
HAL Id: hal-01114642
https://hal.science/hal-01114642

Preprint submitted on 16 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The P versus NP Problem
Frank Vega

To cite this version:

Frank Vega. The P versus NP Problem. 2015. �hal-01114642�

https://hal.science/hal-01114642
https://hal.archives-ouvertes.fr

P VERSUS NP
A Millennium Prize Problem selected by the Clay Mathematics Institute

The P versus NP Problem
Frank Vega

February 16, 2015

Abstract: The P versus NP problem has become in one of the most interesting and crucial
questions for many fields such as computer science, mathematics, biology and others. This
outstanding problem consists in knowing the answer of the following incognita: Is P equal
to NP? Many computer scientists have believed the most probable answer is P 6= NP. A key
reason for this belief is the possible solution of P = NP would imply many startling results
that are currently believed to be false. Besides P and NP, another major complexity class is
coNP. It is a known result if P = NP, then NP = coNP. Therefore, if we prove P 6= coNP,
then this would be sufficient to show P 6= NP. Indeed, in this work we have demonstrated
the existence of a coNP problem that is not in P, and thus, P 6= coNP. In this way, we show
the belief of almost all computer scientists was a truly supposition.

1 Introduction

The P versus NP problem is a major unsolved problem in computer science. This problem was introduced
in 1971 by Stephen Cook [2]. It is considered by many to be the most important open problem in the field
[5].

The Turing machine has been an useful concept in theory of computing since it was created by Alan
Turing in the last century [12]. Since then, it has appeared new definitions related with this concept such
as the deterministic or nondeterministic Turing machine. A deterministic Turing machine has only one
next action for each step defined in its program or transition function [9]. A nondeterministic Turing
machine can contain more than one action defined for each step of the program where this program is not
a function but a relation [6].

ACM Classification: F.1.3

AMS Classification: 68-XX, 68Qxx, 68Q15

Key words and phrases: P, NP, coNP, Turing machine

Frank Vega
Google+

http://en.wikipedia.org/wiki/P_versus_NP_problem
https://plus.google.com/112389322263940335368
https://plus.google.com/112389322263940335368/posts

FRANK VEGA

Another huge advance was the definition of a complexity class. A language L over an alphabet is any
set of strings made up of symbols from that alphabet [4]. A complexity class is a set of problems, which
are represented as a language, grouped by measures such as the running time, memory, etc [4].

In computational complexity theory, the class P consists of all those decision problems (defined as
languages) that can be solved on a deterministic Turing machine in an amount of time that is polynomial
in the size of the input; the class NP consists of all those decision problems whose positive solutions can
be verified in polynomial time given the right information, or equivalently, whose solution can be found
in polynomial time on a nondeterministic Turing machine [11].

The biggest open question in theoretical computer science concerns the relationship between those
two classes:

Is P equal to NP?
In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is yes, and

22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so
impossible to prove or disprove [7].

Besides P and NP, another major complexity class is coNP: the “complement” of NP [1]. A problem
is in coNP if a “no” answer can be checked in polynomial time [1]. The string which is used to verify
an instance of a problem in NP is known as certificate [10]. If NP is the class of problems that have
succinct certificates, then the complexity class coNP must contain those problems that have succinct
disqualifications [10].

There is a known result which states if P = NP, then NP = coNP [1]. We prove the existence of a
coNP problem that is not in P, and thus, P 6= coNP. Hence, we show the P versus NP problem has the
following solution: P 6= NP.

2 Theory

The argument made by Alan Turing in the twentieth century proves mathematically that for any computer
program we can create an equivalent Turing machine [12]. A Turing machine M has a finite set of states
and a finite set of symbols called the alphabet of M. The set of states has a special state which is known
as the initial state.

The operations of a Turing machine are based on a transition function which takes the initial state
with a string of symbols of the alphabet that is known as the input. Then, it proceeds to reading the
symbols on the cells contained in a tape through a head or cursor. At the same time, the symbols on each
step are erased and written by the transition function and later moved to the left, right or remained in
the same place for each cell. Finally, this process is interrupted if it halts in a final state: the state of
acceptance “yes”, the rejection “no” or halting h [10].

A Turing machine halts if it reaches a final state. If a Turing machine M accepts or rejects a string x,
then M(x) = “yes” or “no” is respectively written. If it reaches the halting state h, we write M(x) = y,
where the string y is considered as the output string, i.e., the string remaining in M when this halts [10].

Let ∑ be a finite alphabet (that is, a finite nonempty set) with at least two elements, and let ∑
∗ be the

set of finite strings over ∑ [3]. Then a language over ∑ is a subset L of ∑
∗ [3]. The language accepted by

M Turing machine, denoted L(M), has associated alphabet ∑ and is defined by

P VERSUS NP 2

http://en.wikipedia.org/wiki/P_versus_NP_problem

THE P VERSUS NP PROBLEM

{< w >: M accepts w} (2.1)

where we denote < w >∈ ∑
∗ as the encoding of the instance w in ∑ [3], [4]. In conclusion, these are

some basic notions that could help you to understand this paper.

