating
subsidence in the convection scheme [Arakawa and Shubert,
1974]. The proportion of the total upward water vapor
transport that is treated by the large-scale advection scheme
or by the convection scheme are somewhat arbitrary and
model-dependent, but it impacts the vertical distribution of
chemical tracers [Lawrence and Salzmann, 2008]. We thus
expect an impact on the isotopic composition as well. Con-
trary to Sherwood [1996] and Folkins and Martin [2005],
our goal is to interpret biases in GCMs, and therefore we
need to take into account the vertical water vapor transport
by the large-scale advection.
[16] To illustrate the water budget in the LMDZ GCM, we

consider two regions based on monthly mean large-scale

Table 2. List of the Different SWING2 Models Used in This Study and Their Respective Simulationsa

GCM Reference Simulations Horizontal Resolution l Isotopic Processes During Rainfall

GISS Schmidt et al. [2007] free-running and
nudged by NCEP

46 � 72 0.004 Hoffmann et al. [1998]

ECHAM4 Hoffmann et al. [1998] nudged by ECMWF 64 � 128 0.003 Hoffmann et al. [1998]
LMDZ4 Risi et al. [2010b] free-running and

nudged by ECMWF
72 � 96 0.004 Bony et al. [2008], Stewart [1975]

with heff = f + (1 � f) � h and f = 0.9
GSM Yoshimura et al. [2008] nudged by NCEP 73 � 144 0.003 Hoffmann et al. [1998], Stewart [1975] with heff = min(1.4 � h, 1)
CAM2 Lee et al. [2007] free-running 64 � 128 0.004 Lee and Fung [2008], Stewart [1975] with heff = min(h + 0.5, 1)
HadAM Tindall et al. [2009] free-running 73 � 96 0.005 Hoffmann et al. [1998], Stewart [1975]

with heff = f + (1 � f) � h and f = 0.7
MIROC Kurita et al. [2011] free-running 73 � 96 0.003 Hoffmann et al. [1998], Stewart [1975]

a“Free-running” refers to standard AMIP-style simulations [Gates, 1992] forced by observed sea surface temperatures, and whose winds are not nudged.
The l parameter refers to the formulation of supersaturation Si with respect to ice as a function of temperature T following Si = 1 � l � T, involved in the
kinetic fractionation during ice condensation [Jouzel and Merlivat, 1984]. The representation of isotopic processes during rainfall for each model is
described in the indicated reference, and the calculation of the effective relative humidity around raindrops (heff) as a function of the relative humidity
simulated by the physical package (h) is also given when available in references.

Figure 2. (a) Illustration of the simple single-column model developed to interpret the sensitivity experiments. Character-
istic profiles of specific humidity and isotopic composition qt, dtr and dDdtr in convective plumes are assumed and depend on
the precipitation efficiency �p in convective clouds and on the humidity and isotopic composition at the lifting condensation
level qs0 and dD0. The humidity and dD in the convective region, qasc and dDconv, are controlled by the balance between
moistening by convective detrainment of air from convective plumes, moistening by large-scale ascent, and drying by
large-scale condensation in anvils and cirrus clouds. In subsidence regions, the humidity and isotopic composition qsubs
and dDsubs are controlled by the balance between moistening by horizontal mixing with convective regions and drying by
large-scale subsidence. Vertical diffusion has also a moistening effect in both regions. (b) Major tendencies involved in
the water budget of the troposphere in convective regions (w500 < �35 hPa/d), as diagnosed from the control simulation
of LMDZ: vertical transport, convective detrainment, large-scale condensation and the residual from these 3 terms. (c) Same
as Figure 2b but for subsidence regions (w500 > 35 hPa/d): vertical transport, large-scale condensation, horizontal advection
and the residual from these 3 terms. The “vertical transport” tendency includes both the effect of large-scale vertical advec-
tion and compensating subsidence in the convective scheme. (d and e) Same as Figures 2b and 2c but as computed from the
simple single-column model. The diffusive term was included as part of the vertical transport term, since in LMDZ it is
intrinsic to the advection scheme.
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vertical velocity at 500 hPa (w500) [Bony et al., 2004].
Figure 2b shows the major tendencies involved in the water
budget as simulated by the control simulation of LMDZ
in regions of large-scale ascent (w500 < �35 hPa/day, i.e.
convective regions). We combine the tendencies by large-
scale vertical advection and by compensating subsidence in
the convective scheme into one single tendency represent-
ing the total vertical transport in the environment (i.e. out-
side convective cores). To first order, in the boundary layer
of convective regions, moistening by surface evaporation
balances drying by downward vertical transport. In the mid

and upper troposphere (between 600 hPa and 200h Pa) of
convective regions, the air is moistened by convective
detrainment (consistent with Sherwood [1996] and Folkins
and Martin [2005] and by upward vertical transport in the
environment. This moistening is balanced by drying by
large-scale condensation, which represents condensation in
anvils or cirrus clouds associated with convection. In the
mid and upper troposphere of regions of large-scale descent
(w500 > 35 hPa/day), the air is moistened mainly by hori-
zontal advection from convective regions, and dehydrated
mainly by downward vertical transport (Figure 2c). We

Figure 2
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develop a theoretical framework that focuses on the mid and
upper troposphere and represents these major tendencies in
convective and subsidence regions.

3.2. Water Budget in Convective Regions

[17] In the simple framework, we assume that the temporal
evolution of q in regions of large-scale ascent (qasc) is driven
by four contributions: (1) convective detrainment, (2) total
vertical transport in the environment, (3) diffusion associated
with this transport due to intrinsic numerical diffusivity of
advection schemes, and (4) large-scale condensation:

dqasc
dt

¼ dqasc
dt

� �
dtr

þ dqasc
dt

� �
env

þ dqasc
dt

� �
diff

þ dqasc
dt

� �
cond

ð1Þ

where we express the tendency due to convective detrain-
ment as:

dqasc
dt

� �
dtr

¼ kdtr � qt;dtr � qasc
� � ð2Þ

where kdtr is the rate constant of convective detrainment
and qt,dtr is the total cloud water (vapor plus condensate)
that is detraining from convective plumes. qt,dtr equals the
humidity entrained into the plume minus the precipitation:

qt;dtr ¼ qs0 � �p � qs0 � qsð Þ ð3Þ

where qs is the humidity at saturation, qs0 is the specific
humidity entrained into the plume and �p is the precipitation
efficiency in convective updrafts. We neglect the effect of
entrainment on qt,dtr, as justified by the fact that humidity
and isotopic properties of the air detrained from convective
plumes is very similar to those in the adiabatic updraft,
consistent with the relatively small entrainment in the
Emanuel scheme [Derbyshire et al., 2004; Grandpeix et al.,
2004]. Therefore, we assume that qs0 is the humidity at the
lifting condensation level (LCL).
[18] We express the tendency due to vertical transport in

the environment as:

dqasc
dt

� �
env

¼ �wenv � dqascdz
ð4Þ

where wenv is the vertical wind speed (positive upward) that
sums the large-scale ascending speed and the downward
compensating subsidence in the convective scheme. In
regions of large-scale ascent, wenv is always positive.
[19] We express the tendency due to diffusion as:

dqasc
dt

� �
diff

¼ Kdiff � d
2qasc
dz2

ð5Þ

where Kdiff is the diffusivity constant associated with vertical
water vapor transport.
[20] For the tendency due to large-scale condensation, as

is the case in most GCMs, we assume that RH varies at the
sub-grid-scale so that condensation starts for a grid average
qasc lower than the saturation specific humidity (qs). As an
example, we assume a uniform distribution of RH with a
standard deviation sh. We thus get:

dqasc
dt

� �
cond

¼ �kcond � qasc � qs � 1� shð Þð Þ ð6Þ

where kcond is the rate constant of large-scale condensation.

[21] We substitute equations (2), (4), (5), and (6) into
equation (1) and solve it numerically as detailed in section 3.5.
At steady state, qasc is given by:

qasc ¼ 1

kdtr þ kcond
�
�
kdtr � qt;dtr þ kcond � qs � 1� shð Þ

�wenv � dqascdz
þ Kdiff � d

2qasc
dz2

�
: ð7Þ

[22] If the detrainment term dominates, then qasc tends
toward qt, dtr. If the condensation term dominates, then qasc
tends toward qs � (1 � sh), which is smaller. In practice, qasc
is bounded between these two extremes, and for reasonable
sets of parameters it stays below saturation. qasc increases
with �p, wadv and Kdiff, and decreases with sh.

