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STABILITY OF FINITE DIFFERENCE SCHEMES

FOR HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS:

NUMERICAL BOUNDARY LAYERS.

BENJAMIN BOUTIN & JEAN-FRANÇOIS COULOMBEL

Abstract. In this article, we give a unified theory for constructing boundary layer expansions for dis-
cretized transport equations with homogeneous Dirichlet boundary conditions. We exhibit a natural as-
sumption on the discretization under which the numerical solution can be written approximately as a
two-scale boundary layer expansion. In particular, this expansion yields discrete semigroup estimates that
are compatible with the continuous semigroup estimates in the limit where the space and time steps tend
to zero. The novelty of our approach is to cover numerical schemes with arbitrarily many time levels.

AMS classification: 65M12, 65M06, 65M20.
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1. Introduction and main result

1.1. Introduction. In this article, we are interested in discretizations of transport equations by means
of finite difference schemes. When implemented, such numerical schemes require numerical boundary
conditions which sometimes can not be deduced from the PDE problem under consideration. This diffi-
culty gives rise to several strategies for which it is crucial to understand whether the resulting numerical
schemes is stable and/or consistent. We shall mainly be concerned here with stability issues and refer to
[Gus75] for convergence results.

The analysis of numerical boundary conditions for hyperbolic equations is a delicate subject for which
several definitions of stability can be adopted. Any such definition relies on the choice of a given topology
that is a discrete analogue of the norm of some functional space in which the underlying continuous
problem is known to be well-posed. The stability theory for numerical boundary conditions developed in
[GKS72], though rather natural in view of the results of [Kre70] for partial differential equations, may
have suffered from its ”technicality”. As Trefethen and Embree [TE05, chapter 34] say: “[...] the term
GKS-stable is quite complicated. This is a special definition of stability, [...], that involves exponential decay
factors with respect to time and other algebraic terms that remove it significantly from the more familiar
notion of bounded norms of powers”. More precisely, the definition of stability in [GKS72] corresponds
to norms of `2t,x type for the numerical solution (t denotes time and x denotes the space variable), while

in many problems of evolutionary type one is more used to the `∞t (`2x) topology arising from symmetry
and integration by parts arguments. In terms of operator theory, the definition of stability in [GKS72]
corresponds to resolvent estimates where one eventually proves estimates for the resolvent (z I − T )−1 of
some fixed bounded operator T , while the more familiar notion of bounded norms of powers corresponds
to semigroup estimates where one wishes to prove that T is power bounded. The links between such
resolvent and semigroup estimates have been a rich subject both in the numerical analysis and operator
theory communities. We refer for instance to [LN91, SW97] for various results in this direction.

A natural -though delicate- question in the theory of hyperbolic boundary value problems is to pass
from GKS type (that is, resolvent) estimates to semigroup estimates. In the context of partial differential
equations, this problem has received a somehow final answer in [Mét14], see references therein for historical
comments on this problem. In the context of numerical schemes, the derivation of semigroup estimates
is not as well understood as for partial differential equations. Semigroup estimates have been derived in
[Wu95] for discrete scalar equations, and in [CG11] for systems of equations. However, the analysis in
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[Wu95] and [CG11] only deals with schemes with two time levels, and does not extend as such to schemes
with three or more time levels (e.g., the leap-frog scheme). A first attempt to deal with numerical
schemes with three or more time levels has been made by one of the authors in [Cou15], but some
technical assumptions still exclude applying the theory to, for instance, numerical schemes based on the
Adams-Bashforth integration methods.

In this article, we focus on Dirichlet boundary conditions and derive semigroup estimates for a class
of numerical schemes with arbitrarily many time levels. The reasons why we choose Dirichlet boundary
conditions are twofold. First, these are the only boundary conditions for which, independently of the
(stable) numerical scheme that is used for discretizing a scalar transport equation, stability in the sense
of GKS is known to hold. The latter result dates back to [GT81] and is recalled later on. Second,
homogeneous Dirichlet boundary conditions typically give rise to numerical boundary layers and therefore
to an accurate description of the numerical solution by means of a two-scale expansion. We combine these
two favorable aspects of the Dirichlet boundary conditions in our derivation of a semigroup estimate.

The study of numerical boundary layers has received much attention in the past decades, including for
nonlinear systems of conservation laws, see for instance [DL88, GS97, CHG01]. As far as we know, all
previous studies have considered numerical schemes with a three point stencil and two time levels. In
this article, we focus on linear transport equations and exhibit a class of numerical schemes for which the
homogeneous Dirichlet boundary conditions give rise to numerical boundary layers. The stencil can be
arbitrarily wide. As follows from our criterion, the occurrence of boundary layers is not linked with the
order of accuracy of the numerical scheme, which is a low frequency property, but rather with its high
frequency behavior. For instance, the Lax-Wendroff discretization displays numerical boundary layers
when combined with Dirichlet boundary conditions (and such layers have the same width as for the Lax-
Friedrichs scheme) but the leap-frog scheme does not1, though both Lax-Wendroff and leap-frog schemes
are formally of order 2.

1.2. Notations. We consider a one-dimensional scalar transport equation:

(1.1) ∂tu+ a ∂xu = 0, t > 0 , x > 0 ,

where the velocity is a 6= 0. The transport equation (1.1) is supplemented with an initial condition u0 that
belongs to a functional space that is made precise later on. In the case a > 0, that is, if we consider an
incoming transport equation, we also supplement (1.1) with homogeneous Dirichlet boundary condition:

(1.2) u(0, t) = 0, t > 0 .

The finite difference scheme under consideration is assumed to be obtained by the so-called method of
lines, see, e.g., [GKO95]. In other words, we start with (1.1) and first perform a space discretization. The
latter is supposed to be linear with r points ”to the left” and p points ”to the right”. In other words,
we consider some coefficients a−r, . . . , ap, where p, r are fixed nonnegative integers, together with a space
step ∆x > 0, and approximate (1.1) by the system of ordinary differential equations:

(1.3) u̇j +
1

∆x

p∑
`=−r

a` uj+` = 0 ,

where uj(t) represents an approximation of the solution u to (1.1) in the neighborhood of the point
xj := j∆x. The integers r, p are fixed by assuming a−r 6= 0 and ap 6= 0. The latter system of ordi-
nary differential equations is then approximated by means of a (possibly multistep) explicit numerical
integration method. We refer to [HNW93, HW96] for an extensive study of numerical methods for or-
dinary differential equations. Applying a linear explicit multistep method to (1.3) yields the numerical
approximation

(1.4)
k∑

σ=0

ασ u
n+σ
j + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` u
n+σ
j+` = 0 .

1The leap-frog scheme rather generates incoming highly oscillating wave packets, as explained at the end of this article.
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with k ≥ 1 and fixed constants α0, . . . , αk, β0, . . . , βk−1. The multistep integration method is normalized
by assuming |α0| + |β0| > 0 and αk = 1. In (1.4), we have made use of the notation λ := ∆t/∆x for
the so-called Courant-Friedrichs-Lewy parameter. In what follows, the parameter λ is kept fixed2, and
we consider the space and time grid xj := j∆x, tn := n∆t for j, n ∈ N. For notational convenience, we
introduce the (dimensionless) constant τ > 0 that satisfies

(1.5) ∆x = τ |a|∆t .

We keep ∆t ∈ (0, 1] as the only small parameter and ∆x ∈ (0, 1/λ] varies accordingly.
Since we are approximating the transport equation (1.1) on the half-line x ∈ R+, the space grid is

indexed by N. This means that the numerical approximation (1.4) takes place for j ≥ r. We then
supplement (1.4) with homogeneous Dirichlet boundary conditions on the ”numerical” boundary:

(1.6) unj = 0, 0 ≤ j ≤ r − 1, n ≥ k ,

independently of the sign of a. The scheme (1.4), (1.6) is ignited by k initial data, which correspond to
the approximation of the solution to (1.1) at times t0, . . . , tk−1. For simplicity, we assume that the initial
data for (1.4), (1.6) are given by the standard piecewise constant approximation of the exact solution to
(1.1). In other words, we set:

(1.7) unj :=
1

∆x

∫ xj+1

xj

u0(x− a tn) dx , j ≥ 0 , n = 0, . . . , k − 1 ,

where the initial condition u0 for (1.1) has been extended by zero to R− in the case a > 0.
The following two assumptions are the minimal consistency requirements for the numerical scheme

(1.4).

