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A two-stage suboptimal approximation
for variable compliance and torque control

P. Geoffroy∗,†, O. Bordron∗,4, N. Mansard∗, M. Raison†, O. Stasse∗, T. Bretl∗,�

Abstract— Variable-stiffness actuator is a very appealing
mechatronic design that combines the efficiency of stiff actuator
in free space with the consistency of elastic actuation in contact.
The control of such an actuation system remains a challenge
due to its non-linearity and by the fact that it doubles the
number of control inputs. In this paper, we propose an original
control strategy to compute the whole-body movement of a
complex variable-stiffness robot during dynamic task execution.
Operational space control is first used to compute both the
joint torque and stiffness from operational references. A non-
linear model-predictive controller is then proposed to track at
higher frequency these references on each joint separately. The
effectiveness of this approach is then validated on two models
of real actuator with adjustable stiffness, and finally on an
explosive motion to make a humanoid robot jump.

I. INTRODUCTION

This paper deals with the control of multiple body robot
with compliant actuation. This paradigm of actuation orig-
inates from the series-elastic actuator [1]. An example of
complete series-elastic actuation is the Coman robot [2]. The
compliance is a very positive property when the robot works
in contact with its environment, but deeply complicates
the control in particular when performing fast and accurate
movements in free space. Variable-stiffness actuators are a
nice trade-off, offering compliancy when in contact or before
an impact but being stiff when accuracy is required [3].

We are interested in the capability to generate and control
complex movements, e.g. a humanoid robot grasping an
object while keeping its balance [4] or several manipulator
robots moving an object collaboratively. The brute-force
solution is to model the movement to execute as an optimal
motion problem, and use direct solution method to obtain an
approximation of the optimum [5]. However, this solution is
computationally expensive: it scales in the cube of the num-
ber of actuators. It is yet prohibitive for complex variable-
stiffness robot that have two motors for each axis [6].

A classical solution to reduce the complexity is to con-
sider only the instantaneous linearization of the system
evolution [7], resulting in inverse kinematics when only the
geometry is considered [8] or inverse dynamics when inertia
and forces are considered. In particular, operational-space
inverse dynamics, detailed below, proposes to compute the
output motor joint torques in function of references forces
and acceleration in some specific operational spaces [9]. The
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interest is that, when the proper operational space is chosen,
the reference motion is generally very easy to specify.

Two major problems limit the generalization of operation-
space inverse dynamics as the classical motion generation
and method. First, joint torque is not a direct input of
the motors, and a complex non-linear output as soon as
reductors are introduced between the motor and the joint.
Reductors are indeed difficult to properly model, which
prevents feedforward control, while feedback control requires
both an expensive torque sensor and a very fast (and very
expensive) electronics [10]. Second, there is no sense to
instantaneously linearize a spring, since any force at the input
of a spring would instantaneously produce zero motion at its
output.

However, the spring actuation can be considered as an
advantage to apply a reference torque on a real robot, by
using the spring as a cheap force sensor. A first level compute
the reference joint torques from the operational specification.
The torques are then tracked by an optimal-motion solver
for each joint, acting at higher frequency and taking care of
the spring dynamics. Compared to the whole-body optimal
solver described for example in [6], this solution decouples
the space complexity (solved by the whole-body inverse
dynamics) from the temporal complexity (solved by each
actuator optimal controller). The decoupled solution can
be seen as a suboptimal approximation to the whole-body
optimal problem.

With respect to this strategy, the paper proposes three
contributions. We propose a method to compute the reference
joint compliance from operation compliance specification,
based on the operational-space formulation (Section II). We
then propose a generic method to efficiently compute the
optimal control law at the joint level (Section III). This
method can be directly applied to any possibly non-linear
joint model and various cost function, for tracking the output
acceleration, torque or stiffness as shown in Section IV.
Finally, we propose an implementation of the optimal con-
troller, coupled with the operational-space solver, to produce
complex movements. In particular, we demonstrate a whole-
body jump in simulation with a modified stiffness-variable
humanoid in Section V.

II. FROM WHOLE-BODY OBJECTIVES
TO ACTUATOR REFERENCES

We first recall in Section II-A the generic model of a
free-floating robot in contact with a known, typically rigid,
environment. From this model, it is classical to deduce a
torque control law based on task specifications, which is



also recalled in Section II-B. Based on this model and
this procedure, we propose a solution to deduce the needed
whole-body compliance to meet some reference compliance
expressed in given task spaces in Section II-C.