3.3. Water Budget in Subsidence Regions

[23] We assume that the temporal evolution of q in sub-
sidence regions (qsubs) is driven by 4 contributions: (1)
horizontal transport from convective regions, (2) downward
vertical transport in the environment, (3) diffusion associated
with this transport due to intrinsic numerical diffusivity of
advection schemes, and (4) large-scale condensation:

dqsubs
dt

¼ dqsubs
dt

� �
mix

þ dqsubs
dt

� �
subs

þ dqsubs
dt

� �
diff

þ dqsubs
dt

� �
cond

ð8Þ

where we express the tendency due to horizontal transport
from convective region as:

dqsubs
dt

� �
dtr

¼ kmix � qasc � qsubsð Þ ð9Þ

with kmix the rate constant of horizontal mixing. We express
the tendency due to downward vertical transport as:

dqsubs
dt

� �
subs

¼ wsubs � dqsubsdz
ð10Þ

where wsubs is the vertical wind speed (positive downward)
corresponding to the large-scale subsidence. We express
the two remaining tendencies in exactly the same way as for
convective regions (equations (5) and (6)). We solve
equation (8) numerically (section 3.5). In practice, the
condensation term is very small due to the dryness of sub-
sidence regions. This term is present only for numerical
stability reasons near 100 hPa. Therefore, at steady state,
qsubs is given approximately by:

qsubs ¼ qasc þ 1

kmix
� wsubs � dqsubsdz

þ Kdiff � d
2qsubs
dz2

� �
: ð11Þ

[24] It follows that all factors controlling qasc also impact
qsubs. If the mixing term dominates, then qsubs tends toward
qasc. If the subsidence term dominates, then qsubs reflects the
value of qasc much higher in altitude. In practice, qsubs is
bounded between qasc at the same level and qasc higher in
altitude. In addition to factors controlling qasc, qsubs also
increases with kmix and Kdiff, and decreases with wsubs.
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3.4. Isotopic Composition

[25] Water vapor isotopic species are treated exactly like
normal water during advection, mixing and diffusion, and
are assumed to follow Rayleigh distillation during large-
scale condensation.
[26] The isotopic ratio in convective plumes is constrained

by the mass conservation underlying equation (3):

R0 ¼ f � Rv þ 1� fð Þ � Rc ð12Þ

where f = qs
qs0

is the fraction of vapor that remains after con-
densation in the cloud, and R0, Rv and Rc are respectively the
isotope ratio of the vapor at the LCL, the residual vapor
and the accumulated condensate. We assume that Rv follows
a Rayleigh distillation: Rv = Rv0 � f a�1, where a is the
effective fractionation coefficient taking into account both
equilibrium and kinetic fractionation consistently with
LMDZ simulations [Merlivat and Nief, 1967; Majoube,
1971a, 1971b; Jouzel and Merlivat, 1984]. As a fraction �p
of the condensate precipitates, we obtain the isotope ratio
of the total water in convective plumes [Bony et al., 2008]:

Rdtr ¼ R0 � 1� �p � 1� f að Þ
1� �p � 1� fð Þ : ð13Þ

[27] If the water balance in convective regions is mainly
between large-scale advection and condensation, then Rconv

is predicted by a Rayleigh distillation. In contrast, if the
detrainment term dominates, the isotopic ratio Rconv tends
toward Rdtr, which is much higher than predicted by a
Rayleigh distillation. This is consistent with the effect of
convective detrainment on upper tropospheric dD evidenced
by observational studies [e.g., Webster and Heymsfield,
2003; Sayres et al., 2010]. In practice, Rconv is bounded by
these two extreme values. In subsidence regions, the isotopic
ratio Rsubs at a given level will be intermediate between Rconv

at this level and Rconv higher in altitude. In addition, Rsubs

increases with vertical diffusion.

3.5. Numerical Application

[28] Equations (1) and (8) and their isotopic counterparts
are discretized on the LMDZ vertical grid and solved
numerically. We use the annual mean, tropical average
temperature profile simulated by LMDZ to calculate profiles
of qs and a that will be used in all calculations. This is jus-
tified by the fact that temperature is relatively uniform in the
horizontal in the tropics [Sobel and Bretherton, 2000] and
are very similar in all our simulations. We assume that in
the sub-cloud layer (below the LCL calculated at 925 hPa)
RH and dD are constant at 80% and �70‰ respectively,
consistent with the annual mean, tropical-average values
simulated by LMDZ. These values are kept constant as a
boundary condition throughout the numerical resolution, and
this allows us to implicitly account for the effect of surface
evaporation. The values of q and dD are also relaxed to the
value predicted by a Rayleigh distillation above 100 hPa,
where almost no convection penetrates. The choice of the
upper bound has very little impact. The vertical profile of
�p is exactly the same as in LMDZ: in the control simu-
lation, �p = 0 up to 150 hPa above LCL, �p = 0.99 above
500 hPa above LCL, and �p varies linearly between these

two values from 150 hPa to 500 hPa above LCL [Emanuel
and Zivkovic-Rothman, 1999; Bony and Emanuel, 2001].
The vertical profile of sh is taken to mimic the behavior
of large-scale condensation scheme of LMDZ: sh varies
linearly from 0 at the surface to 0.4 at 100 hPa.
[29] All other variables were optimized to reproduce the

tendencies simulated by LMDZ (Figures 2b and 2c) in the
mid and upper troposphere. We calculate wup and wdown by
assuming that the profiles of vertical velocity in hPa/day
follow a cubic shape with a maximum at 500 hPa. We take
wup = 40 hPa/day and wdown = 40 hPa/day at 500 hPa. We
assume that the profile of kdtr follows a Gaussian shape with
a maximum at 120 hPa, a standard deviation at 300 hPa
and a maximum of 0.2 day�1. We assume that kcond equals
0.33 day�1. We assume that kmix varies linearly between
0.05 day�1 and 1 day�1 from 800 hPa to 100 hPa. Finally,
Kdiff is taken so that the diffusion is equivalent to exchanging
a thickness wdiff � dt of air between each adjacent level at
each time step dt, with wdiff = 20 hPa/day. This value was
taken as the minimum value to allow numerical stability of
the single-column model.
[30] With this set of parameters, the simple single-column

model reproduces satisfactorily the vertical profiles of the
main tendencies involved in the mid and upper tropospheric
water balance simulated by LMDZ, though in a simplified
way (Figures 2d and 2e). The model fails near the surface,
which is neither surprising nor problematic since we focus
on mid and upper tropospheric processes. As the model was
tuned to reproduce the humidity tendencies for the control
simulation, the capacity of the simple framework to predict
the RH and isotopic profiles simulated by LMDZ in the
different sensitivity tests can be viewed as an independent
check of the simple framework.

4. Sensitivity of RH to the Model Physics,
Nudging and Resolution

4.1. Sensitivity to Parameterized Processes

[31] Numerous studies have shown that GCMs suffer from
a moist bias compared to various data sets in the tropical
upper troposphere and in the subtropical mid-to-upper tro-
posphere, following a horse-shoe pattern [Soden and
Bretherton, 1994; Salathe and Chester, 1995; Chen et al.,
1996; Roca et al., 1997; Chen et al., 1998; Allan et al.,
2003; Brogniez et al., 2005; Pierce et al., 2006; John and
Soden, 2007; Sherwood et al., 2010; Chung et al., 2011].
As an illustrative example, Figure 3 compares the simulated
RH in the control LMDZ simulation with the AIRS (Atmo-
spheric Infra-Red Sounder data) data [Aumann et al., 2003].
Consistent with previous studies and other GCMs, LMDZ
exhibits a moist bias throughout the mid and upper tropo-
sphere in tropical average (Figure 3a). Figure 3b shows
composites of RH at 350 hPa as a function of monthly mean
w500. Due to a clear-sky sampling bias in AIRS [Fetzer et al.,
2006], upper-tropospheric RH in deep convective tropical
regions could be underestimated by as much as 10–20%
[Pierce et al., 2006]. The moist bias seems to be stronger in
regions of large-scale ascent than in regions of large-scale
descent in Figure 3b, but this is likely an artifact of the clear-
sky bias. This does not contradict the fact that in most
GCMs, including LMDZ, the moist bias is most pronounced
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in subtropical regions. An accurate comparison of LMDZ
with AIRS is beyond the scope of this paper.
[32] To understand the cause of the moist bias, we per-

formed sensitivity tests in which the model physics was
degraded in 3 different ways, corresponding to 3 possible
causes for a larger moist bias (Table 3). Hereafter, they are
referred to as “moist bias” simulations. We conducted tests
with a larger rather than smaller moist bias because (1) the
goal is to see how isotopic measurements can help under-
stand biases, and (2) since the control simulation is already
slightly biased, trying to improve the RH for different causes
would lead to error compensations that would make the
presentation of the results less straightforward. All these
sensitivity tests are nudged by the ECMWF winds, so that
the large-scale circulation is similar in all the simulations.
This methodology excludes dynamical feedbacks, and thus
allows us to focus on differences that are due to physical
processes only.
[33] In the “diffusive advection” simulation, we replace

