N

N

Time--dependent Bragg diffraction and short--pulse
reflection by one-dimensional photonic crystals
Jean--michel André, Philippe Jonnard

» To cite this version:

Jean--michel André, Philippe Jonnard. Time--dependent Bragg diffraction and short--pulse reflection
by one-dimensional photonic crystals. 2015. hal-01114371v1

HAL Id: hal-01114371
https://hal.science/hal-01114371v1

Preprint submitted on 9 Feb 2015 (v1), last revised 31 Aug 2015 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01114371v1
https://hal.archives-ouvertes.fr

Time-dependent Bragg diffraction and short-pulse reflection by

one-dimensional photonic crystals

Jean-Michel André*, Philippe Jonnard
CNRS UMR 7614, Laboratoire de Chimie Physique - Matiere et Rayonnement
Sorbonne Universités, UPMC Paris 06
11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France

*corresponding author :jean-michel.andrel @upmec.fr

Abstract

The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and
its influence on the short pulse reflection are studied in the framework of the coupled-
wave theory. The indicial response of the photonic crystal is calculated and it appears
that it presents a time-delay effect with a transient time conditioned by the extinction
length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a
pulse envelope modelled by a sine-squared shape. The potential consequences of the
time-delay effect in time-dependent optics of short-pulses are emphasized.
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1. Introduction

The propagation of short pulses is an old problem which started with the works by
Sommerfeld and Brillouin [1,2]; they demonstrated the occurrence of precursors and
their works have given rise to a lot of studies relative to the physics of these forerunners
in homogeneous dielectric media [3] and also in one-dimensional photonic crystal (1D-
PC) [4,5] we are interested in. Beside the particular physics of the precursors, the study
of the propagation of the main pulse has been mainly developed in the context of
femtosecond lasers [6-8]. At the present time, there is a renewal of the optics of ultra-
short and short pulses with the advent of femto-, subfemto- and attosecond sources in
the high energy domain of the electromagnetic spectrum: isolated [9,10] or train
[11,12] attopulses are delivered by high harmonic generation (HHG) sources in the X-UV
range, subfemto- and femtopulses are generated by X-ray free electron lasers (X-FEL)
[13] or other new sources (Thomson scattering, ...) in the x-ray domain [14,15].

These sources required optical devices such as monochromators or mirrors and the
reflection properties of multilayer reflectors [16-18] and crystals [19,20] dedicated for
this kind of sources have been treated by means of methods implemented for the
frequency domain, the problem being that reflection of a short pulse differs in many
aspects from the one of monochromatic continuous radiation since the pulse is a
superposition of many harmonics according to the uncertainty principle; the harmonics
propagate with different velocities because of the wavelength dispersion which results
in pulse distortion. The strategy for the calculation generally follows a Fourier
mathematical approach : the time structure of the incident pulse is expanded in its
Fourier components and each frequency component is treated by the Fresnel formalism
or Darwin-Prins dynamical theory, the time shape of the reflected pulse being
occasionally built by inverse Fourier transform; conclusions are drawn concerning the
time evolution of the reflectivity of the reflectors and distortion of the pulse. In this
context, the Green impulse response corresponding to a Dirac-delta incident pulse is
generally calculated since it allows calculating an arbitrary incident pulse response by
means of the convolution theorem [19].

To compensate for the wavelength dispersion, the concept of chirped mirrors has been
applied, initially in the infrared and visible domains for femtosecond pulses [21,22],

then transposed [23] and successfully tested [24] in the X-UV spectral range and



attosecond domain. The design of these mirrors lies also generally on a Fourier
approach.

The study of the dynamical diffraction of short pulses by crystals in the time domain, by
solving the time-dependent propagation equation (Tagaki-Taupin equation), was done
by Chukhovskii and Forster [25], then Wark and Lee [26]. In the present work, we adopt
a rather similar approach for a 1D-PC; the 1D-PC is modelled by a periodic stack of
bilayers. The electric field of the pulse is written as a carrier wave modulated by a slow-
varying envelope; starting from Maxwell equations, the propagation time-dependent
equation is deduced for the envelope and after some assumptions (such as the two-
waves approximation and the instantaneous response of the media), a coupled system of
partial differential equations (PDEs) is obtained for the two Fourier components of the
two wave fields in the spirit of the coupled wave theory (CWT). This is done in Section 2.
In Section 3, we present an analytic solution of the coupled system by using a matrix
formalism and we calculate the reflectivity versus time for a constant intensity source
abruptly switched on, or in other words, we determine the indicial response of the 1D-
PC for a Heaviside unit-step input. We show in Section 4, from a numerical example that
the peak reflectivity versus time of the 1D-PC displays a transient period during which
the reflectivity starts from a null value to reach the steady-state value with a rise-time
determined by the extinction length; using Strejc’s method, we then deduce from the
computed indicial response, the transfer function which is the Laplacian transform of
the impulse response. The knowledge of the transfer function gives access to the
dynamics of reflection of a pulse of any shape by means of the convolution theorem ; the
case of a sine-squared pulse is examined. In conclusion, Section 5, we discuss the
implications of this time-delay effect, in particular for the x-ray regime and we give the

perspectives.