A. Dynamic model

In general, the dynamics model of the robot whole body,
considering all the bodies and the actuator to be stiff, is:

A(q)q̈ + b(q, q̇) = STτ −
nc∑
k=1

Jk(q)Tfk (1)

where A is the generalized inertia matrix, b is the dynamic
drift (sum of Coriolis, centrifugal and gravity forces), τ are
the joint torques (typically, the actuator output torques), S
is the matrix that selects the actuated degrees of freedom
(DOF), fk are the nc contact forces exerted by the robot on
the environment at the contact points pk and Jk = ∂pk

∂q are
the Jacobian of the contact points.

This equation represents the inverse dynamics: from a
given joint acceleration given as a reference, it gives the
forces that would lead to this acceleration. The three q̈, τ
and fc = (f1, ..., fnc

) are variable and evolve together. Very
often in robotics, we want to impose a reference q̈ and search
for a solution τ meeting this reference, while fc is explicitly
needed.

It is possible to get ride of fc and then compute the needed
joint torques if an interface model is given. For example, if
assuming a rigid contact Jkq̈ + J̇kq̇ = 0 1, an acceleration-
free relation can be obtained from (1):

JcA
−1τ = JcA

−1JTc fc + bc

where Jc = (J1, ..., Jnc
) and bc = JcA

−1b − J̇cq̇. When
Jc is full row rank, fc can be immediately deduced from τ .
This leads to equivalent dynamics in contact [11]:

Aq̈ + bc = (SNc)
T τ (2)

where Nc = I − JTc (JcA
−1JTc )−1JcA

−1 is the projector
in the null space of J alongside the direction A−1 and
bc = NT

c b − (JcA
−1JTc )−1J̇cq̇. This equation still holds

when Jc is not full row rank, even if slightly less intuitively
obtained [12].

In this last equation, the contact forces are considered
as additional actuators to compensate the underactuation
expressed by ST . It is possible to separate the forces into
support forces fs, used as actuators, and the other forces,
which would be typically used to accomplished a given force
reference. In that case, the equation is written:

Aq̈ + bS = (SNS)T τ +

nf∑
k=1

Jkfk

1The contact typically also imposes the forces to stay in the friction,
which comes as an additional constraint expressed in fc.

B. Operational-space inverse dynamics

1) For one task: The task-function [13], or operational-
space [9], approach was proposed to enable the user to
define the objectives of the motion to be executed in a
dedicated task, or operational, space rather than directly in
the configuration space. The task is defined by a vector
function e(q,Ω) ∈ Rm of the robot configuration q and the
rest of the universe Ω, whose image space is called the task
space and whose Jacobian with respect to the configuration is
denoted J = ∂e

∂q . In addition to the task function, the control
in the task space is given as a reference vector field ë∗ in
the tangent to the task space. The task acceleration ë can be
linked to the control input τ by multiplying (2) by JA−1:

ë = JA−1(SNS)T τ + µ

where µ is the task drift that collects the non linear terms. τ
is obtained by solving this equation in the least-square sense:

τ = (JA−1(SNS)T )#
(
ë∗ − µ

)
where .# denotes any reflexive generalized inverse, typically
the inverse weighted on the left by SA−1(SNS)T [14].

2) For several tasks: This last form satisfies the task
while minimizing the given norm, but the general solution
is written:

τ = (JA−1(SNS)T )#
(
ë∗ − µ

)
+ Pτ2

The second input τ2 can be chosen arbitrarily (τ2 = 0 results
in the least norm solution). This second input can be used to
satisfy a secondary task, and recursively, any number of tasks
set up in a hierarchy order. Denoting by e1 ... ep the hierarchy
of tasks with Ji the task Jacobian, the general solution is:

τ =
∑
i

G#
i|i−1

(
ëi
∗ − µi|i−1

)
with Gi = JiA

−1(SNS)T , Gi|i−1 = GiPi−1, P0 = I , ∀i >
0, Pi = Pi−1 −G#

i|i−1Gi|i−1 and µi|i−1 collects all the non
linear terms. More details are given in [15]. In particular, the
hierarchy can be implemented on an efficient manner and be
coupled with an active-set search if some task references are
given as bounds rather that equality.