Van Leer’s [1977] second-order advection scheme by a
simple upstream scheme [Godunov, 1959]. This is the ver-
sion described by Risi et al. [2010b] and provided to the
SWING2 archive. The upstream scheme is intrinsically more
diffusive. This leads to a 15% stronger moist bias throughout
the tropical troposphere (Figure 3a, green). Additional tests
show that most of the moistening in this simulation is due to
excessive diffusion in the vertical, rather than the horizontal,
advective scheme. In the theoretical framework, this simu-
lation corresponds to an increase in Kdiff. Vertical diffusion
moistens the mid and upper-troposphere due to down gra-
dient moisture flux and to the concavity of q profiles as a

function of height. The moist bias is strongest in the subsi-
dence region, because the diffusive moistening accumulates
in air parcels as they subside from tropical regions
(Figure 3b). In the theoretical framework, this is represented
by the diffusion term being present in both convective and
subsidence regions (equations (1) and (8)).
[34] In the “sh/10” simulation, the sub-grid-scale vari-

ability in water vapor, which is used to predict large-scale
condensation in the Bony and Emanuel [2001] statistical
cloud scheme, is divided by 10 at all levels. This reduces
the proportion of air in the grid box exceeding saturation.
Therefore, large-scale condensation decreases and con-
tributes less to the dehydration of air masses, leading to a

Table 3. Summary of the Four Main Sensitivity Simulations
Performed With the LMDZ GCM

Name Description

Control Control simulation described with the actual AR4
version of LMDZ4.

Diffusive advection Same as control but a simple upstream scheme
[Godunov, 1959] is used rather than the second
order advection scheme [Van Leer, 1977;
Hourdin and Armengaud, 1999]. This is the
simulation described by Risi et al. [2010b]
and provided to SWING2.

sh/10 Same as control but the sub-grid-scale variability in
water vapor used to predict large-scale
condensation and nebulosity is divided by 10.

�p/2 Same as control but the precipitation efficiency in
both the convective and large-scale
precipitation schemes was divided by 2.

Figure 3. (a) Annual mean relative humidity (RH) profiles averaged over the tropics (30°S–30°N) sim-
ulated by the various versions of LMDZ (colors) and observed by AIRS (black). (b) Composites of
monthly mean RH at 350 hPa as a function of the large-scale vertical velocity at 500 hPa (w500) over
the tropics simulated by the various versions of LMDZ and observed by AIRS.
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stronger moist bias by about 15% in the upper troposphere
(Figure 3, blue). This is consistent with the theoretical
framework, in which dividing sh by 10 leads to an increase
in the lower bound for qasc toward saturation. The effect of
sh is largest in regions of large-scale ascent (Figure 3b),
because this is where the large-scale condensation scheme
plays a significant role. In subsidence regions, its effect is
smaller.
[35] Finally, in the “�p/2” simulation, the precipitation

efficiency �p in the convective scheme was divided by 2.
Therefore, a higher proportion of the condensate evaporates
into the environment rather than precipitates, significantly
moistening the atmosphere by 5 to 10% (Figure 3a, cyan).
This is consistent with the theoretical framework, in which
the increase in �p leads to an increase of qt,dtr, which con-
stitutes the upper bound for qasc. Again, the effect is largest
in regions of large-scale ascent (Figure 3b), because this is
where convective detrainment plays a significant role.
[36] The large sensitivity of RH to micro- and macro-

physical cloud processes seems to contradict some earlier

studies. Sherwood [1996] argued that cloud processes act to
bring the convective column close to saturation, and have
thus very limited quantitative effect of RH [Sherwood and
Meyer, 2006]. However, at the scale of a GCM grid box,
the atmospheric column is not necessarily close to saturation
in convective regions. Therefore, there is room for modula-
tion of the RH by cloud processes. Then, since RH in con-
vective regions serves as an initial condition for the RH in
other dynamical regimes through large-scale transport and
subsidence, RH modulations in convective regions by cloud
processes propagate to other regimes. Using a simple back-
trajectory model, Dessler and Sherwood [2000] had shown
that the large-scale circulation alone could explain to first
order the observed RH distribution in the upper troposphere.
They showed an influence of both sub-grid-scale heteroge-
neity and condensate detrainment, consistent with our study,
but they discarded these processes on the basis that each
of them individually worsen their simulation. In GCMs
however, both these processes play a simultaneous role
(Figure 2b) and the degree to which they compensate each

Figure 4. Comparison of annual mean water vapor dD simulated by the control simulation and by the
three moist bias simulations. (a) Vertical profiles of tropical (30°S–30°N) average dD. (b) Zonal mean
dD at 350 hPa. (c) Tropical average dD at 350 hPa as a function of annual mean, tropical average q at
350 hPa.
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other affects the simulated RH. To summarize, while large-
scale circulation is the major control on RH spatial variations
in a given model, there is a wide margin for variations
in mean RH associated with the representation of cloud
processes.

4.2. Sensitivity to the Nudging and Resolution

[37] To assess the relative importance of uncertainties
related to large-scale circulation in simulating RH, we
compared the control simulation with nudged wind fields to
a free-running simulation (i.e. without nudging). The effect
on RH is however smaller (<5%) than the effect of the model
physics (Figure 3, pink).
[38] Strong gradients of RH arise in the tropics and sub-

tropics because the timescale of mixing processes is longer
than that of radiative subsidence [Pierrehumbert, 1998;
Zhang et al., 2003]. A higher resolution may improve the
simulation of RH by GCMs [Sherwood et al., 2010]. We
thus performed free-running and nudged simulations at a
higher horizontal resolution (1.25° in latitude � 2.5° in
longitude). The impact of resolution is slightly stronger for
the free-running simulation, because it allows the model
to create its own finer scale circulation. The RH is decreased

by 2–3% in the subtropics, where the RH gradients are the
strongest. This impact is much smaller than that of physical
processes (Figure 3).
[39] Therefore, improving the representation of large-scale

circulation or improving horizontal resolution has a smaller
effect on the RH simulation than changing the model phys-
ics. Since the large-scale circulation is relatively well simu-
lated in GCMs, the uncertainties that remain are related to
the models physics. Therefore, while the large-scale circu-
lation is the main control on RH, it is not the major source of
uncertainty. This is confirmed by the fact that reanalyses
models also exhibit the moist bias [Salathe and Chester,
1995; Chen et al., 1998].
[40] We thus mainly focus on the sensitivity tests which

are designed to test to the model physics.
[41] Coarse vertical resolution has also been suggested to

contribute to the moist bias [Pope et al., 2001]. We expect
the vertical advection to be less diffusive at finer vertical
resolution, with an effect opposite to the “diffusive advec-
tion” simulation. The simulation at higher vertical resolution
(39 vertical levels rather than 19) indeed leads to a decrease
in RH of about 5% (Figure 3a, dashed red). Since this sim-
ulation provides redundant information compared to the

Figure 5. Illustration of how the simple theoretical model captures the behavior of q and dD for the sen-
sitivity simulations, at 350 hPa as an example. Diagrams of dD versus log(q) are shown so that Rayleigh
distillation follows approximately a straight line. On each subplot, the mechanisms for the control simu-
lation is shown in red. The vertical profile in the convective region between 350 hPa (circle) and
225 hPa (square) follows the thick line. In subsidence regions, the humidity and dD (star) reflect a mixture
between the air from convective regions at the same level and from levels above, and is further affected by
vertical diffusion, following the hand-drown dashed line. These markers and lines are shown also for the
three moist bias simulations: diffusive advection (Figure 5a, green), sh/10 (Figure 5b, blue) and �p/2
(Figure 5c, pink). Note that log(q) values of �2.5, �2, �1.5, �1, �0.5 and 0 correspond to q values of
0.08, 0.14, 0.22, 0.37, 0.61 and 1 g/kg.
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“diffusive advection” simulation, we focus on the latter for
the sake of brevity.