3 Results

We are going to explain two simple notations and define our principal problem.

Definition 3.1. For a binary string as argument, the notations |..| and n(..) are the length and the decimal
integer representation respectively.

Definition 3.2.

{< M,n(x)>: @y ∈ {0,1}∗ such that M(y) = “yes” (3.1)

in less than or equal to (|M|+ |y|)3 steps and n(y)≤ n(x)} (3.2)

An instance of this problem would be M and n(x) where M is a deterministic Turing machine and n(x) is
the decimal integer representation of the x binary string. This language consists in all the M deterministic
Turing machines with n(x) positive integers where there is not any y binary string such that M accepts y
in less than or equal to (|M|+ |y|)3 steps (the amount of steps is the number of actions on the transition
function with the running of M(y)) and the decimal integer representation of y would be a positive integer
that is less than or equal to n(x). We will denote this language as NEV ER−BOUNDED−HALT .

Next, we show two important results which are the keys in this proof.

Lemma 3.3. NEV ER−BOUNDED−HALT ∈ coNP.

Proof. If some deterministic Turing machine M and an n(x) positive integer are not an instance of
NEV ER−BOUNDED−HALT , then this is because of the existence of some y binary string which is
accepted by M in less than or equal to (|M|+ |y|)3 steps where |y|3 ≤ |x|3 due to n(y)≤ n(x). Indeed, this
y string will be a succinct disqualification in which we could prove in at most (|M|+ |x|)3 steps (this is in
polynomial time) that < M,n(x)> is a “no” instance of NEV ER−BOUNDED−HALT .

Theorem 3.4. NEV ER−BOUNDED−HALT /∈ P.

Proof. How many running of M with the y binary strings are necessary to determine when some
deterministic Turing machine M and an n(x) positive integer belongs to NEV ER−BOUNDED−HALT
where n(y)≤ n(x)? We can easily obtain an upper bound of (n(x)+1) running: examine each y string
from 0 to n(x) as binary encoding and verify whether M(y) does not accept in less than or equal to
(|M|+ |y|)3 steps. However, this is not a polynomial time algorithm, because the amount (n(x)+1) could
be exponential in relation with the size of < M,n(x)>. The aim question would be: Is there a polynomial
time algorithm for NEV ER−BOUNDED−HALT ?

P VERSUS NP 3

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

Definition 3.5.

{< M,n(y)>: M(y) does not accept in less than or equal to (|M|+ |y|)3 steps} (3.3)

An instance of this problem would be M and n(y) where M is a deterministic Turing machine and n(y)
is the decimal integer representation of the y binary string. We are going to denote this languages as
ONE−NEV ER−BOUNDED−HALT .

Suppose we have a deterministic Turing machine MMAGIC which decides ONE−NEV ER−BOUNDED−
HALT for any input < M,n(y)> in less than or equal to ((|M|+ |y|)3−10) steps. Then, we can have
a Turing machine D which receives a deterministic Turing machine M and its n(M) decimal integer
representation as input and we just translate it from the Turing machine model into an understandable
pseudo-code in the following lines.

(1) i f MMAGIC(M,n(M)) = “yes”

(2) then accept

(3) else never halt

Does D(D,n(D)) accept in less than or equal to (|D|+ |D|)3 steps? Certainly, we could not know the
answer of this question, because we assumed an absurd statement, i.e., the existence of MMAGIC. Hence,
we can affirm about the ONE−NEV ER−BOUNDED−HALT problem the following conclusion: we
cannot always accept any instance < M,n(y)>∈ ONE−NEV ER−BOUNDED−HALT by a Turing
machine in less than or equal to ((|M|+ |y|)3−10) steps.

We can see any instance < M,n(x)> of NEV ER−BOUNDED−HALT is an exponentially more
succinct input of (n(x)+1) different instances < M,n(y)> of ONE−NEV ER−BOUNDED−HALT
where n(y)≤ n(x). Indeed, the definition of NEV ER−BOUNDED−HALT for any input < M,n(x)>
could be rephrased as the acceptance of (n(x)+1) different inputs < M,n(y) > of ONE−NEV ER−
BOUNDED−HALT when each n(y) is between 0 and n(x).

In addition, we could reduce any (n(x)+ 1) different instances < M,n(y) >∈ ONE −NEV ER−
BOUNDED−HALT into a single instance < M,n(x)>∈ NEV ER−BOUNDED−HALT by a polyno-
mial time algorithm in O(n(x)) where n(y)≤ n(x). The reduction algorithm will be very simple if we use
as a key the n(y) integer for each instance < M,n(y)>.

Let’s see the steps of this algorithm.

• First, we count the amount of instances < M,n(y)> (the result would be a positive integer m).

• Next, we create an array of length m (denoted as b).

• Then, we sort in linear time the instances < M,n(y) > with the array indexing (using the n(y)
keys in this way b[n(y)] =< M,n(y)> and verifying before that each n(y) integer complies with
n(y) ≤ m−1 otherwise we halt the reduction in rejection) as a tool for determining the relative
order just like we do in the counting sort algorithm [4].