C. Operational-space inverse compliance

Our objective in this section is to define a similar scheme
to compute the configuration compliance, being given some
reference compliance in dedicated task spaces. We first
consider the fully actuated case, i.e. when SNS is invertible
(typically, a fixed manipulator whose only considered contact
forces are at the interface with the ground).

1) Direct compliance model: We denote by Γ the com-
pliance of the axes, supposed constant (linear springs). A
variation of the torques then induces a variation of the axis
position ∆q given by

∆q = ∆Γτ

Γ can be seen both as a diagonal matrix (make explicit by
the left exponent ∆Γ) or as a vector (denoted ∨Γ).



Consider now a slight change of configuration ∆q from
the spring equilibrium. We search for the equivalent spring
reflected at a given contact point. The change ∆q leads
both to a change of contact position and contact forces. The
change of position is directly:

∆x = J∆q

The change of force is expressed from the steady-state force-
to-torque equation τ = JT f . Plugging both equations, we
get:

∆x = J∆q = J ∆Γτ = J ∆ΓJT f

The apparent compliance can then be defined by:

γ = J ∆ΓJT

where γ is a square symmetric matrix.
2) Quadratic solution: Now assume that we require a

specific apparent compliance γ∗. The configuration compli-
ance that best matches this reference can be expressed as the
solution of the Frobenius problem:

min
∆Γdiagonal

‖J ∆ΓJT − γ∗‖F

where ‖.‖F denotes the Frobenius norm. This is a quadratic
problem, since the square Frobenius norm is the sum of
square of the matrix coefficients and since J ∆ΓJT is linear
if Γ.

We denote by ∨. the matrix-to-vector operator stacking
all the columns of the input matrix2. The Frobenius problem
can be explicitly rewritten as a quadratic problem:

min
∨Γ
‖J ∨Γ− ∨γ∗‖2

where J is the unique matrix such that J ∨Γ = ∨(J ∆ΓJT ).
This operator has the following properties:

J ∨Γ = J ∆ΓJT (3)

J T ∨γ = ∆(JT γ∗J) (4)

where ∆. denotes the matrix-to-vector operator that selects
the diagonal elements of the input matrix. Finally, the square
of J is the Hadamard square of the square of J :

J TJ = [[JTJ ]] (5)

where [[A]] = A ◦ A denotes the element-wise (Hadamard)
square of A.

The solution to the unconstrained quadratic problem is
given by the pseudo-inverse:

∨Γ = J + ∨γ∗

Since for any A, A+ = (ATA)+AT and using (5), this last
form can be rewritten:

∨Γ = [[JTJ ]]+ ∆(JT γ∗J) (6)

2The operators ∨. is abusively applied to pass from the diagonal matrix
∆Γ to the vector of the diagonal elements ∨Γ, to keep the notations simple.

3) Hierarchical solution: Among all the solutions that fit
at best in the least-norm-2 sense the reference γ∗, this last
solution is the one of least norm-2 Γ. As usual for quadratic
system, the redundancy can be made evident by expressing
all the possible solutions using the projector on the null space
of J :

∨Γ = [[JTJ ]]+ ∆(JT γ∗J) + P ∨Γ2

where P = I − [[JTJ ]]+[[JTJ ]] = ker[[JTJ ]] and ∨Γ2 is
any configuration compliance that can be used to satisfy a
second objective.

Assume now that several compliance objectives γ∗1 , ... , γ∗p
ordered in a hierarchy are given. Using the classical redun-
dancy scheme detailed in [8], the configuration compliance
matching at best in the last-square sense the hierarchy of the
γ∗ is Γp obtained by the following iteration:

∨Γk = ∨Γk−1 (7)

+ (Pk−1[[JTk Jk]]Pk−1)+ ∆
(
JTk (γ∗k − Jk ∆Γk−1J

T
k )Jk

)
with Pk the projector onto the null space of the stacked k
first Jacobian, that can be computed following the recurrence
proposed in [16].

