Frank Vega

Frank Vega Google+

P VERSUS NP A Millennium Prize Problem selected by the Clay Mathematics Institute The P versus NP Problem

Keywords: ACM Classification: F.1.3 AMS Classification: 68-XX, 68Qxx, 68Q15 P, NP, coNP, Turing machine

published or not. The documents may come

Introduction

The P versus NP problem is a major unsolved problem in computer science. This problem was introduced in 1971 by Stephen Cook [START_REF] Cook | The complexity of theorem proving procedures[END_REF]. It is considered by many to be the most important open problem in the field [START_REF] Lance Fortnow | The Status of the P versus NP Problem[END_REF].

The Turing machine has been an useful concept in theory of computing since it was created by Alan Turing in the last century [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]. Since then, it has appeared new definitions related with this concept such as the deterministic or nondeterministic Turing machine. A deterministic Turing machine has only one next action for each step defined in its program or transition function [9]. A nondeterministic Turing machine can contain more than one action defined for each step of the program where this program is not a function but a relation [6].

Another huge advance was the definition of a complexity class. A language L over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Cormen | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Cormen | Introduction to Algorithms[END_REF].

In computational complexity theory, the class P consists of all those decision problems (defined as languages) that can be solved on a deterministic Turing machine in an amount of time that is polynomial in the size of the input; the class NP consists of all those decision problems whose positive solutions can be verified in polynomial time given the right information, or equivalently, whose solution can be found in polynomial time on a nondeterministic Turing machine [11].

The biggest open question in theoretical computer science concerns the relationship between those two classes:

Is P equal to NP?

In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove [START_REF]GASARCH: The P=?NP poll[END_REF].

Besides P and NP, another major complexity class is coNP: the "complement" of NP [1]. A problem is in coNP if a "no" answer can be checked in polynomial time [1]. The string which is used to verify an instance of a problem in NP is known as certificate [START_REF]PAPADIMITRIOU: Computational Complexity[END_REF]. If NP is the class of problems that have succinct certificates, then the complexity class coNP must contain those problems that have succinct disqualifications [START_REF]PAPADIMITRIOU: Computational Complexity[END_REF].

There is a known result which states if P = NP, then NP = coNP [1]. We prove the existence of a coNP problem that is not in P, and thus, P = coNP. Hence, we show the P versus NP problem has the following solution: P = NP.

Theory

The argument made by Alan Turing in the twentieth century proves mathematically that for any computer program we can create an equivalent Turing machine [START_REF] Turing | On Computable Numbers, with an Application to the Entscheidungsproblem[END_REF]. A Turing machine M has a finite set of states and a finite set of symbols called the alphabet of M. The set of states has a special state which is known as the initial state.

The operations of a Turing machine are based on a transition function which takes the initial state with a string of symbols of the alphabet that is known as the input. Then, it proceeds to reading the symbols on the cells contained in a tape through a head or cursor. At the same time, the symbols on each step are erased and written by the transition function and later moved to the left, right or remained in the same place for each cell. Finally, this process is interrupted if it halts in a final state: the state of acceptance "yes", the rejection "no" or halting h [START_REF]PAPADIMITRIOU: Computational Complexity[END_REF].

A Turing machine halts if it reaches a final state. If a Turing machine M accepts or rejects a string x, then M(x) = "yes" or "no" is respectively written. If it reaches the halting state h, we write M(x) = y, where the string y is considered as the output string, i.e., the string remaining in M when this halts [START_REF]PAPADIMITRIOU: Computational Complexity[END_REF].

Let ∑ be a finite alphabet (that is, a finite nonempty set) with at least two elements, and let ∑ * be the set of finite strings over ∑ [3]. Then a language over ∑ is a subset L of ∑ * [3]. The language accepted by M Turing machine, denoted L(M), has associated alphabet ∑ and is defined by

{< w >: M accepts w} (2.1)
where we denote < w >∈ ∑ * as the encoding of the instance w in ∑ [3], [START_REF] Cormen | Introduction to Algorithms[END_REF]. In conclusion, these are some basic notions that could help you to understand this paper.

Results

We are going to explain two simple notations and define our principal problem. An instance of this problem would be M and n(x) where M is a deterministic Turing machine and n(x) is the decimal integer representation of the x binary string. This language consists in all the M deterministic Turing machines with n(x) positive integers where there is not any y binary string such that M accepts y in less than or equal to (|M| + |y|) 3 steps (the amount of steps is the number of actions on the transition function with the running of M(y)) and the decimal integer representation of y would be a positive integer that is less than or equal to n(x). We will denote this language as NEV ER -BOUNDED -HALT .

Next, we show two important results which are the keys in this proof.

Lemma 3.3. NEV ER -BOUNDED -HALT ∈ coNP.

Proof. If some deterministic Turing machine M and an n(x) positive integer are not an instance of NEV ER -BOUNDED -HALT , then this is because of the existence of some y binary string which is accepted by M in less than or equal to (|M| + |y|) 3 steps where |y| 3 ≤ |x| 3 due to n(y) ≤ n(x). Indeed, this y string will be a succinct disqualification in which we could prove in at most (|M| + |x|) 3 steps (this is in polynomial time) that < M, n(x) > is a "no" instance of NEV ER -BOUNDED -HALT .

Theorem 3.4. NEV ER -BOUNDED -HALT / ∈ P.