5. Isotopic Fingerprint of Different Causes
for the Moist Bias

[42] The goal of this section is threefold. First, we com-
pare the isotopic behavior associated with the different
causes of a moist bias in our sensitivity tests. If the isotopic
behavior is significantly different between the simulations in
a way that is complementary to the behavior of RH, then this
isotopic behavior could be used as a diagnostic for the moist
bias. Second, we interpret the isotopic behavior using
the theoretical framework, to check that we understand the
processes at play. Third, we compare the simulations to
the data, to identify which one most closely matches the
observations and to assess to what extent the isotopic
measurements can help discriminate between the different
simulations.

5.1. Zonal, Annual Means

[43] Figure 4a compares tropical mean profiles of dD for
the control and moist bias simulations. In all moist bias
simulations dD is higher than in the control between 500 and
200 hPa. The increase in dD is the strongest in “�p/2” in the
upper troposphere. Figure 4b compares the zonal mean dD at
350 hPa. The level 350 hPa is chosen as representative of the
upper troposphere where the isotopic differences between
the tests are the strongest. Most of our analysis focuses
on this level. In the “advective diffusion” and “sh/10”
simulations, upper tropospheric dD increases at all latitudes

(Figure 4b), whereas in the “�p/2” simulation, the dD
increase is concentrated in the tropics, consistent with the
convective detrainment acting mainly in the tropics. The
increase in dD does not obviously relate to the increase in
q or RH following Rayleigh distillation: the increase in
tropical dD is largest in the “�p/2” simulation, although the
increase in q or RH is smallest for this simulation
(Figure 4c). This shows that dD is particularly sensitive to
convective detrainment and provides additional informa-
tion compared to traditional humidity variables.
[44] To understand the dD increase in the moist bias

simulations, in Figure 5 we illustrate the results of the the-
oretical framework (section 3) at 350 hPa in a dD versus log
(q) diagram, in which Rayleigh distillations are approxi-
mately straight lines. The solid red arrow shows the dD
profile in convective regions from 350 hPa (red circle) up to
225 hPa (red square) for the control case. In convective
regions, dD decreases as q decreases with altitude, but less
steeply than predicted by Rayleigh distillation, due to con-
vective detrainment of condensate [e.g., Moyer et al., 1996].
Then, as explained in section 3.3, dD in subsidence regions
at 350 hPa is a mixture between dD in convective regions at
350 hPa and dD in convective regions higher up (e.g.
225 hPa). The dashed red arrow shows the effect of mixing
the air at 350 hPa and 225 hPa, combined with the effect
of vertical diffusion. The red star shows the resulting dD at
350 hPa in subsidence regions. Since mixing lines are
curved in a way that leads to higher dD compared to Ray-
leigh lines [e.g., Brown et al., 2008; Galewsky and Hurley,
2010; Noone et al., 2011], dD in subsidence regions is
higher for a given q than in convective regions. Vertical

Figure 6. Model-data difference for zonal, annual mean dD at different levels and compared to different
data sets: (a) at the surface compared to in situ data, (b) total column compared to SCIAMACHY, (c) at
600 hPa compared to TES, (d) at 350 hPa compared to ACE, (e) at 250 hPa compared to ACE, (f) at
350 hPa compared to MIPAS, and (g) at 250 hPa compared to MIPAS. The model-differences are shown
for the control simulation and each of the three moist bias simulations. Model output was collocated and
kernel-weighted as explained in section 2.2. Right column. Ground-based remote-sensing and in situ data
sets are not shown in the plots for clarity, but their results are summarized in Table 4.
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diffusion also contributes to the dD increase, since diffusion
acts like mixing.
[45] We now use the theoretical framework to interpret the

dD difference between the sensitivity tests. When vertical
diffusion is stronger (here, we take wdiff = 80 hPa/d com-
pared to 20 hPa/d in the control), convective regions are
slightly moistened and have a significantly higher dD due to
the curvature of mixing lines (Figure 5a, green). In subsi-
dence regions, the dD is even further increased, due to the
additional diffusion along the way. In the “sh/10” simula-
tion, the distillation curve in convective regions remains
approximately the same, but since large-scale condensation
is less efficient, the distillation does not go as far as in
the control (Figure 5b, blue). q and dD are thus higher in
convective regions and this signature is conserved during

the subsidence, leading to higher q and dD everywhere. In
“�p/2”, more condensate is detrained from convective towers,
so that dD in convective regions is much higher, especially
in the upper troposphere where detrainment is largest
(Figure 5c, cyan). This higher dD is then conserved during
subsidence in subsidence regions.
[46] To summarize, the increase in dD associated with the

moistening has a very different cause in each of the three
sensitivity tests. As a result, for a given increase in q rela-
tively to the control, the dD increase is very different
between the tests (Figure 4c). In particular, the theoretical
model is able to predict that for “�p/2”, dD is 3–4 times more
sensitive to changes in q than for “advective diffusion” or
“sh/10”.

Figure 7. Comparison of water vapor dD simulated by the control simulation and the by three moist bias
simulations, binned into dynamical regimes. (a) Vertical profiles of the difference between composite of
monthly mean dD in regions of large-scale ascent (tropical grid cells where w500 < �35 hPa/d) and com-
posite of monthly mean dD in subsidence regions (tropical grid cells where w500 > 35 hPa/d). The variable
w500 refers to the large-scale vertical velocity at 500 hPa, with negative (positive) values in regions of
large-scale ascent (subsidence). (b) Composites of monthly mean dD at 350 hPa as a function of w500 over
the tropics. The annual mean, tropical average was subtracted to focus on contrasts between dynamical
regimes. (c) Composite of monthly mean dD at 350 hPa in convective regions minus that in subsidence
regions, as a function of the same difference for q. The difference in q was normalized and expressed in
% as follows: (qasc � qsubs)/(qasc + qsubs) � 200.
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[47] Could isotopic observations help discriminate between
the different simulations? Figure 6 shows the model-data
differences at different levels and for different data sets. The
differences between simulations evidenced previously per-
sist even after taking into account the spatiotemporal sam-
pling and instrument sensitivity effects: for example, “�p/2”
remains more enriched than all other simulations in the
tropical upper troposphere by more than 100‰. However,
in absence of absolute calibration for upper-tropospheric
data sets, it is impossible to identify the most realistic sim-
ulation in terms of absolute dD.

5.2. Variations With Dynamical Regime

[48] In the tropics, it is convenient to examine model
output as a function of dynamical regime characterized by
the monthly mean large-scale vertical velocity w500 [Bony
et al., 2004]. Figure 7a shows profiles of dD differences
between tropical regions of large-scale ascent and descent,
and Figure 7b shows dD at 350 hPa as a function of w500.
The sensitivity tests show very different behaviors, both
quantitatively and qualitatively. The only common feature
between all simulations is that at the surface, convective
regions have a lower dD than subsidence regions (Figure 7a).
Strong precipitation events have long been observed to be
associated with a lower dD in the precipitation and the sur-
face vapor (i.e. amount effect [Dansgaard, 1964]), and this
has been shown to involve processes restricted to the lower
troposphere such as rain re-evaporation or unsaturated

downdrafts [Lawrence et al., 2004; Risi et al., 2008, 2010a;
Field et al., 2010]. In contrast, from 900 to 200 hPa in the
control simulation, dD is lower in regions of large-scale
subsidence than in regions of large-scale ascent, by up to
50‰ around 500 hPa. This is expected from the simple
model (Figure 5, stars versus circles), since the low dD values
found in the upper troposphere of large-scale ascent regions
are largely conserved during subsidence. The decrease of dD
as w500 increases is the strongest for w500 > 0 hPa (Figure 7b).
[49] In the “sh/10” simulation, the contrast between con-

vective and subsidence regions is slightly weaker, with
higher dD in subsidence regions. In the “�p/2” simulation,
the decrease of dD as w500 increases is similar to the control
for w500 > 20 hPa/d. However, for w500 < 20 hPa/d, dD
decreases as w500 decreases throughout the entire tropo-
sphere. Similarly, in the “diffusive advection” simulation,
dD decreases as w500 decreases for w500 < 20 hPa/d. In
addition, contrary to all other simulations, dD does not
decrease with w500 for w500 > 20 hPa/d. Even in strongly
subsiding regions, dD is always higher than in convective
regions throughout the free troposphere.
[50] We notice that the spread in our simulations is not

obviously linked to the behavior of q: “advective diffusion”
exhibits the most negative dD difference between convective
and subsidence regions, but not the weakest contrast for q
(Figure 9). We also checked that the isotopic behavior is not
related to how the precipitation rate varies with w500. This