4) Constrained system: All the development above holds
for a fully-actuated unconstrained system, and by direct
generalization to the case when SNSST is invertible. In the
general case, the relation between a change of elastic torques
τ = ∆Γ∆q and contact force f is correlated with the support
NS :

(SNS)T τ = JT f

The displacement ∆q cope with the rigid contact and thus
is such that:

∆q = NS∆q

since NS is a projector onto the kernel of JS . The compliance
relation is then written:

γ = JT (SNS)T ∆ΓSNSJ

The same previous developments then still hold, with direct
adaptations. The operational inverse compliance is then:

∨Γk = ∨Γk−1

+ (Pk−1|S [[JTk|SJk|S ]]Pk−1|S)+ (8)
∆
(
JTk (k∗k − Jk ∆Γk−1J

T
k )Jk

)
with Jk|S = SNSJk and Pk|S the projector onto the stacked
Jk|S Hadamard squares.

III. MODEL PREDICTIVE CONTROL

In this section, we quickly recall the optimal control
method that we used to drive the compliant actuators.
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Fig. 1. Schema of the two actuator models used in the experiments.

A. Principles and model

Consider a generic system, with state variable x and
control variable u, defined by its discrete time evolution
function:

xt+1 = f(xt, ut, t) (9)

where f is the system evolution function and the time
variable t is considered discrete. Optimal control aims at
computing the control and state trajectory by minimizing a
given cost function:

min
X,U

T−1∑
t=0

lt(xt, ut) + lT (xT )

where T is the preview interval length (fixed), U =
(u0...uT−1), X = (x0, ..., xT ) are the control and state
trajectories and lt and lT are the running and terminal costs
functions. The optimal control problem is to be solved under
the constraint that (9) is satisfied. In practice, the problem
is solved for X only or U only, the other variable being
deduced from the dynamic equation. The solution is said
explicit when computing X and implicit when computing U .
The optimal solution for a linear dynamics xt+1 = Fxxt +
Fuut and a quadratic cost is given by Riccati equations as a
linear-quadratic regulator (LQR).

Model predictive control (MPC) is an advance control
technique to control a given system by optimizing its pre-
dicted evolution. It relies on the systematic evaluation of the
optimal control of the system with respect to a reference
cost function, while only the first few steps of the optimal
trajectory are actually executed by the actuators before its
complete re-evaluation. The main interest of MPC is the abil-
ity of dealing with non-linear systems whose instantaneous
linearization is not meaningful.

B. Differential dynamic programming

The Differential Dynamic Programming (DDP) is an it-
erative algorithm to solve a non-linear continuous optimal
control problem using implicit formulation [5]. It is nearly
equivalent to the application of a Newton descent algorithm.
As in the Newton descent, the main idea is to approach a
local optimum by iteratively modifying a candidate solution
until stabilization of the evaluation of the cost function.

It starts with initial state and control trajectories, typically
obtained from the integration of the zero control if no other
prior is available. The algorithm then iterates in two stages. It
first computes an approximate quadratic model of the current
candidate trajectory and compute the corresponding LQR
(backward loop). Then the candidate is modified following
the LQR (forward loop).

IV. VARIABLE STIFFNESS ACTUATORS

The previous section recalled a generic MPC framework.
We now propose a solution to implement it, to efficiently
control the behavior of a variable-stiffness actuator.

A. Principles

The operational-space approach provides the reference
joint behavior (torques and/or stiffness) from operational
references set by the user. The computation is typically
expensive, since many DOF are involved and the whole-body
operations scale with the cube of the number of joints. We
can expect them to be computed at a middle dynamics (e.g.
100Hz). For in contact movements, the actuators have to
react much faster to track this reference behavior (typically,
1kHz is advised [17], 3kHz is implemented on the LWR
robot [10] while 10kHz are available on the iCub [2]). The
joint references are then tracked by a DDP-based MPC
whose cost function is described below.

B. Actuator generic model

We consider electrical-based variable stiffness actuators,
where two motors in parallel are connected in series with
some mechanical springs. This generic hypothesis is valid
for a large class of actuators [18], [19] (see Fig. 1). While
the general approach is still valid, this precise hypothesis
cannot cover for example pneumatic actuators [20], [21]. The
state variables are then reduced to the spring positions and
velocities. Typically, two motors are involved:

x = (x1, x2, ẋ1, ẋ2)

If assuming linear (or at least static) models of the spring,
the output torques can be deduced from the state.