Assumption 1.1 (Consistency of the space discretization). The coefficients a−r, . . . , ap in (1.4) satisfy

p∑
`=−r

a` = 0 ,(1.8)

p∑
`=−r

` a` = a .(1.9)

Assumption 1.2 (Consistency of the linear multistep integration method). The coefficients α0, . . . , αk,
β0, . . . , βk−1 of the time integration method in (1.4) satisfy

k∑
σ=0

ασ = 0 ,

k∑
σ=0

σ ασ =

k−1∑
σ=0

βσ .

In the case k = 1, that is for numerical schemes with two time levels, the normalization gives α0 =
α1 = β0 = 1, and (1.4) reduces to the standard form

un+1
j − unj + λ

p∑
`=−r

a` u
n
j+` = 0 .

If p = r = 1, we obtain the class of three point schemes that encompasses both the Lax-Friedrichs and
Lax-Wendroff scheme. Considering multistep methods might be useful since some of them have been
widely used, for instance when dealing with stiff ODE problems. From a more theoretical point of view,
it is interesting to discriminate whether some behavior exhibited by a numerical scheme arises because of
the spatial discretization or because of the chosen time integration method.

As a direct consequence of the first consistency condition (1.8), it appears that the scheme (1.4) admits
a conservative form in the following sense. There exists a linear numerical flux function F with real

2This assumption could be weakened by assuming that the ratio |a|∆t/∆x is bounded from below and from above, but
we shall restrict to the more common case where the ratio is fixed for simplicity.
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coefficients:

F (vj , . . . , vj+p+r−1) :=

p−1∑
`=−r

f` vj+`+r ,

such that

(1.10)

p∑
`=−r

a` uj+` = F (uj−r+1, . . . , uj+p)− F (uj−r, . . . , uj+p−1) .

In particular, (1.4) also takes the conservative form

(1.11)
k∑

σ=0

ασ u
n+σ
j + λ

k−1∑
σ=0

βσ

(
F (un+σ

j−r+1, . . . , u
n+σ
j+p )− F (un+σ

j−r , . . . , u
n+σ
j+p−1)

)
= 0 .

From the second consistency condition (1.9), it follows that F (u, . . . , u) = a u for any u ∈ R. This is the
usual consistency property of F with the exact flux (u 7→ a u) of the transport equation (1.1) written as
a conservation law.

Our final assumption is the standard `2-stability assumption for (1.4) when the scheme is considered
on the whole real line j ∈ Z:

Assumption 1.3 (Stability for the Cauchy problem). There exists a constant C > 0 such that, for all
∆t ∈ (0, 1], the solution to

k∑
σ=0

ασ u
n+σ
j + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` u
n+σ
j+` = 0 , j ∈ Z , n ∈ N ,

satisties

sup
n∈N

∑
j∈Z

∆x |unj |2 ≤ C
k−1∑
σ=0

∑
j∈Z

∆x |uσj |2 .

As is well-known, assumption 1.3 can be rephrased thanks to Fourier analysis. More precisely, if we
introduce the function A defined by:

(1.12) ∀z ∈ C \ {0}, A(z) :=

p∑
`=−r

a` z
` ,

then applying the Fourier transform3 to (1.4) yields for all ξ ∈ R:

k∑
σ=0

ασ ûn+σ(ξ) + λ
k−1∑
σ=0

βσ A
(
ei∆x ξ

)
ûn+σ(ξ) = 0 ,

where un is the piecewise constant function that takes the value unj on the cell [j∆x, (j + 1) ∆x). The
stability assumption 1.3 is equivalent to requiring that there exists a constant C > 0 such that for all
η ∈ R, and for all given x0, . . . , xk−1 ∈ C, the solution (xσ)σ∈N to the recurrence relation

∀n ∈ N ,
k∑

σ=0

ασ xn+σ + λ
k−1∑
σ=0

βσ A(ei η)xn+σ = 0 ,

satisfies

sup
n∈N
|xn|2 ≤ C

(
|x0|2 + · · ·+ |xk−1|2

)
.

3Here we consider temporarily that (1.4) is applied on the whole real line j ∈ Z, which makes the use of Fourier transform
legitimate.
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In particular, the closed curve {−λA(ei η) , η ∈ R} should be contained in the so-called stability region
of the numerical integration method, see [HW96, Definition V.1.1]. Observe now that the consistency
assumption 1.1 introduced above can be rewritten under the form:

(1.13) A(1) = 0 and A′(1) = a 6= 0 .

Since A vanishes at 1, 0 should belong to the stability region of the numerical integration method, which
implies (see [HNW93, Chapter III.3]):

(1.14)
k∑

σ=0

σ ασ 6= 0 .

Remark 1.4. In the case k = 1, the stability assumption 1.3 is equivalent to:

(1.15) ∀ z ∈ S1 , |1− λA(z)| ≤ 1 .

In particular, assumption 1.3 constraints the CFL number λ to be ”small enough”, and A(z) can not be
a negative real number.

Our final key assumption is the following. Its relevance is discussed later on.

Assumption 1.5. The value z = 1 is the unique root of A on S1:

∀ θ ∈ [−π, π] \ {0} , A(ei θ) 6= 0 .

1.3. Main result. The main result of this paper is the following theorem.

Theorem 1.6 (Semigroup estimate). Consider a linear scheme of the form (1.4) satisfying the consistency
assumptions 1.1 and 1.2, the stability assumption 1.3 and assumption 1.5. Consider an initial condition
u0 ∈ H2(R+) for (1.1) such that {

u0(0) = 0 , if a < 0 ,

u0(0) = u′0(0) = 0 , if a > 0 .

Let T > 0 and, for ∆t ∈ (0, 1], let us define NT as the largest integer such that ∆tNT ≤ T . Let also
µ ∈ [0, 1/3]. Then there exists a constant C > 0, that is independent of T,∆t, µ, u0 such that the solution
(unj )j≥0,n≥0 to (1.4)-(1.6)-(1.7) satisfies

(1.16) sup
n≤NT

∑
j≥0

∆x |unj |2 ≤ C
(
‖u0‖2L2(R+) + ∆t1−3µ e2T ∆tµ ‖u0‖2H2(R+)

)
.

Let us observe that (1.16) is compatible with the ”continuous” estimate

sup
t≥0
‖u(t)‖2L2(R+) ≤ C ‖u0‖2L2(R+) ,

as ∆t tends to zero. The role of assumption 1.5 is to derive a boundary layer expansion for (unj )j≥0,n≥0,

that is to decompose (unj ) as in [DL88, GS97, CHG01] under the form4

unj ∼ uint(xj , t
n) + ubl(j, tn) ,

where the boundary layer profile ubl depends on the ”fast” variable j = xj/∆x and has exponential decay
at infinity, while the interior profile uint depends on the ”slow” variable xj . As follows from the analysis
below, the derivation of such two-scale expansions is not linked to any viscous behavior of (1.4) (as the
scaling xj/∆x might suggest at first glance). If assumption 1.5 is not satisfied, it means that the numerical
schemes (1.4) supports highly oscillating wave packets of the form exp(i j θ) for some θ ∈ (0, 2π). Among
such wave packets, some may have an incoming group velocity, as occurs for the leap-frog scheme, and in
such a configuration the above two-scale expansion becomes irrelevant.

4We refer to [GV05] for a systematic derivation of boundary layers in the PDE context. Here the situation is much
favorable since we deal with scalar equations. Identifying the possible numerical boundary layer scales and amplitudes leads
to the simple ansatz we use.
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The parameter µ can diminish the T -dependence of the constants in (1.16). In particular, given any
ε > 0 and T > 0, there holds

sup
n≤NT

∑
j≥0

∆x |unj |2 ≤ C
(
‖u0‖2L2(R+) + 2 ∆t1−ε ‖u0‖2H2(R+)

)
,

for ∆t sufficiently small (depending on T ).
The article is organized as follows. Section 2 is devoted to the construction of boundary layer expansions

for solutions to (1.4), (1.6). Theorem 1.6 is proved in Section 3 by means of a careful error analysis. We
discuss some examples in Section 4 together with the relevance of assumption 1.5.

2. Numerical boundary layers

2.1. Formal derivation of the boundary layer expansion. Our first goal is to understand when the
numerical solution (unj )j≥0,n≥0 of the scheme (1.4), (1.6) can be approximated by an asymptotic boundary
layer expansion:

uapp
j,n := uint(xj , t

n) + ubl(j, tn) , j ≥ 0 , n ≥ 0 .