Figure 8. Composites of monthly mean dD as a function of w500 for the control simulation and the
three moist bias simulations compared to the data at different levels. (a) Total column dD compared to
SCIAMACHY, (b) at 600 hPa compared to TES, (c) at 350 hPa compared to MIPAS, and (d) at 250 hPa
compared to MIPAS. Model outputs were collocated and kernel-weighted as explained in section 2.2.
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shows again that dD provides complementary information
on the relative magnitude of processes contributing to the
moisture balance.
[51] We use the simple theoretical framework to explain

the different isotopic behavior. In the “diffusive advection”
simulation, the stronger vertical diffusion in subsidence
regions leads to a stronger dD increase than in the control. If
the diffusion is sufficiently strong, it can overcome the effect
of subsidence, leading to higher dD in subsidence regions
than in convective regions (Figure 5a). In the “sh/10” sim-
ulation, q and dD are higher at all levels in convective
regions, so this signal is preserved during subsidence
(Figure 5b). Hence, the dD contrast between convective and
subsidence regions is similar to that in the control. Finally,
in the “�p/2” simulation, the vertical gradient in dD in the

convective region is weaker than in the control, due to the
effect of condensate detrainment in the upper troposphere
(Figure 5c). Therefore, the effect of subsidence on the dD is
weaker, leading to the weaker contrast between subsidence
and convective regions. In addition, the very low dD in very
convective regions can be due to the much weaker con-
vective mass fluxes in the “�p/2” simulation than in the
control. Indeed, since most of the condensate detrains rather
than precipitates, the model has to produce precipitation
by an alternative means, i.e. by large-scale condensation.
Therefore, in convective regions, large-scale condensation
is stronger and convective detrainment fluxes are smaller in
the “�p/2” simulation than in the control, explaining why dD
is so low in convective regions in the “�p/2” simulation.

Figure 9. Comparison of seasonal variations of water vapor dD simulated by the control simulation and
by the three moist bias simulations. (a) Vertical profiles of seasonal variations (JJA-DJF) in dD in average
over the Northern subtropics (20°N–30°N). (b) Seasonal variations at 350hPa as a function of latitude.
Cyan and green shadings highlight the deep tropical (15°S–15°N) and subtropical (20°N–30°N) regions
where the seasonality is reversed in the “�p/2” and “diffusive advection” simulations respectively. (c) Sea-
sonal variations of dD at 350hPa in average over the Northern subtropics, as a function of the same sea-
sonal variations for q. The variation in q was normalized by annual mean q and expressed in %.
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[52] Figure 8 shows that even after taking into account spa-
tiotemporal sampling and instrument sensitivity corresponding
to the different data sets, the main dD characteristics of our
simulations remain. The isotopic data could thus help dis-
criminate which of these very distinct behavior better
represents the real atmosphere. In the lower and mid tropo-
sphere, the control simulation has the best agreement with
SCIAMACHY and TES, whereas the “diffusive advection”
and “�p/2” simulations exhibit excessively low dD values
in convective regions. (Figures 8a and 8b). In the upper-
troposphere however, none of the simulations is able to
match the strong increase in dD in regimes of large-scale
ascent.

5.3. Seasonal Variations

[53] In the tropics and the subtropics, much of the seasonal
variations are associated with seasonal variations in
dynamical regimes. When ascending motions are more fre-
quent, dD is expected to be higher as explained in section 5.2.
In the control simulation, at all latitudes, upper tropospheric
dD is higher in summer than in winter (Figures 9a and 9b).
This is consistent with more frequent ascending motions in
summer than in winter due to the location of the inter-tropical
convergence zone. In the subtropics in both hemispheres, the
higher dD in summer holds from 900 hPa to 200 hPa, so it is
very robust. The maximum seasonality is around 500 hPa, as
was the case for variations with w500.
[54] As was the case for variations with w500, the “sh/10”

simulation has an isotopic behavior that is quite similar to
the control. “�p/2” also has a similar behavior in the sub-
tropics (where large-scale motions are mostly subsiding), but
dD is lower in summer than in winter in deep tropical
regions (15°S–15°N) (Figure 9b). This is consistent with the
very low dD in convective regions in this simulation
(Figure 9). Finally, in the “diffusive advection” simulation,

the seasonality is very weak, or even reversed, in the sub-
tropics in both hemispheres (20°S–30°S and 20°N–30°N).
This is consistent with the dD being higher in subsidence
regions than in convective regions in this simulation.
[55] Therefore, the understanding of isotopic variations

across dynamical regimes (section 5.2) allows us to under-
stand the different behaviors of our simulations in terms of
isotopic seasonality. Again, the different isotopic behaviors
are not obviously related to those in humidity (Figure 9c),
showing the added value of isotopic measurements to dis-
criminate between the simulations.
[56] At all levels, the control simulation underestimates

the isotopic seasonality in the subtropics (Figure 10). This is
robust in the comparisons between the model and all data
sets (in situ, ground-based remote-sensing and satellites).
The robustness of this result is further discussed in P1.
Therefore, the underestimated or even reversed seasonality
in the “diffusive advection” simulation worsens the model-
data agreement. Compared to ACE for example, the dD
seasonality is more underestimated in the “diffusive advec-
tion” simulation than in the control by 40–50‰ in the
Northern subtropics (Figures 10d and 10e). The magnitude
of this difference is unlikely to be affected by absolute cal-
ibration problems in the data since we are looking at varia-
tions. In addition, it is larger than any additional sources of
model-data comparison uncertainties detailed in P1. There-
fore, the deterioration of the simulated subtropical seasonal-
ity in the “diffusive advection” simulation is robustly
constrained by the comparison with the ACE data. It is also
observable in the subtropics at 600hPa compared to TES
(Figure 10c) and compared toMIPAS at 350 hPa (Figure 10f)
and at 250 hPa (Figure 10g), except for MIPAS in the
Northern Hemisphere.
[57] To measure the degree to which our simulations

capture the dD seasonality in the subtropics and lower

Figure 10. Same as Figure 6 but for model-data differences of zonal mean seasonal variations (JJA-DJF).
Note that two kinds of differences (model-data and JJA-DJF) have been compacted into theDdD notation.
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midlatitudes, we calculate the ratio of the simulated JJA-DJF
variations to the observed JJA-DJF variations, at different
levels, in different hemispheres and compared to different
data sets (Table 4, zonal mean seasonal variations and sea-
sonal variations (JJA-DJF)). Although there is no consensus
on which simulation performs the best, the “advective dif-
fusion” simulation has the lowest seasonality in 20 of these
metrics, corresponding to the worst model-data agreement in
19 of these metrics. For example, for the average over 20°S–
30°S and over 20°N–30°N, the “advective diffusion” simu-
lation has the worst underestimate of the seasonality com-
pared to all satellite data sets except when compared to
MIPAS in the Northern Hemisphere. Between 20°S–45°S
and 20°N–45°N, this is also the case for all of the aircraft
data sets and at all ground-based remote-sensing stations
except at Pasadena.
[58] To summarize, in LMDZ, when a moist bias is due to

excessively diffusive vertical advection, the isotopic sea-
sonality in the subtropics is distinctively lower. This can
be robustly identified by comparison with almost all data

sets, especially with ground-based remote-sensing and
ACE data sets.