2. Time-dependent coupled-wave theory
We consider a 1D-PC consisting in a periodic stack of bilayers as shown in Figure 1
which displays the geometry of the problem. We consider only the s-polarization case.
The propagation of the optical pulse in the 1D-PC is governed by the following wave
equation deduced from Maxwell’s equations

0°E(p,z,t) N 0°E(p,z,t) 1 9°E(p,z,t) 4w 0°P(p,z1)
dp? 0z2 2 Jtz 2 ot?




(1)
where E is the electric field, P the polarization vector, c is the speed of light in vacuum.

The geometry and some notations of the problem are presented in Figure 1.
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Figure 1: Sketch of the 1D-PC consisting in a periodic stack of N bilayers with thickness d;

the bilayer is made up of a material a and material b of thickness d, = yd and dy = (1- y)d
respectively . The incoming radiation strikes the system under a glancing angle 6.

The optical pulse is formed of a carrier wave with frequency wmodulated by an
envelope Ey(z,t)
E(p,z,t) = Eo(z,t) e i@t elkpP
(2)
A sine-squared limited in a time interval is usually adopted to model the envelope,
especially for X-FEL single pulses [27], but let us emphasize that our approach does not

depend on the pulse shape. Inserting Eq.(2) in Eq.(1) leads to the following equation for

the envelope

62 Eo(Z, t) 2 1 2 i an(Z, t) 62 Eo(Z, t)
— =k Bz )+ 5 (0 Eo(z ) +2i0 —2 = ———
_4rm etiwt g=ikyp 9°P(p.2,1)
c? at?

(3)
We assume that the polarization is essentially electronic, and it follows instantly the
change on the electric field, which is a good approximation on a time scale of a few

femtosecond, and that the media have a linear behaviour. Hence we write

P(p,z,t) = x(z,t) Eq(z,t) e i@t etkpP



(4)

where y(z, t) is the electronic susceptibility. It leads to

62 Eo(Z,t) 2 1 2 . an(Z,t) 62 Eo(Z,t)
Skt Bon )+ (0 Ee( ) + 210 —o - S
= 4_7T e+iwte—ikpp az()((plz;t) EO(Zrt) e—iwteikpp)
c? at?

(5)
At this stage, we will precise the framework of our analysis; we adopt the slowly
varying amplitude approximation (SVA) both in time and space : the second derivatives

with respect to space and time are neglected, and the following conditions are fulfilled

OE, (2,
# <<%|E0(z,t)|

(6)
OE, (2,
‘#‘ & w|Ey(z0) |

(7)

The nature of these usual approximations is very different ; the SVA in space holds if the
variation of the electric field amplitude is small upon travelling a distance equal to the
carrier wavelength, whilst the SVA in time is valid provided that the electric field
amplitude varies little within the carrier period at any position. Moreover we consider
that the time scale of the changes in the susceptibility and the electric field are long
compared to the period of the optical pulse; that is we adopt the first-order

approximation.

dx(p,z,t) 0Ey(z,t)
Tar Bt <75

(8)
As a result of the different approximations, Eq.(5) can be reduced to a time-dependent

Schrodinger equation

62 Eo(Z,t) 2 . w an(Z,t)
T-I_ kJ_(Z) EO(Z,t)-i'ZLE(Z)C—ZT— 0

(9a)

with

ez) = (1-x@)"
(9b)



and

(1)2
k, (2)? = €(2) = k,?

(9)
Egs.(9) could be treated by means of numerical codes developed to solve the time-
dependent Schrédinger equation. We choose in this work to use instead the approach of
CWT which proved to be very efficient in this kind of optical problem [28]. In a 1D-PC,
the electric field can be written as the superposition of two waves propagating in

opposite directions along the z-axis, so that we write in the spirit of the CWT

Eo(z,t) = F(z,t) eti®Z + B (z,t) e  1¥%

(10a)
with
K=ksind = kg .,
(10b)
The susceptibility in the 1D-PC can be expanded in Fourier series
+00
x(z,t) = y+ z Ay u, e'P9=
p=—o0
(11a)
with
X=xv+ x0A-y)
(11b)
Ay= 1= Xz
(11c)
u, = Z;ﬁ (1 — e~2impy)
(11d)
_2m
9="q
(11e)