In the latter decomposition, we expect ubl to have fast decay at infinity. The functions uint and ubl are
to be defined in such a way that (uapp

j,n ) represents an accurate approximation of (unj ) as ∆t tends to 0.

Roughly speaking, the term uint takes care of the interior behavior of the solution far from the boundary,
and ubl involves the boundary layer correction that is localized in a neighborhood of x = 0 and matches
the boundary conditions (1.6).

We shall force the approximate solution to satisfy the initial conditions:

(2.1) uapp
j,n = unj , j ≥ 0 , n = 0, . . . , k − 1 .

In this way, the error (uapp
j,n − unj ) will satisfy a recurrence relation of the form (1.4), (1.6) with ”small”

source terms but will have zero initial data. We also expect the approximate solution to satisfy (1.6), or
rather

(2.2) uapp
j,n ' 0 , 0 ≤ j ≤ r − 1 , n ≥ k ,

where, by ' 0, we mean for instance that uapp
j,n should be O(∆t) on the boundary.

For technical reasons that will be made precise in Section 3, we shall define the boundary layer term
through a two term expansion of the form:

ubl(j, tn) := ubl,0(j, tn) + ∆xubl,1(j, tn),

involving a zero order term ubl,0 plus a first order corrector ubl,1 that will be used to remove part of the
consistency error.

We follow the discussions in [DL88, GS97, CHG01] and briefly present hereafter a schematic derivation
of the equations that will govern the three sequences uint, ubl,0 and ubl,1. To that aim, let us introduce
the following consistency error:

εj,n+k :=
1

∆t

(
k∑

σ=0

ασ u
app
j,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` u
app
j+`,n+σ

)
,

with j ≥ r, and n ≥ 0.

• At a fixed positive distance from the boundary, the limit ∆t → 0 corresponds to j → +∞ and
the boundary layer term ubl becomes negligible with respect to uint. The above consistency error
reads (up to smaller terms)

εj,n+k '
1

∆t

(
k∑

σ=0

ασ u
int
j,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` u
int
j+`,n+σ

)
.

This quantity will be of order O(∆t) provided that uint is a smooth solution to the continuous
equation (1.1) (recall the consistency assumptions of the numerical scheme (1.4)).
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• Close to the boundary, that is for a fixed index j ≥ r, the limit ∆t → 0 makes xj tend to
zero. If the interior solution uint is smooth enough, we get (recall that j is fixed) uint(xj , t

n) =
uint(0, tn) +O(∆t) and uint(0, tn+σ) = uint(0, tn) +O(∆t). Then the consistency error reads5 (up
to O(1) terms):

εj,n+k '
1

∆t

(
k∑

σ=0

ασ u
bl,0(j, tn+σ) + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` u
bl,0(j + `, tn+σ)

)
.

Due to the consistency of the numerical integration method, and assuming that ubl,0 depends
smoothly enough on the time variable, we get

εj,n+k '
1

∆x

(
k−1∑
σ=0

βσ

)
p∑

`=−r
a` u

bl,0(j + `, tn+k) ,

The first boundary layer profile ubl,0 needs therefore to satisfy the recurrence relation6:

(2.3)

p∑
`=−r

a` u
bl,0(j + `, tn) = 0 , j ≥ r , n ≥ k .

In terms of flux quantities, the relation (2.3) corresponds to requiring

p−1∑
`=−r

f` u
bl,0(j + `+ r, tn) ≡ Cst ,

with an integration constant that only depends on n, but not on j. The constant is easily seen
to be zero due to the required behavior of the boundary layer profiles at infinity. In addition,
the boundary condition (2.2) imposes (up to an O(∆t) term) the trace of ubl,0 on the numerical
boundary:

(2.4) ubl,0(j, tn) = −uint(0, tn) , 0 ≤ j ≤ r − 1 , n ≥ 0 .

• We still keep the index j fixed and expand the consistency error at the following order with respect
to ∆t. Assuming that uint is smooth enough so that its associated consistency error is O(∆t) up
to the boundary, the overall consistency error reads (up to O(∆t) terms):

εj,n+k '
1

∆t

k∑
σ=0

ασ u
bl,0(j, tn+σ) +

(
k−1∑
σ=0

βσ

)
p∑

`=−r
a` u

bl,1(j + `, tn) .

We then require the first boundary layer corrector ubl,1 to satisfy:

(2.5)

p∑
`=−r

a` u
bl,1(j + `, tn) +

1

∆t

(
k−1∑
σ=0

βσ

)−1 k∑
σ=0

ασ u
bl,0(j, tn+σ) = 0 , j ≥ r .

Since our analysis considers numerical schemes of order 1 or higher, the precise value of ubl,1 on the
numerical boundary does little matter since any other choice than the one below will introduce a
new O(∆t) error that will just have the same order as the interior consistency error. For simplicity,
we therefore require ubl,1 to satisfy;

(2.6) ubl,1(j, tn) = 0 , 0 ≤ j ≤ r − 1 , n ≥ 0 .

The above formal derivation of the profile equations (2.3) and (2.5) motivates the analysis of the
recurrence relation (2.3). More precisely, we are going to determine the solutions to (2.3) that tend to
zero at infinity. The precise definition of the approximate solution uapp is given in subsection 2.5.

5Here we use the consistency conditions for the coefficients in (1.4).
6Recall that by our consistency and stability assumptions, the sum of the βσ is nonzero.
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2.2. A preliminary result. Let us recall that the function A, which is linked to the amplification matrix
for the scheme (1.4), is defined in (1.12). The consistency assumption 1.1 implies that 1 is a simple root
of A and assumption 1.5 shows that 1 is the only root of A on the unit circle.

Remark 2.1. In the case k = 1, assumption 1.5 is obviously satisfied for every dissipative scheme (for
which we recall that there exist c > 0 and q ∈ N∗ such that for all |θ| ≤ π, |1 − λA(ei θ)| ≤ 1 − c θ2 q).
However, we underline at this level that some non-dissipative schemes satisfy assumption 1.5 too, e.g. the
Lax-Friedrichs scheme (that is considered in [CHG01]) for which A(ei θ) = cos θ − 1− i λ a sin θ).

The main result of this subsection is the following Lemma.

Lemma 2.2. Under Assumptions 1.1, 1.2, 1.3 and 1.5, the equation A(z) = 0 admits exactly R roots
(with multiplicity) in D \ {0} = {z ∈ C , 0 < |z| < 1} where

R =

{
r, if a < 0 ,

r − 1, if a > 0 .

Let us observe that in the case a > 0, r can not be zero and therefore one gets a nonnegative integer for
R. Indeed, the value r = 0 is prohibited by the fact that the numerical dependence domain would not
include the ”continuous” dependence domain, see [CFL28].

The proof of Lemma 2.2 makes use of the following simple observation which we have not found in
[HW96] and therefore state here. We keep the notations of [HNW93, Chapter III.2].

Lemma 2.3. Consider an ordinary differential equation of the form ẏ = f(y), and the explicit linear
multistep integration method:

(2.7)

k∑
σ=0

ασ yn+σ = ∆t

k−1∑
σ=0

βσ fn+σ ,

with the normalization αk = 1, |α0|+ |β0| > 0. Assume that the method is stable (in the sense of [HNW93,
Definition III.3.2]) and that it is of order 1 or higher. Then the stability region for this method contains
no positive real number.

Proof. Following [HNW93, HW96], we introduce the polynomials

%(X) :=

k∑
j=0

αj X
j , σ(X) :=

k−1∑
j=0

βj X
j .

The assumptions of Lemma 2.3 can be rephrased as:

%(1) = 0 , %′(1) = σ(1) 6= 0 ,

and % has no root of z satisfying |z| > 1. In particular, %′(1) must be positive for otherwise (recall αk = 1)
% would have a real root in the open interval (1,+∞). We therefore have σ(1) > 0.

For any given µ > 0, the real polynomial:

Pµ(X) := %(X)− µσ(X) ,

has degree k and is unitary. It tends to +∞ at +∞ and Pµ(1) = −µσ(1) < 0. Hence Pµ vanishes in the
open interval (1,+∞) and µ does not belong to the stability region of the numerical method. �

Lemma 2.3 is consistent with the plots in [HW96] of the stability regions for the explicit Adams and
Nyström methods. Observe however that some stability regions may contain complex numbers of positive
real part, e.g., the explicit Adams method of order 3.