We additionally make the hypothesis that the motor is
capable of tracking acceleration references. While the elec-
trical motors are typically driven in electrical power (current



or voltage), a first close loop is typically configured on the
feedback of a output position (angular) sensor. Moreover, a
mechanical reductor is often added in series with the motor,
which acts as a dynamic screen preventing the motor to feel
the joint dynamics. These two facts make the acceleration an
easy but realistic control input. The control is then simply:

u = (ẍ1, ẍ2)

C. Cost function

We consider the following terminal cost function:

lT (xT ) = wT (τ(xT )− τ∗T )2

The current torque is a function of the spring states, while τ∗T
is given by the operation-space computations. The running
cost function is:

lt(xt, ut) = wτ (τ(xt)− τ∗t )2 + ||ut||2Q + wjj(xt)

where τ∗t is typically equals to τ∗T , j is a barrier function
enforcing the joint limits and wf , wτ , wj and Q are arbitrary
gains that encompass the unit differences and the relative
importance of the terms. The first term enforces the MPC to
track the reference. The second term penalizes strong internal
movements and regularizes the numerical solver behavior.
The last term enforces any given constraints3. The barrier
function is constructed to be positive, continuous and twice
derivable, to value 0 on at ε from the limit and +∞ on the
limits.

An additional term wΓ(Γ(xt)−Γ∗t )
2 can be added in both

lt and lT to track a reference output stiffness, also function
of the state. If no good reference stiffness is available, wΓ

is set to 0. The stiffness is then locally tuned by the optimal
controller in answer to the actuator demanded dynamics. A
comparison with and without reference stiffness is given in
the next section.

D. Discussion

The obtained control scheme may be compared to the
optimal controller described in [22]. In this paper, the authors
control a torque-driven actuator to enforce an output position
on an AwAS actuator [18]. They deployed a LQR by lin-
earizing their actuator. This is possible since the torque-input
position-output AwAS is linear for small spring deflection.
For that mean, they have to separate the model between one
main actuator driven the output motion and one stiffness
actuator tuning the apparent stiffness. They finally proved the
stability of their control scheme and proposed a theoretical
study of its behavior that was used to automatically adapt
the cost-function weights.

Our approach is more generic since no separation is
needed and non-linear actuators may be considered, for
example the MACCEPA. Moreover, if the stiffness is free,
the controller will use it to reduce the oscillations of the
output movement. Using the LQR formulation behind the
DDP, the stability of our MPC can be derived using the same

3The DDP is efficient partly because unconstrained. The barrier function
is an efficient solution to enforce important terms to be treated as constraints.

reasoning than in [22]. It seems more difficult to adapt the
pole study for tuning the weights in general, since the poles
vary with the system non-linearities. However, the same
study can be directly applied when the non-linearities can
be neglected (e.g. for the AwAS at steady-state).

V. RESULTS

We present in this section two set of simulations. In a first
time, we checked the behavior of the MPC for a single actu-
ator using the two actuator models AwAS and MACCEPA.
The AwAS has a nearly linear dynamics, which is interesting
to validate the LQR behavior, while the MACCEPA is less
linear, which validates the capabilities of the DDP to handle
a more complex cost landscape. We then produce a complex
whole-body movement for a humanoid robot whose joint
references are tracked by the MPC.

A. Single actuator

1) Set up: The simulations are made on the software
Matlab. The model dimension are chosen to fit the require-
ments of a full size humanoid robot (for typical movements
recorded on HRP-2). The control sampling frequency is
10kHz: the DDP is recomputed at 10kHz and the first sample
is applied on the motor models. The preview windows lasts
2.5ms (that is to say 25 samples). The number of DDP
iteration is bounded to 50 (while AwAS generally converges
in less than 25). The MPC is used for tracking a smooth and
a pulse-train reference without disturbance, and the behavior
is then checked for external disturbances.

2) Torque reference tracking: DDP control has been
tested for two scenarios : a pulse train and a polynomial.
The response plot are given in Figures 2 and 3.

The first reference torque is a polynomial of degree three
(Fig. 2). For both actuators, output torque is properly tracked.
In the absence of discontinuity, DDP provides excellent
control, no matter with the complexity of cost function.

The pulse-train amplitude is set to 10 Nm (calibrated
on the knee torques during humanoid dynamics locomotion
task). The AwAS is very reactive, reaching quickly 97% of
the desired value and is stable. MACCEPA model, results
are more mixed, with slower convergence time. These dif-
ferences are explained by the different level of complexity
of the two dynamics, excited by the train pulse that gener-
ates singularities. It is representative of a shock during an
explosive task. The MACCEPA behavior might be improved
by adjusting the cost weights, for example using a deeper
analysis of the close-loop system.