5.4. Spatial Variations

[59] Spatial variations partially reflect variations in
dynamical regimes. Spatial variations in the control simula-
tion and in the SCIAMACHY, TES and MIPAS data sets are
extensively discussed in P1. To measure the degree to which
simulations reproduce spatial patterns of annual mean dD,
we calculate the spatial correlations between simulated and
observed annual mean dD, and the ratio of the simulated
spatial standard deviation to the observed spatial standard
deviation of annual mean dD (Table 4, spatial variations of
annual mean). To measure the degree to which simulations
reproduce spatial patterns of dD seasonality, we calculate
the same metrics for JJA-DJF variations (Table 4, spatial
variations of seasonal variations (JJA-DJF)). No consensus
emerges regarding the best or worst performing simulation.
The control simulation is most frequently the best in cap-
turing the spatial patterns (as quantified by correlations). In

Table 4. Quantitative Metrics to Compare the Model-Data Agreement Between the Different LMDZ Simulationsa

Feature Metric Region Data Set Level Control
Diffusive
Advection sh/10 �p/2

Zonal mean seasonal amplitude ratio 20°N–30°N SCIAMACHY total column 0.67 0.40 0.41 0.60
variations (JJA-JF) amplitude ratio 20°N–30°N TES 600 hPa 1.02 0.27 1.14 0.57

amplitude ratio 20°N–30°N MIPAS 350 hPa �0.06 0.02 0.21 0.26
amplitude ratio 20°N–30°N ACE 350 hPa 0.37 0.07 0.39 0.38
amplitude ratio 20°N–30°N MIPAS 250 hPa 0.11 �0.35 0.11 0.92
amplitude ratio 20°N–30°N ACE 250 hPa 0.31 �0.99 0.88 1.92
amplitude ratio 20°N–30°N SCIAMACHY total column 0.13 �0.09 0.14 0.02
amplitude ratio 20°N–30°N TES 600 hPa 0.35 0.19 1.17 1.10
amplitude ratio 20°N–30°N MIPAS 350 hPa �0.21 �0.26 �0.10 0.04
amplitude ratio 20°N–30°N ACE 350 hPa �0.16 �0.39 �0.01 0.16
amplitude ratio 20°N–30°N MIPAS 250 hPa �0.52 �1.05 0.20 0.51
amplitude ratio 20°N–30°N ACE 250 hPa �0.14 �0.72 0.72 0.98

Seasonal variations amplitude ratio Wollongong (34.41°S) NDACC total column 0.72 0.51 0.64 0.74
(JJA-JF) at all amplitude ratio Wollongong (34.41°S) TCCON total column 0.40 0.30 0.60 0.32
subtropical and amplitude ratio Wollongong (34.41°S) NDACC 600 hPa 2.72 1.71 2.50 2.86
stations amplitude ratio Izaña (28.30°N) NDACC 600 hPa 0.37 0.21 0.28 0.30
(15°S–45°S amplitude ratio Pasadena (34.2°N) TCCON total column �0.79 �0.64 0.82 �0.84
and 15°S–45°N) amplitude ratio Oklahoma (36.6°N) TCCON total column 0.59 0.35 0.45 1.0

amplitude ratio Santa Barbara (34°N) Ehhalt 350 hPa 0.84 0.29 0.80 0.85
amplitude ratio Death Valley (36°N) Ehhalt 350 hPa 0.38 0.11 0.39 0.34
amplitude ratio Nebraska (41.83°N) Ehhalt 350 hPa 0.93 0.69 0.83 0.89

Spatial variations of
annual mean

standard deviation ratio 45°S–45°N SCIAMACHY total column 0.42 0.48 0.43 0.59

standard deviation ratio 45°S–45°N TES 600 hPa 0.85 0.74 0.80 1.07
standard deviation ratio 45°S–45°N MIPAS 250 hPa 0.25 0.46 0.32 0.45

correlation 45°S–45°N SCIAMACHY total column 0.62 0.62 0.61 0.59
correlation 45°S–45°N TES 600 hPa 0.93 0.91 0.92 0.86
correlation 45°S–45°N MIPAS 250 hPa 0.54 0.61 0.51 0.73

Spatial variations of
seasonal variations

standard deviation ratio 45°S–45°N SCIAMACHY total column 0.31 0.40 0.31 0.46

(JJA-JF) standard deviation ratio 45°S–45°N TES 600 hPa 0.96 0.82 0.99 1.18
standard deviation ratio 45°S–45°N MIPAS 250 hPa 0.33 0.36 0.37 0.44

correlation 45°S–45°N SCIAMACHY total column 0.40 0.45 0.44 0.43
correlation 45°S–45°N TES 600 hPa 0.73 0.61 0.61 0.63
correlation 45°S–45°N MIPAS 250 hPa 0.47 0.13 0.59 0.53

Daily variability standard deviation ratio Izaña (28.30°N) ground-based
remote-sensing

4.2 km 0.69 0.40 0.51 0.68

correlation Izaña (28.30°N) ground-based
remote-sensing

4.2 km 0.39 0.45 0.42 0.34

aFor each feature that we try to evaluate, we look at different metrics, regions, data sets and/or levels. To evaluate the seasonality, we calculate the ratio of
amplitude as the amplitude of seasonal variations (JJA-DJF) for the simulation divided by that for the data, in average over the specified region or at the
specified site. To evaluate spatial variations, we calculate the standard deviation ratio as the standard deviation in the simulation divided by that in the data,
and the correlation between the simulation and the data. The same applies to evaluate daily variations at Izaña. For a each metric, the simulation with the
lowest (resp. highest) seasonality, standard deviation or correlation is highlighted in bold (resp. in italic).
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contrast, the “�p/2” simulation is most frequently the best in
capturing the amplitude of spatial variations (as quantified
by the ratio of standard deviation), consistent with the
strong dD variations with w500 in the latter simulation.
Overall, spatial variations of isotopic ratio are less capable
at discriminating between the simulations than is the
seasonality.

5.5. Intraseasonal Variability in the Subtropics

[60] We have shown that the different sensitivity tests
behave differently in subsidence regions (section 5.3). In the
subtropics, strong synoptic and intraseasonal variability in
RH arise because of strong contrasts between highly dehy-
drated air and moist plumes from the tropics [Pierrehumbert,
1998; Pierrehumbert and Roca, 1998; Zhang et al., 2003].
We thus look in more details at the daily ground-based
remote-sensing data at the subtropical station Izaña. In the
theoretical framework, Izaña can be considered a subsidence
region in which the daily data capture variability in the
balance of subsidence and horizontal mixing from convec-
tive regions nearby.

[61] Despite the nudging, GCMs have difficulties in cap-
turing the timing of the subtropical synoptic and intrasea-
sonal variations. Figure 11a shows the comparison of daily
data for the year 2007 at 4.2 km, when LMDZ captures best
the timing of humidity modulations. The data features very
strong intraseasonal variations, with peak-to-peak variations
in q of 4 g/kg and in dD of 150‰ in summer (Figures 11a
and 11b). In the control simulation, the q fluctuations are
slightly underestimated and the air is on average too moist
(consistent with section 5.1). The magnitude of dD fluctua-
tions is also slightly underestimated.
[62] In moist bias simulations, annual mean q and dD are

higher (Figure 12, consistent with section 5.1). In the “dif-
fusive advection” simulation, the standard deviations of
fluctuations are 25% weaker for q and 45% weaker for dD
than in the control. This is associated with an underestimated
slope of dD vs q (Figure 11a). This is consistent with the
accumulating effect of continuous vertical diffusion during
subsident transport from the tropics to Izaña. q and dD thus
increase most strongly during the driest periods, when air
travels for a longer period. Hence the lower variability in q
and dD. In addition, due to the curvature of mixing lines
(Figure 5a), diffusion increases dD much more strongly for a
given increase in q than predicted by Rayleigh distillation.
Hence the lower slope of dD vs q.
[63] In contrast, in the “sh/10” and “�p/2” simulations, q

and dD are mainly affected in convective regions where most
of the large-scale condensation and convective detrainment
take place. The increases in q and dD in convective regions
are preserved to some extent in subsidence regions, but
the slopes of dD vs q are not as strongly affected as for the
“diffusive advection” simulation (Figures 12b and 12c).
[64] Therefore, the tests exhibit different daily variations in

the subtropics, and these are consistent with the predictions
from the theoretical framework under different dynamical
regimes. The control simulation captures best the timing
and amplitude of dD variations, while the “diffusive
advection” simulation underestimates dD fluctuations the
worst (Table 4, daily variability). Therefore, this remote-
sensing data set, combined with all the other data sets
documenting isotopic seasonality, can robustly identify the
shortcoming in the numerical scheme used to account for
vertical transport in models. This results can be obtained
from both daily and seasonal mean data.