Proof of Lemma 2.2. Under assumption 1.5, A has no other zero on S1 than z = 1 (with multiplicity 1).
On the other hand, A admits a unique pole over C, at z = 0 and of order r (because we have a−r 6= 0).
The cornerstone of the forthcoming proof is the residue theorem for meromorphic functions. Being given
Γ a direct closed complex contour encircling the origin once and on which A does not vanish, then

(2.8)
1

2 i π

∫
Γ

A′(z)

A(z)
dz = #{zeros inside Γ} −#{poles inside Γ} ,
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where zeros and poles are counted with multiplicity. The second integer on the right hand side equals r,
and we intend now to compute RΓ := #{zeros inside Γ} thanks to an appropriate choice for the contour Γ
(for which RΓ = R).

The contour Γε. Let us consider some parameter ε ∈ (0, π/4] sufficiently small (to be determined later
on), and let us define the contour Γε as S1 but for a small chord avoiding 1, see Figure 2.1. More precisely,
we consider the path Γε as the union Γε,1 ∪ Γε,2, with:

Γε,1 :=
{

ei θ , θ ∈ [ε, 2π − ε]
}
, Γε,2 :=

{
cos ε+ i ω , ω ∈ [− sin ε, sin ε]

}
.

x

y

1

ε

Γε,1

Γε,2

Figure 2.1. The integration contour Γε.

Choice of the parameter ε. Let us first observe that 1 is a simple zero of A so we can choose ε0 > 0 small
enough such that, for any ε ∈ (0, ε0], the number of zeros of A inside Γε equals the number of zeros of A
in D \ {0}.

Our goal now is to show that, for any sufficiently small ε > 0, there holds{
∓=A(e± i ε) > 0 , if a < 0 ,

±=A(e± i ε) > 0 , if a > 0 ,

and for all z ∈ Γε,2, aA(z) 6∈ R+. These properties follow from studying the variation of the function
=A(cos ε+ i ω). Namely, we compute

d

dω
=A(cos ε+ i ω) = <A′(cos ε+ i ω) = a+ < (A′(cos ε+ i ω)−A′(1)) .

Consequently, if we assume a > 0, then (ω 7→ =A(cos ε + i ω)) is increasing on [− sin ε, sin ε], while if
we assume a < 0, then (ω 7→ =A(cos ε + i ω)) is decreasing on [− sin ε, sin ε]. In any of these two cases,
A(cos ε+ i ω) is real for at most one value of ω.

We now observe that A(cos ε) is real. In particular, for any 0 < |ω| ≤ sin ε, A(cos ε + i ω) belongs
to C \ R and the sign property for =A(e± i ε) is proved. Furthermore, using A′(1) = a, we find that
A(cos ε) is positive if a is negative while A(cos ε) is negative if a is positive. We thus have, provided that
ε is sufficiently small, aA(z) 6∈ R+ for any z ∈ Γε,2. From now on, ε is fixed and the latter properties hold.

Application of the residue theorem. We denote hereafter log− the principal complex logarithm with the
usual branch cut along R−, and log+ the complex logarithm with a branch cut along R+.

For any z ∈ Γε,1, one has A(z) 6= 0 (thanks to assumption 1.5) and A(z) 6∈ R−,∗ (for otherwise the
stability region of (2.7) would contain −λA(z) ∈ R+,∗, which can not hold by Lemma 2.3). We can thus
use log− for computing the integral along Γε,1, and we get

1

2 i π

∫
Γε,1

A′(z)

A(z)
dz =

1

2 i π

(
log−A(e−i ε)− log−A(ei ε)

)
.

The integral along Γε,2 depends on the sign of a.
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• Suppose a < 0. Then we know that for all z ∈ Γε,2, A(z) does not belong to R−. We can again
use the log− logarithm and derive

1

2 i π

∫
Γε,2

A′(z)

A(z)
dz =

1

2 i π

(
log−A(ei ε)− log−A(e−i ε)

)
.

Summing the two contributions over Γε,1 and Γε,2 we finally obtain

1

2 i π

∫
Γε

A′(z)

A(z)
dz = 0 ,

and R = r.
• Suppose now a > 0. Then we know that for all z ∈ Γε,2, A(z) does not belong to R+. We use the

log+ logarithm and derive

1

2 i π

∫
Γε,2

A′(z)

A(z)
dz =

1

2 i π

(
log+ A(ei ε)− log+ A(e−i ε)

)
.

Summing the two contributions over Γε,1 and Γε,2, we obtain

R− r =
1

2 i π

(
log+ A(ei ε)− log−A(ei ε)

)
− 1

2 i π

(
log+ A(e−i ε)− log−A(e−i ε)

)
.

The difference log+− log− equals 0 on Ω+ :=
{
z ∈ C , = z > 0

}
and equals 2 i π on Ω− :=

{
z ∈

C , = z < 0
}

. To complete the proof, we recall that A(e±i ε) belong to Ω±, and we thus get
R− r = −1.

�

2.3. The leading boundary layer profile. Using the flux function F , we can rewrite the boundary
layer profile equations (2.3), (2.4), and introduce the following definition.

Definition 2.4. Being given a real number u, we call (vj)j∈N a boundary layer profile associated with u
a sequence that satisfies the following requirements:

(i) v0 = · · · = vr−1 = −u,
(ii) F (u+ vj , . . . , u+ vj+p+r−1) = F (u, . . . , u), for all j ≥ 0,

(iii) limj→∞ vj = 0.

Let us comment some facts. The first point (i) above is related to the Dirichlet condition (2.4) with u in
place of uint(0, tn) (here the time variable is frozen). As a consequence of the linearity of the numerical
flux F , the above condition (ii) reads

∀ j ≥ 0 ,

p−1∑
`=−r

f` vj+`+r = 0 ,

which is equivalent to

(2.9) ∀ j ≥ 0 ,

p∑
`=−r

a` vj+`+r = 0 ,

if condition (iii) is satisfied. Boundary layer profiles are therefore the zero-limit solutions to the linear
recurrence relation (2.9) for which the r first terms of the sequence coincide.

Definition 2.5. The set of all the values u such that a stable boundary layer associated to u exists is
denoted

Cnum =
{
u ∈ R, ∃ v ∈ RN boundary layer profile associated with u

}
.

This definition is the same as in [DL88, GS97, CHG01]. The set Cnum encodes the so-called residual
boundary conditions for (1.1) coming from the continuous limit ∆t→ 0 in (1.4), (1.6). We are now ready
to prove the following result that characterizes the boundary layer profiles for the scheme (1.4).

Proposition 2.6. Under Assumptions 1.1, 1.2, 1.3 and 1.5, there holds:
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• if a > 0, then Cnum = {0} and the unique boundary layer profile associated with 0 is the zero
sequence (vj = 0 for all j ≥ 0);
• if a < 0, then Cnum = R and for any u ∈ R there is a unique boundary layer profile (vj)j∈N

associated with u, that decreases exponentially fast at infinity. We may write

(2.10) vj = uwj , j ≥ 0 ,

where (wj)j∈N denotes the boundary layer profile associated with u = 1.

Proof. As explained above, our goal is to determine the zero-limit solutions to the recurrence (2.9) that
satisfy condition (i) in Definition 2.4. We thus look for the (stable) roots to the polynomial equation

p∑
`=−r

a` z
`+r = 0 .

Since this polynomial does not vanish at zero, its roots in D coincide (with equal multiplicity) with the
zeros of A in D \ {0}. Lemma 2.2 precisely gives the number of such zeros.

The zero-limit solutions to the linear recurrence (2.9) are spanned by the sequences Z(m) (m = 1, . . . , r
if a < 0 and m = 1, . . . , r − 1 if a > 0):

(2.11) (jν zji )j∈N , 0 ≤ ν < µi , 1 ≤ i ≤ q ,

where z1, . . . , zq denote the pairwise distinct zeros of A in D \ {0} and µ1, . . . , µq their corresponding
multiplicity.

• We first assume a > 0. The subspace of zero-limit solutions to the linear recurrence (2.9) has

dimension r − 1. Let u ∈ R. We are looking for a sequence v =
∑r−1

m=1 ωm Z
(m) such that

v0 = · · · = vr−1 = −u, which is equivalent toZ
(1)
0 . . . Z

(r−1)
0 1

...
...

...