3) Robustness: The robustness is tested for a constant
reference. We let the system converge and then apply a
static force of 5 Nm at the actuator output. The result is
summarized in Fig. 4. The response time before new stability
of the torque generated by the spring tension is of the same
order as in the case of train pulse. The system naturally
comes back to the reference position after a small adaptation
time.
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B. Whole-body movement

1) Set up: We consider a jumping movement with a model
created from the HRP-2 robot [23]: the body specifications
have been kept has the actuator dimensions, but we have
replaced in simulation the stiff actuation by a set of variable
stiffness actuators. The movement is defined by a sequence
of tasks using the jumping methodology proposed in [24].
The motion is composed of three phases: starting from a low
squatting posture, the robot violently accelerates its center
of mass (CoM) until the legs are stretched while keeping
a controlled (typically zero) angular momentum. The robot
then floats while its CoM decelerates due to the gravity.
During the flight phase, only the orientations of the feet are
controlled to anticipate the landing. The robot finally impacts
the ground and gently decelerates its CoM to recover its
rest posture. The joint references are computed at 200Hz.

One MPC at each joint then tracks this reference at 10kHz
following the same set-up as in the previous section.

2) Torque tracking: The motion is summarized in Fig-
ures 5 to 8. Snapshots of the movement are gathered in
Fig. 5. The whole body movement is not detailed by lack
of space. The joint torques are tracked by an AwAS on the
hip and a MACCEPA on the knee (the choices are arbitrary).
We spotted torques on joints of a humanoid robot during a
simulation of jump on site. The tracking performances are
displayed in Fig. 6. The explosive movement is properly
tracked. The reference torque at the impact is 3 Nm for the
hip, and the MPC produces 3.3 Nm (91%). At the knee, the
reference torque is 10 Nm while the MPC produces 10.8
Nm (108%). The delay is 15 ms which corresponds to the
spring dynamics. This result proves the interest of using the
spring actuation with MPC for achieving complex whole-
body dynamic movements.

3) Stiffness selection: The joint compliance is computed
from the a reference operational compliance. We set up a
compliance of 2000 N/m on the z-axis of each foot, with a
compliance of 40000 N/m on the two lateral rotations and
stiff coupling between the translation and the rotations. The
obtained joint stiffness of one leg is plotted in Fig. 7. It is
perfectly tracked by the MPC. When the stiffness is let free,
the MPC uses this additional DOF to optimize the output
torque while minimizing the input. It is evident on the single-
actuator pulse train displayed in Fig. 8. In particular, the
stiffness changes at each new pulse and constantly decreases
(the spring position increases) when the actuator position
stabilizes.

VI. CONCLUSION

In this paper, we have proposed an original approach
to control the whole-body movement of complex variable-
stiffness robot. The operational-space approach is first used
to compute the joint torques and stiffness from operational
force, acceleration and compliance references. An MPC
controller is then used to control the movement of each
elastic actuator to track the joint references. The global
approach can be seen as an efficient suboptimal to the yet
untractable whole-body optimal control problem. It is very
appealing to apply torque references on electrical actuators
while avoid an excessive mechatronic cost.

More particularly, we have proposed an original solution
to compute the joint compliance from operational references.
We have proposed an efficient MPC solution to track the
joint references, both torques and stiffness, using DDP. This
method can be seen as a generalization to a large class of
actuator and to non-linear situations of the LQR proposed in
[22]. Finally, we have proposed a complete validation in sim-
ulation, by controlling the jump of a variable-stiffness full-
size humanoid robot. Behind the application to a physical
robot, the next step of our work is to exhibit the theoretical
properties of our controller, in particular its stability.
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Fig. 5. Simulation B: Snapshots of the jumping movement.
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Fig. 6. Simulation B: Output torque with AwAS for a jump on site, on
the hip
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Fig. 7. Simulation B: Reference stiffness of the right leg during the jump.
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Fig. 8. Simulation B: Advantage of the free stiffness (top) Output torque
error with free and constant stiffness. (bottom) Spring motion when the
stiffness is free.
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