6. Isotopic Seasonality in the Subtropics
as a Diagnostic for the Moist Bias

[65] We have shown that different processes potentially
explaining the moist bias commonly seen in GCMs have a
different isotopic signature, in the annual mean, seasonal
cycle and intraseasonal variability, as summarize in Table 5.
We have also shown that this isotopic signature provides
complementary information compared to humidity variables.
Compared to the data, the most pronounced isotopic bias is
the underestimated or reversed dD subtropical seasonality in
the “diffusive advection” simulation. This can be seen at all
mid and upper tropospheric levels and in most data sets
(section 5.3). Therefore, we focus on using the isotopic
seasonality as an observable diagnostic to understand the
cause of the moist bias in GCMs. In the next section, we

Figure 11. (a) Daily specific humidity q (in logarithmic
scale) and (b) vapor dD at 4.2 km retrieved by the ground-
based remote-sensing at Izaña (solid black) and simulated
by the four versions of LMDZ, during the year 2007. Time
series were applied a 5-day running mean, and model outputs
were collocated with the data and kernel-weighted with aver-
aging kernels. On the right are shown the average values plus
and minus one standard deviation. Note that log(q) values of
�0.6, �0.4, �0.2, 0, 0.2, 0.4 and 0.6 correspond to q values
of and 0.25, 0.40, 0.82, 1, 1.22, 1.49 and 1.82 g/kg.
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describe the way in which the seasonality diagnostic is used
(section 6.1), check its robustness (section 6.2) and then
apply it to the SWING2 models (section 6.3).

6.1. The Isotopic Seasonality Diagnostic

[66] Figure 13a shows the subtropical (20°N–30°N) dD
seasonality at 350 hPa as a function of tropical (30°S–30°N)
annual-mean RH, for the different simulations. As explained
earlier, when a moist bias is due to excessively diffusive
advection, the seasonality is reversed (green square). This is
not the case for the other causes for a moist bias considered

in the sensitivity tests (blue and cyan squares). In the dD
seasonality versus RH diagram, we will use the slope S
between different simulations to diagnose the cause of a
moist bias, as illustrated by arrows on Figure 13a. A slope S
of the order of �2 to �4‰/% indicates a moist bias that is
due to excessively diffusive advection.
[67] We also plot on Figure 13a the approximate position

of the data based on AIRS and ACE. The position is subject
to large errors for dD because of the sampling mismatch
between the observations and monthly mean model outputs.
ACE has a much weaker seasonality than MIPAS (P1), so

Figure 12. Probability density function (PDF) for the joint q � dD distribution at 4.2 km at Izaña. The
scale for q is logarithmic: log(q) values of �0.4, �0.2, 0, 0.2, 0.4 and 0.6 correspond to q values of and
0.40, 0.82, 1, 1.22, 1.49 and 1.82 g/kg. The PDFs were calculated from all years of data and binned into
bins of 0.05 log(g/kg) and 24‰ and lines correspond to densities of 0.5% (thinnest lines or lightest colors),
1.5% (medium lines and colors) and 4% (thickest lines and darkest colors). For clarity, the PDF for the
control simulation (red) is compared to (a) the data (gray), (b) sensitivity tests with diffusive advection
(green), (c) sh/10 (blue) and (d) �p/2 (cyan).

Table 5. Summary of How Different Causes for a Moist Bias in LMDZ Affects the Isotopic Behavior

Cause of Moist Bias

Effect on Isotopic Behavior

Tropical Mean dD dD Seasonality in the Subtropics Intraseasonality in the Subtropics

Excessive diffusion during
water vapor transport

overestimated in the mid
and upper troposphere

underestimated or reversed in the
mid and upper troposphere

underestimated variability of dD
due to underestimated q-dD slope

Underestimated sub-grid-scale
variability of water vapor

overestimated in the mid
and upper troposphere

unaffected overestimated for q but underestimated for dD

Excessive condensate
detrainment

overestimated in the upper troposphere
with a stronger slope of dD change

versus q change.

unaffected unaffected
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that ACE likely provides a lower bound for observed dD
seasonality. Despite these limitations, based on the consen-
sus that emerged from section 5.3 and Figure 4, the control
simulation likely lies between the data and the “diffusive
advection” simulation. This suggest that the cause of the
moist bias in the control simulation is likely excessively
diffusive advection.
[68] The diffusivity of an advection scheme is an intrinsic

and unwanted property that cannot be tuned. One way to
reduce the diffusion during vertical advection is to increase
the vertical resolution. To test whether this solves consis-
tently the moist-bias and the underestimated dD seasonality,
we add on Figure 13a the simulation with higher vertical
resolution. This simulation is drier and has a stronger sea-
sonality, following a slope similar to that of the “diffusive
advection” simulation. This suggests that our dD seasonality
diagnostic can detect moist biases that are due to excessive
diffusion in a consistent way, be they caused by too diffusive
an advection scheme or by to too low a vertical resolution.

6.2. Robustness of the Diagnostic With Respect to
Large-Scale Circulation, Isotopic Representation,
Diagnostic Definition and Model Physics

[69] Before we apply the slope diagnostic to all GCMs, we
check that aspects of the model simulations that are unre-
lated to the model physics have relatively little impact. First,
we recall that sensitivity tests to the nudging and to the
horizontal resolution have a comparatively small impact on
both RH and dD. On Figure 13b (pink), these tests are very
close to the control simulation (dashed red circle). This
suggests that differences in RH or in dD seasonality between

different models are more likely due the model physics than
to differences in the large-scale circulation.
[70] Second, we investigate the impact of differences in

the isotopic representation. All SWING2 models use the
same equilibrium fractionation coefficients and make similar
assumptions during condensation processes (i.e. closed sys-
tem during liquid condensation and Rayleigh fractionation
during ice condensation). Isotopic differences between
models can however arise from differences in diffusivity
coefficients [Cappa et al., 2003; Merlivat, 1978], in kinetic
fractionation during ice condensation [Jouzel and Merlivat,
1984] or in the representation of isotopic fractionation dur-
ing rain re-evaporation. Diffusivity coefficients have been
shown to affect deuterium excess with very little effect on
dD [Mathieu et al., 2002; Yoshimura et al., 2010]. Regard-
ing ice condensation, in all models the supersaturation over
ice Si varies with temperature T following Si = 1 � l � T,
where l is a tunable parameter. Among all SWING2 models,
l varies from 0.003 (e.g. ECHAM, GSM [Hoffmann et al.,
1998; Yoshimura et al., 2008]) to 0.005 (HadAM [Tindall
et al., 2009]) and is set to 0.004 in LMDZ (Table 2). As an
extreme test, we tried l = 0 (Figure 13b, purple circle).
Although it affects annual mean dD in the upper troposphere,
it has a very limited effect on dD seasonality. Regarding
isotopic parameterization during rain re-evaporation, there is
a wide diversity among models (Table 2). To encompass this
diversity, we performed two additional tests with no post-
condensation at all [e.g., Field et al., 2010] and with very
strong kinetic fractionation respectively (Figure 13b, purple
triangles). To represent strong kinetic effects, we change
parameter f from 0.9 to 0.7 when calculating the effective