Z
(1)
r−1 . . . Z

(r−1)
r−1 1




ω1
...

ωr−1

u

 = 0 .

The involved matrix in Mr,r(C) is invertible and therefore u = 0, v = 0.
• We now assume a < 0. The subspace of zero-limit solutions to the linear recurrence (2.9) has

dimension r. Let u ∈ R. We are looking for a sequence v =
∑r

m=1 ωm Z
(m) such that v0 = · · · =

vr−1 = −u, which is equivalent toZ
(1)
0 . . . Z

(r)
0

...
...

Z
(1)
r−1 . . . Z

(r)
r−1


ω1

...
ωr

 = −u

1
...
1

 .

The involved matrix of Mr,r(C) is invertible and thus, for each given u ∈ R there is a unique
solution (ω1, . . . , ωr) ∈ Cr which determines the boundary layer profile associated with u. By
linearity, this profile takes the form (2.10) and it is exponentially decreasing.

�

2.4. The first boundary layer corrector. Our goal in this subsection is to construct a solution to the
first boundary layer corrector equations (2.5), (2.6). In what follows, the function ubl,0 will be a boundary
layer profile associated with some discretized trace of the exact solution to (1.1). In the case a > 0, there
is no boundary layer profile but zero and the solution to (2.5), (2.6) is also zero. In the case a < 0,
the space of boundary layer profiles is spanned by the sequence (wj)j∈N, and it is therefore sufficient to
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construct a sequence that satisfies

∀ j ≥ r ,
p∑

`=−r
a` w̃j+` + wj = 0 ,(2.12)

w̃0 = · · · = w̃r−1 = 0 , lim
j→∞

w̃j = 0 .

Lemma 2.7. Under the assumptions of Proposition 2.6, in the case a < 0, there exists a unique solution
(w̃j)j∈N to (2.12) and this solution decays exponentially fast at infinity.

Proof. Uniqueness easily follows from the linearity of (2.12) and Proposition 2.6. As far as existence is
concerned, we keep the notation of Proposition 2.6 and decompose the sequence (wj)j∈N as

w =
r∑

m=1

ωm Z
(m) ,

where the Z(m)’s are given by (2.11). Due to the linearity of (2.12), we first construct a zero-limit solution
to the recurrence

∀ j ≥ r ,
p∑

`=−r
a`W

(m)
j+` + Z

(m)
j = 0 , Z

(m)
j = jν zji ,

which is done by choosing W (m) of the form

W
(m)
j =

µi−1∑
µ=0

ςµ j
µi+µ zji ,

and by identifying the coefficients ς0, . . . , ςµi−1 (this procedure gives an invertible upper triangular system).

Summing finitely many such sequences W (m), we get a sequence W that decays exponentially at infinity
and that is a solution to the recurrence relation

∀ j ≥ r ,
p∑

`=−r
a`Wj+` + wj = 0 .

The sequence (w̃j) is obtained by correcting the initial conditions for (Wj), that is by choosing

w̃ := W +
r∑

m=1

$m Z
(m) ,

with Z
(1)
0 . . . Z

(r)
0

...
...

Z
(1)
r−1 . . . Z

(r)
r−1


$1

...
$r

 = −

 W0
...

Wr−1

 .

�

2.5. The approximate solution. Let us recall that the solution to (1.1), supplemented with the homo-
geneous Dirichlet condition (1.2) in the case a > 0, is given by

(2.13) uex(x, t) = u0(x− a t), x ≥ 0, t ≥ 0 ,

where the initial condition u0 has been extended by 0 to R− in the case a > 0. This suggests defining the
interior numerical solution as

uint
j,n :=

1

∆x

∫ xj+1

xj

u0(x− a tn) dx , j ≥ 0 , n ≥ 0 .

In particular, (1.7) gives

∀n = 0, . . . , k − 1 , ∀ j ≥ 0 , uint
j,n = unj .
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In the case a > 0, there is no boundary layer and we define the approximate solution uapp to (1.4),
(1.6) as

uapp
j,n := uint

j,n , j ≥ 0 , n ≥ 0 .

In the case a < 0, there exists a one-dimensional space of boundary layer profiles and we can also
construct boundary layer correctors. In view of (2.4), we first need to approximate the trace of the exact
solution uex and therefore set

∀n ≥ 0 , utr
n :=

1

∆t

∫ tn+1

tn
u0(−a t) dt .

We now define the leading order boundary layer profile ubl,0 and first order boundary layer corrector ubl,1

as follows:

ubl,0
j,n :=

{
0 , j ≥ 0 , n = 0, . . . , k − 1 ,

utr
n wj , j ≥ 0 , n ≥ k ,

ubl,1
j,n :=

0 , j ≥ 0 , n = 0, . . . , k − 1 ,(
∆t
∑k−1

σ=0 βσ

)−1 (∑k
σ=0 ασ u

tr
n+σ

)
w̃j , j ≥ 0 , n ≥ k .

The approximate solution uapp to (1.4), (1.6) is then defined by:

(2.14) uapp
j,n := uint

j,n + ubl,0
j,n + ∆xubl,1

j,n , j ≥ 0 , n ≥ 0 .

Thanks to our choice for the initial data, we again have:

uapp
j,n = unj , j ≥ 0 , n = 0, . . . , k − 1 .

3. Proof of the main result

The error analysis uses the expression of the approximate solution (uapp
j,n )j≥0,n≥0 introduced in subsec-

tion 2.5. We thus focus on the interior consistency error that is defined by:

εj,n+k :=
1

∆t

(
k∑

σ=0

ασ u
app
j,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` u
app
j+`,n+σ

)
,

with j ≥ r and n ≥ 0, and on the boundary errors:

ηj,n := uapp
j,n , 0 ≤ j ≤ r − 1 , n ≥ k .

We recall that the approximate solution uapp has the same initial data as the exact numerical solution
(whatever the sign of a):

uapp
j,n = unj , j ≥ 0 , n = 0, . . . , k − 1 .

Consequently, the error:

ej,n := uapp
j,n − u

n
j , j ≥ 0 , n ≥ 0 ,

is a solution to the following numerical scheme with presumably small forcing terms and zero initial data:

(3.1)


∑k

σ=0 ασ ej,n+σ + λ
∑k−1

σ=0 βσ
∑p

`=−r a` ej+`,n+σ = ∆t εj,n+k , j ≥ r , n ≥ 0 ,

ej,n = ηj,n , 0 ≤ j ≤ r − 1 , n ≥ k ,
ej,0 = · · · = ej,k−1 = 0 , j ≥ 0 .

The aim of the following two subsections is to quantify the smallness of the source terms in (3.1) in order
to apply the stability estimate of [GT81]. The smallness of the source terms will yield, up to losing some
powers of ∆t, a semigroup estimate for (ej,n)j≥0,n≥0 which will eventually give the semigroup estimate
for the numerical solution (unj )j≥0,n≥0.
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3.1. The case of an incoming velocity. We assume here a > 0 so that no boundary layer arises in
the solution to (1.4), (1.6) (Cnum = {0}). The approximate solution merely reads:

uapp
j,n =

1

∆x

∫ xj+1

xj

u0(y − a tn) dy , j ≥ 0 , n ≥ 0 ,

where we recall that u0 has been extended by zero to R−. From the flatness conditions u0(0) = u′0(0) = 0,
we have u0 ∈ H2(R). The errors in (3.1) satisfy the following bounds.

Proposition 3.1. Let us assume a > 0. Under the assumptions of Theorem 1.6 and in the CFL
regime (1.5), there exists a constant C > 0 that is independent of u0 and ∆t ∈ (0, 1] such that

sup
n≥k

∑
j≥r

∆x |εj,n|2 ≤ C ∆t2 ‖u′′0‖2L2(R+) ,(3.2)

∑
n≥k

r−1∑
j=0

∆t |ηj,n|2 ≤ C ∆t2 ‖u′0‖2L2(R+) .(3.3)

Proof. Let us first consider the boundary error terms (ηj,n). Since u0 vanishes on R−, there holds ηj,n = 0
if n ≥ r/(a λ). The sum in (3.3) therefore reduces to finitely many terms (and the number of such terms is
independent of ∆t). We consider some space index j ∈ {0, . . . , r−1} and some time index k ≤ n < r/(a λ),
and write

ηj,n =
1

∆x

∫ xj+1

xj

u0(x− a tn) dx =
1

∆x

∫ xj+1

xj

∫ x−a tn

0
u′0(y) dy dx .