P VERSUS NP 4

http://en.wikipedia.org/wiki/P_versus_NP_problem

THE P VERSUS NP PROBLEM

• After that, we verify whether each positive integer between 0 and m−1 corresponds to an n(y)
index of a cell with some < M,n(y) > information inside the b array of length m just in the
following way: we are going to check in a sequential and ascending way whether there is not any
empty cell inside the b array.

• Finally, if the verification is successful, then we take the n(x) value as the positive integer m−1
else we reject.

Now, suppose we have a polynomial time algorithm for NEV ER−BOUNDED−HALT . This would
mean, when we utilize the reduction above, that we could accept any (n(x)+ 1) different instances
< M,n(y) >∈ ONE−NEV ER−BOUNDED−HALT in less than c× (n(x)+ | < M,n(x) > |k) steps
for a feasible and fixed constants c and k where n(y) ≤ n(x). However, this is only possible if we can
always accept, at the same time, every element of a nonempty subset of these (n(x)+1) different and
arbitrary instances < M,n(y)>∈ ONE−NEV ER−BOUNDED−HALT by a Turing machine in less
than ((|M|+ |y|)3−10) steps when n(x) is a sufficiently large integer. But, this is an absurd, because there
is no such deterministic Turing machine (this means there is no possible algorithm) that could achieve this
implication as we proved before. For that reason, we obtain NEV ER−BOUNDED−HALT /∈ P.

Finally, we show our aim result.

Theorem 3.6. P 6= NP.

Proof. If P = NP, then P = NP = coNP [1]. Then, a single problem in coNP and not in P is sufficient to
prove P 6= NP, because P 6= coNP will imply the P = NP = coNP statement is false. Therefore, this is a
direct consequence of Lemma 3.3 and Theorem 3.4.

4 Conclusions

This proof explains why after decades of studying these problems no one has been able to find a
polynomial time algorithm for any of more than 3000 important known NP− complete problems.
Indeed, this demonstration removes the practical computational benefits of a proof that P = NP, but
would nevertheless represent a very significant advance in computational complexity theory and provide
guidance for future research.

It shows in a formal way that many currently mathematically problems cannot be solved efficiently,
so that the attention of researchers can be focused on partial solutions or solutions to other problems.
In addition, it proves that could be safe most of the existing cryptosystems such as the public-key
cryptography and the symmetric ciphers [8]. On the other hand, we will not be able to find a formal proof
for every theorem which has a proof of a reasonable length by a feasible algorithm.

Acknowledgement

The author would like to thank Marzio de Biasi for his comments about this paper provided by email.

P VERSUS NP 5

http://en.wikipedia.org/wiki/P_versus_NP_problem

FRANK VEGA

References

[1] SCOTT AARONSON: PHYS771 Lecture 6: P, NP, and Friends, 2007. 2, 5

[2] STEPHEN A. COOK: The complexity of theorem proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on the Theory of Computing (STOC’71), pp. 151–158. ACM Press, 1971.
1

[3] STEPHEN A. COOK: The P versus NP Problem. Clay Mathematics Institute, 2000. 2, 3

[4] THOMAS H. CORMEN, CHARLES ERIC LEISERSON, RONALD L. RIVEST, AND CLIFFORD STEIN:
Introduction to Algorithms. MIT Press, Second edition, 2001. 2, 3, 4

[5] LANCE FORTNOW: The Status of the P versus NP Problem. Communications of the ACM, 52(9):78–
86, September 2009. 1

[6] MICHAEL R. GAREY AND DAVID S. JOHNSON: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, First edition, 1979. 1

[7] WILLIAM I. GASARCH: The P=?NP poll. SIGACT News, 33(2):34–47, 2002. 2

[8] ODED GOLDREICH: Foundations of Cryptography, Basic Tools. Cambridge University Press, 2001.
5

[9] HARRY R. LEWIS AND CHRISTOS H. PAPADIMITRIOU: Elements of the Theory of Computation.
Prentice Hall, Second edition, 1998. 1

[10] CHRISTOS H. PAPADIMITRIOU: Computational Complexity. Addison-Wesley, 1994. 2

[11] MICHAEL SIPSER: Introduction to the Theory of Computation. Thomson Course Technology,
Second, International edition, 2006. 2

[12] ALAN M. TURING: On Computable Numbers, with an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230–265, 1936. 1, 2

AUTHOR

Frank Vega
La Portada
Cotorro, Havana, Cuba
vega frank gmail com

ABOUT THE AUTHOR

FRANK VEGA is graduated as Bachelor of Computer Science from The University of Havana
since 2007. He has worked as specialist in Datys, Playa, Havana, Cuba. His principal
area of interest is in computational complexity.

P VERSUS NP 6

http://www.scottaaronson.com/democritus/lec6.html
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://en.wikipedia.org/wiki/Clay_Mathematics_Institute
http://www.cs.uchicago.edu/~fortnow/papers/pnp-cacm.pdf
http://www.cs.umd.edu/~gasarch/papers/poll.pdf
http://www.uh.cu
http://en.wikipedia.org/wiki/P_versus_NP_problem

	Introduction
	Theory
	Results
	Conclusions
	References