Figure 13. (a) Relationship between annual mean RH at 400 hPa averaged over 30°S–30°N, and sea-
sonal variation (JJA-DJF) of dD at 400 hPa averaged over 20°N–30°N for the different LMDZ simulations
(colored squares). The black star indicate corresponding RH and dD values observed by AIRS and ACE-
FTS respectively. Note that the comparison with ACE-FTS is qualitative since model outputs cannot be
properly collocated with the data on this plot. ACE has a lower dD seasonality than MIPAS, so it likely
represent a lower bound. (b) Same as Figure 13a but with some sensitivity tests to the nudging, the hori-
zontal resolution and the isotopic representation. The dashed red and dashed purple circles highlights the
proximity to the control of these sensitivity tests.
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RH around raindrops (heff) as a function of simulated RH (h)
following heff = f + (1� f) � h [Bony et al., 2008; Risi et al.,
2010b]. These tests have much smaller impacts than the
sensitivity tests to the model physics. Therefore, we conclude
that the details of the isotopic implementation is likely not the
major factor contributing to the dD seasonality dispersion
between models.
[71] We now check the robustness of our diagnostic with

respect to altitude. Figure 14 shows the slope S between
various pairs of simulations as a function of altitude. The
slope between the control and the “diffusive advection”
simulation is much more negative than for the other tests
from 500 to 150 hPa (solid green). The diagnostic is thus
robust with respect to altitude.
[72] We also checked the robustness with respect to the

geographical domain. We tested different subtropical
domains for dD seasonality (20°N–30°N, 15°N–30°N,
20°N–35°N, 25°N–35°N) and different tropical domains for

annual-mean RH (30°S–30°N, 25°S–25°N and 20°S–20°
N). The slopes S range within [�3.1, �2.5], [�0.6,0] and
[�1.0, �0.3] for the “diffusive advection”, “sh/10” and
“�p/2” simulations respectively. Therefore, whatever the
choice of the geographical domain, the behavior of the
“diffusive advection” can be clearly distinguished from
that of the other simulations.
[73] Finally, the robustness of the slope diagnostic with

respect to model physics is a necessary condition to apply
the diagnostic to all GCMs. The ability to understand the
isotopic behavior of the tests with a simple theoretical
framework, which involves simple physical processes that
are represented in all GCMs, suggests the applicability of
these diagnostics to all GCMs. As an additional check, we
calculated the slopes S for pairs of simulations with a mod-
ified physics. For example, when �p is divided by two in
both the control and “diffusive advection” simulations, the
effect of diffusive advection is a deterioration of the sea-
sonality following the same slope S of about �2 to �4‰/%
(Figure 14, dashed green). Similarly, when �p is divided by 2
in both the control and “sh/10” simulations, or when using
the diffusive advection scheme in both the control and “�p/2”
simulations, the slopes S characterizing the sensitivity to
sh and �p remain much less negative than �2‰/% between
500 and 150 hPa (Figure 14, dashed blue and cyan).
Therefore, the isotopic diagnostic is robustly related to the
source of the bias and relatively independent of other aspects
of model physics.

6.3. Application to SWING2 GCMs

[74] Figure 15b shows the dD seasonality versus RH dia-
gram for the other SWING2 simulations (black markers). As
expected, all models are too moist. Models show a very wide
spread in dD seasonality, spanning more than 70‰, with
variations even in the sign. Isotopic observations can thus
discriminate between models despite the large uncertainties
in the data sets. The spread in our LMDZ sensitivity tests
(about 40‰) is of the same order of magnitude as that in
SWING2 models. Most models plot around the line con-
necting the control and “diffusive advection” simulations
(dashed green). Models with the driest troposphere exhibit
the strongest (and presumably most realistic: Figure 4) dD
seasonality (e.g. Had-AM), while the moistest models
exhibit the worst reversed seasonality (e.g. CAM, GSM).
This suggests that in many GCMs, excessive diffusion dur-
ing vertical advection is a likely cause of the moist bias, and
the major source of RH dispersion between models.
[75] This result is robust with altitude (Figure 15b): the

correlation among models in this diagram is lower than �0.7
from 600 to 250 hPa, and at all these levels the corresponding
slope S among models is between than �2 and �4‰/%.
This value corresponds to the slope S characterizing the
“diffusive advection” simulation at these levels (Figure 15a).
[76] Some GCMs deviate from the ”diffusive advection”

line (e.g. GISS, MIROC) suggesting that other processes
may be responsible for the moist bias in some models. For
example, Wright et al. [2010] suggest that excessive rainfall
evaporation in the GISS model may contribute to its moist
bias. However, errors in large-scale circulation are not likely
to be the major source of the moist bias and of the spread
between models. The small effect of nudging the large-scale
circulation in LMDZ is supported by the equally small effect

Figure 14. Slope of the seasonal difference in dD versus
RH, as in Figure 13, as a function of height for the different
sensitivity tests compared to the control. Slopes are shown
only where the RH of the two simulations differs by more
than 1%. Solid lines: the control simulation and the moist
bias simulations are those described in sections 2.1 and 4.1.
Dashed lines: same as solid, but both the control and the
sensitivity simulations were modified to test the robustness
to the model physics. Dashed green: both the control and
“diffusive advection” simulations were redone with �p/2.
Dashed blue: both the control and “sh/2” simulations were
redone with diffusive advection. Dashed cyan: both the
control and “�p/2” simulations were redone with diffusive
advection.
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for the GISS model (dashed gray circle). In addition, the best
performing model for RH and dD seasonality is Had-AM,
which happens to be run in a free-running mode, while the
worst performing model is GSM, which happens to be run in
a nudged mode and with the highest horizontal resolution.
This further supports the suggestion that the representation
of physical processes and advection numerics are larger
sources of uncertainties on RH than the large-scale circula-
tion. While it has been shown that nudging might improve
the simulation at high latitudes [e.g., Yoshimura et al., 2008;
Risi et al., 2010b], a correct large-scale circulation does not
guarantee that the tropical and subtropical RH and isotopic
distribution are realistic.

7. Conclusion

[77] We show that different processes affecting RH in
GCMs impact the water vapor isotopic composition differ-
ently. Water vapor isotopic measurements can thus be used
as an observational diagnostic to detect and understand
causes of RH biases in GCMs. This study proposes an
approach to practically do so. The isotopic sensitivity to
various physical processes is first understood using sensi-
tivity tests and a simple framework. An isotopic diagnostic
based on observations is then designed, and its robustness
with respect to the data set used and other aspects of the
model physics and isotopic representation is checked. This
diagnostic is finally applied to a wider range of models to
diagnose the reason for their bias.

[78] As an example, in this study we aim at understanding
the reasons for the moist bias in the tropical mid and upper
troposphere that has persisted in GCMs for more than a
decade. We show that the isotopic seasonality in the sub-
tropics can robustly discriminate simulations in which the
moist bias is due to excessively diffusive vertical advection.
Applying this isotopic diagnostic to an ensemble of GCMs
suggests that excessive diffusion during vertical advection is
the most frequent cause of moist bias in GCMs. However,
our approach bears some limitations: (1) the lack of valida-
tion of upper-tropospheric isotopic data sets, (2) the limited
number of our sensitivity tests to the model physics, leaving
some other possible sources of moist bias unexplored, (3)
the limited subset of GCMs with an isotopic representation
and (4) the absence of similar sensitivity tests in the other
isotopic GCMs to further check the universality of our
diagnostic.
[79] Although it has long been recognized that the large-

scale circulation controls the spatial distribution of RH
to first order [Sherwood, 1996; Pierrehumbert and Roca,
1998], our study highlights the importance of uncertainties
related to parameterized processes controlling RH and
advection numerics. If excessive diffusion during vertical
advection is indeed the most frequent cause of moist bias
in GCMs, this problem can be solved by improving the
advection scheme, or alternatively by increasing the vertical
resolution. This is consistent with sensitivity to vertical
resolutions in other GCMs [Pope et al., 2001; Roeckner

Figure 15. (a) Same as Figure 13 but for the different SWING2 models (black markers), with sensitivity
tests to LMDZ physics superimposed as colored arrows. The dashed gray circle highlights the proximity
between the free-running and the nudged runs of the GISS model. The dashed gray line visualizes the link
between RH and dD seasonality exhibited by most GCMs, following the same slope as for the “diffusive
advection” simulation. (b) Correlation (black) and slope (red) of the relationship between subtropical sea-
sonal dD variations and annual mean tropical RH among the SWNG2 models. The slope is plotted only
where the correlation is lower than �0.7. The pink shading highlights the range of altitude where the
behavior of the “diffusive advection” simulation differs strongly from the other tests (Figure 15a), and
where the SWING2 models exhibit a correlation between seasonality and RH lower than �0.7
(Figure 15b).
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et al., 2006], and supports the importance of vertical res-
olution [Tompkins and Emanuel, 2007]. It would be inter-
esting to apply our isotopic diagnostic to more models, in
particular those for which other causes for the moist biases
have been hypothesized but which did not participate in
SWING2 (e.g. Geophysical Fluid Dynamics Laboratory
model [Chung et al., 2011]).
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