We then apply the Cauchy-Schwarz inequality and get

|ηj,n|2 ≤ C
∫ xj+1

xj

∣∣∣∣∫ x−a tn

0
u′0(y)2 dy

∣∣∣∣ dx ≤ C ∆t ‖u′0‖2L2(R+) .

Summing the finitely many nonzero error terms, we get (3.3).
We now deal with the consistency error in the interior domain. Using the consistency assumptions 1.1

and 1.2, we have:

∆t εj,n+k =
1

∆x

k∑
σ=0

ασ

∫ xj+1

xj

u0(x− a tn+σ)− u0(x− a tn) dx

+
λ

∆x

k−1∑
σ=0

βσ

p∑
`=−r

a`

(∫ xj+`+1

xj+`

u0(x− a tn+σ) dx−
∫ xj+1

xj

u0(x− a tn+σ) dx

)

= − 1

∆x

k∑
σ=0

ασ

∫ xj+1

xj

∫ 0

−a σ∆t
u′0(x+ y − a tn) dy dx

+
λ

∆x

k−1∑
σ=0

βσ

p∑
`=−r

a`

∫ xj+1

xj

∫ `∆x

0
u′0(x+ y − a tn+σ) dy dx

= − λ

∆x

k∑
σ=0

σ ασ a

∫ xj+1

xj

∫ ∆x

0
u′0(x− a σ λ y − a tn) dy dx

+
λ

∆x

k−1∑
σ=0

βσ

p∑
`=−r

` a`

∫ xj+1

xj

∫ ∆x

0
u′0(x+ ` y − a tn+σ) dy dx .

Using the consistency assumptions 1.1 and 1.2 again, we can add the zero quantity

λ

∆x

(
k∑

σ=0

σ ασ a−
k−1∑
σ=0

βσ

p∑
`=−r

` a`

) ∫ xj+1

xj

∫ ∆x

0
u′0(x− a tn) dy dx ,
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and get

∆t εj,n+k =
λ

∆x

k∑
σ=0

σ ασ a

∫ xj+1

xj

∫ ∆x

0

∫ 0

−a σ λ y
u′′0(x+ x′ − a tn) dx′ dy dx

+
λ

∆x

k−1∑
σ=0

βσ

p∑
`=−r

` a`

∫ xj+1

xj

∫ ∆x

0

∫ ` y−a σ∆t

0
u′′0(x+ x′ − a tn) dx′ dy dx .(3.4)

We now apply successive Cauchy-Schwarz inequalities. In the CFL regime (1.5), we get for instance∣∣∣∣∣
∫ xj+1

xj

∫ ∆x

0

∫ 0

−a σ λ y
u′′0(x+ x′ − a tn) dx′ dy dx

∣∣∣∣∣
2

≤ C ∆t3
∫ xj+1

xj

∫ ∆x

0

∫ 0

−a σ λ y
u′′0(x+ x′ − a tn)2 dx′ dy dx

≤ C ∆t4
∫ xj+1

xj

∫ 0

−a σ∆t
u′′0(x+ x′ − a tn)2 dx′ dx

≤ C ∆t5
∫ xj+1

xj−a k∆t
u′′0(x− a tn)2 dx .

The other error term in (3.4) is estimated similarly, and in the end, we can show that there exists a fixed
integer j0 > 0 (that only depends on the CFL number λ, a and k) such that

∀ j ≥ r , ∀n ∈ N , |εj,n+k|2 ≤ C ∆t

∫ xj+p+1

xj−j0

u′′0(x− a tn)2 dx .

The estimate (3.2) follows immediately. �

3.2. The case of an outgoing velocity. From now on, we consider the case of an outgoing velocity
a < 0 for which non-trivial boundary layers appear in the solution to the numerical scheme (1.4), (1.6)
(Cnum = R). The following Proposition provides error bounds for the source terms in the numerical
scheme (3.1).

Proposition 3.2. Under the assumptions of Theorem 1.6 and in the CFL regime (1.5), there exists a
constant C > 0 that is independent of u0 and ∆t ∈ (0, 1] such that

sup
n≥2 k

∑
j≥r

∆x |εj,n|2 ≤ C ∆t2 ‖u′′0‖2L2(R+) ,(3.5)

sup
k≤n≤2 k−1

∑
j≥r

∆x |εj,n|2 ≤ C ∆t ‖u′0‖2H1(R+) ,(3.6)

∑
n≥k

r−1∑
j=0

∆t |ηj,n|2 ≤ C ∆t2 ‖u′0‖2L2(R+) .(3.7)

Proof. We first prove (3.7) and then deal with (3.5) and (3.6).
Errors at the boundary. We start with the proof of the estimate (3.7). From the definition (2.14), we
obtain (recall n ≥ k and j = 0, . . . , r − 1):

ηj,n = uapp
j,n =

1

∆x

∫ xj+1

xj

u0(x+ |a| tn) dx− 1

∆t

∫ tn+1

tn
u0(|a| t) dt.

With the notation (1.5), the error ηj,n can be written as

ηj,n =
τ

∆t

∫ ∆t/τ

0
u0(xj + |a| tn + |a| s)− u0(|a| tn) ds− 1

∆t

∫ ∆t

0
u0(|a| tn + |a| s)− u0(|a| tn) ds

=
τ

∆t

∫ ∆t/τ

0

∫ xj+|a| s

0
u′0(|a| tn + y) dy ds− 1

∆t

∫ ∆t

0

∫ |a| s
0

u′0(|a| tn + y) dy ds .
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Each term in ηj,n is estimated by applying the Cauchy-Schwarz inequality. For instance, we have∣∣∣∣∣ 1

∆t

∫ ∆t

0

∫ |a| s
0

u′0(|a| tn + y) dy ds

∣∣∣∣∣
2

≤ C ∆t

∫ |a|∆t
0

u′0(|a| tn + y)2 dy ,

and similarly, we have∣∣∣∣∣ τ∆t
∫ ∆t/τ

0

∫ xj+|a| s

0
u′0(|a| tn + y) dy ds

∣∣∣∣∣
2

≤ C ∆t

∫ r∆x

0
u′0(|a| tn + y)2 dy .

Summing over the n’s and the finitely many j’s, we derive the bound (3.7).
Errors in the interior. We decompose the consistency error εj,n in (3.1) as

εj,n = εint
j,n + εbl

j,n ,

with self-explanatory notation. The estimate of the interior consistency error εint
j,n follows from the exact

same arguments as we used in the case of an incoming velocity. The only difference is that, because of
the sign of a, we do not need to extend u0 by zero to R− and no assumption on the behavior of u0 at 0
is needed to derive the estimate

(3.8) sup
n≥k

∑
j≥r

∆x |εint
j,n|2 ≤ C ∆t2 ‖u′′0‖2L2(R+) .

We now focus on the new consistency error that comes from the boundary layer terms in uapp:

εbl
j,n+k =

1

∆t

(
k∑

σ=0

ασ u
bl,0
j,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` u
bl,0
j+`,n+σ

)
+

1

λ

k∑
σ=0

ασ u
bl,1
j,n+σ +

k−1∑
σ=0

βσ

p∑
`=−r

a` u
bl,1
j+`,n+σ

=
1

∆t

k∑
σ=0

ασ u
bl,0
j,n+σ +

1

λ

k∑
σ=0

ασ u
bl,1
j,n+σ +

k−1∑
σ=0

βσ

p∑
`=−r

a` u
bl,1
j+`,n+σ .

In the case n ≥ k, we use the definition of the boundary layer profile and corrector ubl,0, ubl,1 to simplify
the latter expression and get7

εbl
j,n+k =

1

λ

k∑
σ=0

ασ (ubl,1
j,n+σ − u

bl,1
j,n ) +

k−1∑
σ=0

βσ

p∑
`=−r

a` (ubl,1
j+`,n+σ − u

bl,1
j+`,n) .