Proof. How many running of M with the y binary strings are necessary to determine when some deterministic Turing machine M and an n(x) positive integer belongs to NEV ER -BOUNDED -HALT where n(y) ≤ n(x)? We can easily obtain an upper bound of (n(x) + 1) running: examine each y string from 0 to n(x) as binary encoding and verify whether M(y) does not accept in less than or equal to (|M| + |y|) 3 steps. However, this is not a polynomial time algorithm, because the amount (n(x) + 1) could be exponential in relation with the size of < M, n(x) >. The aim question would be: Is there a polynomial time algorithm for NEV ER -BOUNDED -HALT ? (1) i f M MAGIC (M, n(M)) = "yes" [START_REF] Cook | The complexity of theorem proving procedures[END_REF] then accept

(3) else never halt Does D(D, n(D)) accept in less than or equal to (|D| + |D|) 3 steps? Certainly, we could not know the answer of this question, because we assumed an absurd statement, i.e., the existence of M MAGIC . Hence, we can affirm about the ONE -NEV ER -BOUNDED -HALT problem the following conclusion: we cannot always accept any instance < M, n(y) >∈ ONE -NEV ER -BOUNDED -HALT by a Turing machine in less than or equal to ((|M| + |y|) 3 -10) steps.

We can see any instance < M, n(x) > of NEV ER -BOUNDED -HALT is an exponentially more succinct input of (n(x) + 1) different instances < M, n(y) > of ONE -NEV ER -BOUNDED -HALT where n(y) ≤ n(x). Indeed, the definition of NEV ER -BOUNDED -HALT for any input < M, n(x) > could be rephrased as the acceptance of (n(x) + 1) different inputs < M, n(y) > of ONE -NEV ER -BOUNDED -HALT when each n(y) is between 0 and n(x).

In addition, we could reduce any (n(x) + 1) different instances < M, n(y) >∈ ONE -NEV ER -BOUNDED -HALT into a single instance < M, n(x) >∈ NEV ER -BOUNDED -HALT by a polynomial time algorithm in O(n(x)) where n(y) ≤ n(x). The reduction algorithm will be very simple if we use as a key the n(y) integer for each instance < M, n(y) >.

Let's see the steps of this algorithm.

• First, we count the amount of instances < M, n(y) > (the result would be a positive integer m).

• Next, we create an array of length m (denoted as b).

• Then, we sort in linear time the instances < M, n(y) > with the array indexing (using the n(y) keys in this way b[n(y)] =< M, n(y) > and verifying before that each n(y) integer complies with n(y) ≤ m -1 otherwise we halt the reduction in rejection) as a tool for determining the relative order just like we do in the counting sort algorithm [START_REF] Cormen | Introduction to Algorithms[END_REF].

• After that, we verify whether each positive integer between 0 and m -1 corresponds to an n(y) index of a cell with some < M, n(y) > information inside the b array of length m just in the following way: we are going to check in a sequential and ascending way whether there is not any empty cell inside the b array.

• Finally, if the verification is successful, then we take the n(x) value as the positive integer m -1 else we reject.

Now, suppose we have a polynomial time algorithm for NEV ER -BOUNDED -HALT . This would mean, when we utilize the reduction above, that we could accept any (n(x) + 1) different instances < M, n(y) >∈ ONE -NEV ER -BOUNDED -HALT in less than c × (n(x) + | < M, n(x) > | k) steps for a feasible and fixed constants c and k where n(y) ≤ n(x). However, this is only possible if we can always accept, at the same time, every element of a nonempty subset of these (n(x) + 1) different and arbitrary instances < M, n(y) >∈ ONE -NEV ER -BOUNDED -HALT by a Turing machine in less than ((|M| + |y|) 3 -10) steps when n(x) is a sufficiently large integer. But, this is an absurd, because there is no such deterministic Turing machine (this means there is no possible algorithm) that could achieve this implication as we proved before. For that reason, we obtain NEV ER -BOUNDED -HALT / ∈ P.

Finally, we show our aim result.

Theorem 3.6. P = NP.

Proof. If P = NP, then P = NP = coNP [1]. Then, a single problem in coNP and not in P is sufficient to prove P = NP, because P = coNP will imply the P = NP = coNP statement is false. Therefore, this is a direct consequence of Lemma 3.3 and Theorem 3.4.

Conclusions

This proof explains why after decades of studying these problems no one has been able to find a polynomial time algorithm for any of more than 3000 important known NPcomplete problems. Indeed, this demonstration removes the practical computational benefits of a proof that P = NP, but would nevertheless represent a very significant advance in computational complexity theory and provide guidance for future research. It shows in a formal way that many currently mathematically problems cannot be solved efficiently, so that the attention of researchers can be focused on partial solutions or solutions to other problems. In addition, it proves that could be safe most of the existing cryptosystems such as the public-key cryptography and the symmetric ciphers [8]. On the other hand, we will not be able to find a formal proof for every theorem which has a proof of a reasonable length by a feasible algorithm.

Definition 3. 1 .

 1 For a binary string as argument, the notations |..| and n(..) are the length and the decimal integer representation respectively. Definition 3.2. {< M, n(x) >: y ∈ {0, 1} * such that M(y) = "yes" (3.1) in less than or equal to (|M| + |y|) 3 steps and n(y) ≤ n(x)} (3.2)

Definition 3. 5 .

 5 {< M, n(y) >: M(y) does not accept in less than or equal to (|M| + |y|) 3 steps} (3.3) An instance of this problem would be M and n(y) where M is a deterministic Turing machine and n(y) is the decimal integer representation of the y binary string. We are going to denote this languages as ONE -NEV ER -BOUNDED -HALT .Suppose we have a deterministic Turing machine M MAGIC which decides ONE -NEV ER-BOUNDED-HALT for any input < M, n(y) > in less than or equal to ((|M| + |y|) 3 -10) steps. Then, we can have a Turing machine D which receives a deterministic Turing machine M and its n(M) decimal integer representation as input and we just translate it from the Turing machine model into an understandable pseudo-code in the following lines.

P VERSUS NP

Acknowledgement

The author would like to thank Marzio de Biasi for his comments about this paper provided by email.