The first boundary layer corrector is given in subsection 2.5. In particular, the error εbl
j,n+k can be

decomposed as a linear combination of sequences of the form

w̃j+`
∆t

k∑
σ′=0

ασ′ (u
tr
n+σ+σ′ − utr

n+σ′) ,

with σ = 0, . . . , k and ` = −r, . . . , p. Since the sequence (w̃j) is exponentially decreasing, we have

sup
n≥k

∑
j≥r

∆x |εbl
j,n+k|2 ≤ C ∆x sup

n≥k

k∑
σ=0

1

∆t2

∣∣∣∣∣
k∑

σ′=0

ασ′ (u
tr
n+σ+σ′ − utr

n+σ′)

∣∣∣∣∣
2

≤ C

∆t
sup
n≥k

k∑
σ=0

∣∣∣∣∣
k∑

σ′=0

ασ′ (u
tr
n+σ+σ′ − utr

n+σ′ − utr
n+σ + utr

n )

∣∣∣∣∣
2

.

We compute

utr
n+σ+σ′ − utr

n+σ′ − utr
n+σ + utr

n =
a2

∆t

∫ ∆t

0

∫ σ∆t

0

∫ σ′∆t

0
u′′0(|a| tn + |a| s1 + |a| s2 + |a| s3) ds3 ds2 ds1 ,

7Here we use the consistency assumption 1.2.
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and the Cauchy-Schwarz inequality yields

|utr
n+σ+σ′ − utr

n+σ′ − utr
n+σ + utr

n |2 ≤ C ∆t3
∫ (2 k+1) ∆t

0
u′′0(|a| tn + |a| s)2 ds .

We have thus derived the estimate

sup
n≥k

∑
j≥r

∆x |εbl
j,n+k|2 ≤ C ∆t2 ‖u′′0‖2L2(R+) .

Together with (3.8), this already proves (3.5).
We turn to the proof of (3.6). It only remains to estimate the `2j norm of (εbl

j,k), . . . , (ε
bl
j,2 k−1) because

the interior errors (εint
j,k), . . . , (ε

int
j,2 k−1) already satisfy (3.8), which is not larger than the right hand side in

(3.6). Let us explain how we derive the estimate for (εbl
j,k). The remaining terms are similar. The error

εbl
j,k reads

εbl
j,k =

1

∆t
ubl,0
j,k +

1

λ
ubl,1
j,k =

wj
∆t

utr
k +

w̃j
λ

(
∆t

k−1∑
σ=0

βσ

)−1 k∑
σ=0

ασ u
tr
k+σ ,

so we have ∑
j≥r

∆x |εbl
j,k|2 ≤

C

∆t

k∑
σ=0

|utr
k+σ|2 .

We now use the assumption u0(0) = 0 of Theorem 1.6 and get

utr
k+σ =

1

∆t

∫ ∆t

0

∫ |a| (tk+σ+s)

0
u′0(y) dy ds .

The Cauchy-Schwarz inequality then gives

|utr
k+σ|2 ≤ C ∆t

∫ |a| tk+σ+1

0
u′0(y)2 dy ≤ C ∆t2 ‖u′0‖2L∞(R+) ≤ C ∆t2 ‖u′0‖2H1(R+) .

We thus get (3.6) for the sequence (εj,k) and the remaining terms (εbl
j,k+1), . . . , (εbl

j,2 k−1) are dealt with in

the same (rather crude) way. �

Propositions 3.1 and 3.2 imply the following result which uses GKS type norms.

Proposition 3.3. Under the assumptions of Theorem 1.6 and in the CFL regime (1.5), there exists a
constant C > 0 that is independent of u0 and ∆t ∈ (0, 1], such that for all γ > 0 there holds∑

n≥k

∑
j≥r

∆t∆x e−2nγ∆t |εj,n|2 ≤ C
(

1 +
1

γ

)
∆t2 ‖u0‖2H2(R+) ,(3.9)

∑
n≥k

r−1∑
j=0

∆t e−2nγ∆t |ηj,n|2 ≤ C ∆t2 ‖u0‖2H1(R+) .(3.10)

Proof of Proposition 3.3. The proof of (3.10) is immediate and follows from either (3.3) or (3.7) by using
γ > 0 (so that the exponential factors in (3.10) are not larger than 1).

The proof of (3.9) follows from either (3.2) or (3.5)-(3.6). In the incoming case (a > 0), we use (3.2)
and get∑

n≥k

∑
j≥r

∆t∆x e−2nγ∆t |εj,n|2 ≤ C ∆t3 ‖u0‖2H2(R+)

∑
n≥k

e−2nγ∆t

≤ C

e2 γ∆t − 1
∆t3 ‖u0‖2H2(R+) ≤

C

γ
∆t2 ‖u0‖2H2(R+) ,
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which is even better than (3.9). In the outgoing case, we use (3.5)-(3.6) and get∑
n≥k

∑
j≥r

∆t∆x e−2nγ∆t |εj,n|2 ≤ C ∆t2 ‖u0‖2H2(R+) + C ∆t3 ‖u0‖2H2(R+)

∑
n≥2 k

e−2nγ∆t

≤ C
(

1 +
1

γ

)
∆t2 ‖u0‖2H2(R+) .

�

Remark 3.4. If we had not included the boundary layer corrector ubl,1 in the approximate solution, the right
hand side in the error estimate (3.9) would have been of the form ∆t ‖u0‖2H2(R+) instead of ∆t2 ‖u0‖2H2(R+),

which would have not been sufficient to derive (1.16) because there is a loss of a factor ∆t in the derivation
of the estimate (3.12) below.

3.3. The semigroup estimate. We now prove Theorem 1.6. We apply the main result8 of [GT81] which
states that the numerical scheme (3.1) is strongly stable in the sense of [GKS72]. In other words, there
exists a constant C > 0, that is independent of the parameter γ > 0, such that there holds:

(3.11)
γ

1 + γ∆t

∑
n≥0

∑
j≥0

∆t∆x e−2nγ∆t |enj |2 +
∑
n≥0

r+p−1∑
j=0

∆t e−2nγ∆t |enj |2

≤ C

1 + γ∆t

γ

∑
n≥k

∑
j≥r

∆t∆x e−2nγ∆t |εnj |2 +
∑
n≥k

r−1∑
j=0

∆t e−2nγ∆t |ηnj |2


≤ C ∆t2 ‖u0‖2H2(R+)

(
γ∆t+ 1

γ

(
1 +

1

γ

)
+ 1

)
,

where we have used Proposition 3.3 to derive the second inequality in (3.11). We choose γ = ∆tµ, with
µ ∈ [0, 1/3]. We thus derive from (3.11) the bound∑

n≥0

∆t e−2n∆t1+µ
∑
j≥0

∆x |enj |2 ≤ C ∆t2−3µ ‖u0‖2H2(R+) .

In particular, a very crude lower bound for the left hand side gives

(3.12) sup
n≥0

e−2n∆t1+µ
∑
j≥0

∆x |enj |2 ≤ C ∆t1−3µ ‖u0‖2H2(R+) .

The semigroup estimate (3.12) yields the bound

∀n ∈ N ,
∑
j≥0

∆x |unj |2 ≤ 2
∑
j≥0

∆x |uapp
j,n |

2 + C e2n∆t1+µ ∆t1−3µ ‖u0‖2H2(R+) ,

with a constant C that is uniform with respect to all the parameters. We now derive a semigroup estimate
for the approximate solution uapp. In the case of an incoming transport equation (a > 0), we have

uapp
j,n = uint

j,n =
1

∆x

∫ xj+1

xj

u0(x− a tn) dx ,

for all j, n ∈ N (recall that u0 vanishes on R−). In particular, the Cauchy-Schwarz inequality yields∑
j≥0

∆x |uapp
j,n |

2 ≤ ‖u0‖2L2(R+) ,

and we get

∀n ∈ N ,
∑
j≥0

∆x |unj |2 ≤ 2 ‖u0‖2L2(R+) + C ∆t1−3µ e2n∆t1+µ ‖u0‖2H2(R+) ,

8As a matter of fact, the main result of [GT81] requires more restrictive conditions than Assumption 1.3, but the extension
of the result of [GT81] to numerical schemes that satisfy Assumption 1.3 was performed in [Cou13].
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which gives (1.16). We now consider the case of an outgoing transport equation (a < 0) and derive a
semigroup estimate for the approximate solution uapp. We still have∑

j≥0

∆x |uint
j,n|2 ≤ ‖u0‖2L2(R+) ,

and we thus focus on the semigroup estimate for the boundary layer profile and corrector. Let us first
consider the boundary layer profile ubl,0, for which we have

sup
n≥0

∑
j≥0

∆x |ubl,0
j,n |

2 = sup
n≥k

∑
j≥0

∆x |ubl,0
j,n |

2 = sup
n≥k

∆x |utr
n |2

∑
j≥0

w2
j

≤ sup
n≥k

C

∆t

∣∣∣∣∣
∫ tn+1

tn
u0(|a| t) dt

∣∣∣∣∣
2

≤ C ‖u0‖2L2(R+) .

We now deal with the first boundary layer corrector ∆xubl,1, for which we have

sup
n≥0

∑
j≥0

∆x |∆xubl,1
j,n |

2 = sup
n≥k

∑
j≥0

∆x3 |ubl,1
j,n |

2 = sup
n≥k

C ∆x

∣∣∣∣∣
k∑

σ=0

ασ u
tr
n+σ

∣∣∣∣∣
2 ∑
j≥0

w̃2
j

≤ C ∆t sup
n≥k

k∑
σ=0

|utr
n+σ|2 ≤ C ‖u0‖2L2(R+) .

As in the incoming case, we have thus derived the bound∑
j≥0

∆x |uapp
j,n |

2 ≤ C ‖u0‖2L2(R+) ,

and we get (1.16) accordingly.

4. Example and counterexample

4.1. A 4 time-step 5 point centered scheme. As a first numerical illustration of the above results in
the case of an outgoing velocity a = −1, we consider the following numerical scheme. The time-stepping is
solved using the 3rd order explicit Adams-Bashforth method, so that assumption 1.2 is satisfied. The space
discretization of the advection term a ∂xu is based on a centered five-point approximation supplemented
with a fourth order stabilizing dissipative term:

(4.1)

un+1
j = unj − λ

(
23

12
fnj −

16

12
fn−1
j +

5

12
fn−2
j

)
,

fnj := a
−unj+2 + 8unj+1 − 8unj−1 + unj−2

12
−
−unj+2 + 4unj+1 − 6unj + 4unj−1 − unj−2

24
.

As we will show with numerical experiments, this scheme displays numerical boundary layers when com-
bined with Dirichlet boundary conditions. Let us compute A:

A(z) =
a

12
(−z2 + 8z − 8z−1 + z−2)− 1

24
(−z2 + 4z − 6 + 4z−1 − z−2),

from which we get A(1) = 0 and A′(1) = a and the space discretization satisfies assumption 1.1. Moreover,
for any θ ∈ R, one gets

A(eiθ) = −a i
6

(sin(2θ)− 8 sin(θ))− 1

12
(− cos(2θ) + 4 cos(θ)− 3) , and <(A(eiθ)) =

2

3
sin4

(
θ

2

)
,

Therefore the only root of A(eiθ) in [−π, π] is θ = 0. This ensures that assumption 1.5 is satisfied.
Figure 4.1 below pictures the closed curve

{
−λA(eiη), η ∈ R

}
for the choice λ = 0.4 (blue curve), together

with the exterior boundary of the stability domain of the time integrator (red dashed curve) ; see [HW96,
HNW93] for details. Let us observe that the stability assumption 1.3 for the Cauchy problem is satisfied.
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Figure 4.1. Verification of the stability assumption 1.3 for the 3rd order scheme (4.1).

The numerical test case concerns the following initial condition:

u0(x) = e−100(x−0.5)2 , x ∈ [0, 1] ,

together with homogeneous Dirichlet conditions at both left and right boundaries (with no significant
effect arising from the right boundary due to the incoming situation with a = −1 and the absence of
boundary layer at x = 1). We compute the solution on N = 256 uniformly spaced grid cells, until
time T = 0.5. At this time, the initial bump crosses the left boundary with the highest strength. As
expected, the numerical solution (unj ) develops some boundary layer in the neighborhood of x = 0 due
to the incompatibility of the homogeneous Dirichlet condition unj = 0, 0 ≤ j ≤ r − 1, with the effective

trace of the solution uint(0+, T ) = 1. We then observe on Figure 4.2 an oscillating pattern that does not
disappear as ∆x tends to 0.

Figure 4.2. Numerical solution and exact solution at time T=0.5 (256 grid points).

The main term of the proposed boundary layer expansion is a linear combination of two geometric
sequences generated by the roots of the equation A(z) = 0 in D \ {0} (see Lemma 2.2). In the present
case, we obtain numerically z1 ' −0.6595 and z2 ' 0.0809. The precise boundary layer expansion
ubl,0(j, T ) + ∆xubl,1(j, T ) is depicted with crosses on the left picture of Figure 4.3 for the first 20 grid
cells. Notice that it depends only on the trace of the solution at the considered time utr

n and on the discrete
in time derivative of this trace, through the corrective term ubl,1. It fits quite well the difference between
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the numerical solution and the exact one unj − uint(xj , T ) (blue curve). On the right picture of Figure 4.3

is represented the error in this boundary layer expansion unj −
[
uint(xj , T ) + ubl,0(j, T ) + ∆xubl,1(j, T )

]
in the first 50 grid cells.

Figure 4.3. Boundary layer expansion at time T=0.5 (256 grid points)

The scheme (4.1) is third order in time and space accurate. We now consider the effective accuracy of
this scheme for the IBVP problem by computing the `2([0, 1]) error at a final given time for successive
values of 2M grid points, 5 ≤M ≤ 12. More precisely, given a time T > 0, we compute the following two
quantities, where n = NT is the first integer such that NT∆t ≥ T : 2M∑

j=0

∆x
∣∣unj − uint(xj , t

n)
∣∣21/2

, and

 2M∑
j=0

∆x
∣∣unj − uapp(xj , t

n)
∣∣21/2

.

At a first time T = 0.125 at which no significant boundary layer has appeared at x = 0, the convergence
of both quantities occur with order 3, see Figure 4.4 on the left. For very thin grids, one observes however
a slight loss of accuracy when computing the usual numerical error. It corresponds to the presence of a
very small boundary layer that deteriorates the effective order of accuracy.

At a later time T = 0.4 at which the boundary layer is sufficiently high to affect the convergence, the
usual numerical error is strongly increased and the apparent order of accuracy is severely damaged: in
Figure 4.4 on the right, we observe a numerical accuracy of order 0.5 for the usual numerical error, and
of 1.5 for the error in the boundary layer expansion. These orders are clearly interpretable thanks to the
boundary layer expansion.

4.2. The leap-frog scheme. We now consider the usual three-time step leap-frog scheme, with a three
point stencil in space:

(4.2)
un+1
j − un−1

j

2∆t
+ a

unj+1 − unj−1

2∆x
= 0 .

The scheme corresponds to the so-called Nyström method of order 2 (also called the mid-point formula)
combined with the center differentiation formula for the space discretization. The corresponding function
A equals 1

2(z − z−1), and therefore vanishes at −1. Assumption 1.5 is no longer satisfied and Figure 4.5
below illustrates that the failure of Assumption 1.5 gives rise to a completely different behavior. Namely,
we compute the numerical solution for (4.2) with a = −1 and homogeneous Dirichlet boundary conditions
at different time levels, for the same kind of bump initial data. As the bump crosses the left boundary, a
highly oscillatory wave packet emerges from the boundary and propagates with velocity +1 towards the
right. The envelope of this wave packet is exactly the one of the initial condition, see Figure 4.5. The
latter phenomenon has long been identified of course, see, e. g., [Tre82].



22 BENJAMIN BOUTIN & JEAN-FRANÇOIS COULOMBEL

Figure 4.4. Convergence in log/log scale. Solution at time T = 0.125 with no significant
boundary layer (left) / at time T = 0.4 with an important boundary layer (right).

Figure 4.5. Leap-frog scheme, solution at time T = 0, T = 0.2, T = 0.5 and T = 1
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CNRS, Université de Nantes, Laboratoire de Mathématiques Jean Leray (CNRS UMR6629), 2 rue de la
Houssinière, BP 92208, 44322 Nantes Cedex 3, France.

E-mail address: Jean-Francois.Coulombel@univ-nantes.fr


	1. Introduction and main result
	1.1. Introduction
	1.2. Notations
	1.3. Main result

	2. Numerical boundary layers
	2.1. Formal derivation of the boundary layer expansion
	2.2. A preliminary result
	2.3. The leading boundary layer profile
	2.4. The first boundary layer corrector
	2.5. The approximate solution

	3. Proof of the main result
	3.1. The case of an incoming velocity
	3.2. The case of an outgoing velocity
	3.3. The semigroup estimate

	4. Example and counterexample
	4.1. A 4 time-step 5 point centered scheme
	4.2. The leap-frog scheme

	References