In order to get a system of differential equations with constant terms, it is convenient to

introduce auxiliary amplitude terms

f(z,t) =F(z,t)exp[—i (%—K)Z]

(12a)



and

b(z,t) = B(z,t) exp [+i (%— K)Z]

(12b)
In the vicinity of the pth Bragg diffraction resonance% —k=0andf(zt) =F(zt),
b(z,t) = B(z,t). Combining Egs.(9)-(12) and performing the calculation in the
framework of the assumptions given above, it comes after some algebra the following

system of time-dependent coupled PDEs satisfied by the varying amplitudes f(z, t) and

b(z,t) closed to the pth Bragg diffraction ; using the matrix formalism, this system reads

0 _ _ 0 _ _
— E(z,t) + Ta E(z,t) = iM E(z,t)

0z
(13a)
where €(z, t) is the column amplitude vector
el _ f(Zl t) >
£0 = ( (2,0)
(13b)
M is the propagation matrix in space
—  (—a K7t
M = (K_ o )
(13¢)
with
_pg K
S 2m 2k
(13d)
k2
Kt = ﬂ A){ up
(13¢)
2
K™ = ﬂ A){ u_p
(13d)
T is the propagation matrix in time
_k
rI_-v — CK
0 —_
CK
(13e)

3. Matrix formalism for the CWT



We first consider the time-independent case

9w = iMEQ
0z

(14)
The solution can be obtained by substituting
c — A iz
€(z) = ( B) e
(15)
into Eq.(14). It comes
v =\ (A
@I () =0
(16)
Y are eigenvalues of M’
Yyr=+4q;9= VK*K- + a?
(17)
To the two eigenvalues 1+ are associated two eigenvectors V*
_ Kt
=
v <iq>
(18)
The solutions for €(z) can be derived using the eigenmatrix
= . K* K*
= + - =
P=@W+ V) <+q_a _q_a>
(19)
that is
_ 5 e+ iqz 0 =15
£2) = P ( . e—iqz> P-1E(0)

Since the general solution is a linear combination of the eigensolutions

-iqz C-

(20)

S(2) = C*e+i92 P+ 4 (- e- 102~ = ﬁ(e”‘” 0 )(C+)
0 e

Atz =0, one has
+ L
(1) = P&
(21)
Putting Eq.(21) in Eq (20), it follows that
€(z) = $ (2) €(0)



(22)

— _ +1i _
where S (2) is obtained by the product P <e (l)q : 0 ) P
e

-iqz
L KT
cosqz — i —sinqz I — singz
S _ q q
(2) K~ a
i 7 sinqz cosqz+ i 6sin qz

(23)
Returning to the time-dependent case, one searches the solution by analogy with the

time-independent case in the following form :

E(z,t) = (A(t)> eiv?

B(t)
(24)
Inserting in Eq.(13a) gives after derivation with respect space
3t(5(>) = ¢ (55
(25)
with
G=iT@Yl—-M)
(26)
Integration on time gives
(53) =250 (30)
(27)

Finally it comes by following a way similar to the one presented for the time-
independent case
€(z,t) =R(zt) €(0,0)
(28)
where
R(z,t) = exp(—G t) S (2)
(29)
The reflection coefficient follows from the initial and boundary conditions : at z = 0, a
Heaviside unit-step O(t) is applied, so that f(0,t) = O(t), and at z = L there is no

incoming wave, so that b(L,t) = 0, which gives



f(L,t) _ Ri1(L,t) Ryp(L,£))( ©(0%)
(b5 < 0)= ) (b0,0)

b(L,t) = 0 R, (L, t) Ry, (L, t)) \b(0,0M)
(30)
Then
(CLRRE wor)
(31)
To calculate the reflection coefficient, we need b (0, t). From Eq.(31)
(om)=roo (" 5a05"”)
(32)
or
b(0,t) = Ry;(0,t) +Ry,(0,t) b(0,0%)
(33)
Combining Egs.(31) and (33)
b(0,t) = R,1(0,t) —R,,(0,¢) Raallt)
Ry, (L, t)
(34)

Consequently using the definition of the reflection coefficient, one finds the indicial

response Rg in terms of reflectivity at the time t, after switching on the pulseat t = 0:

Ro(t) = [b(0, 015"
(35)
4. Numerical simulations
Since development of short pulse sources is rapidly growing in the high energy range of
the electromagnetic spectrum, we choose to carry out our simulation in the x-ray

domain for a 1D-PC consisting in a Bragg reflector formed by a Fe/C periodic stack of N

bilayers ; the period d is equal to 5.0 nm and the 7y ratio is equal to 0.5, that is to say the
thicknesses of the Fe and C layers are the same. The energy of the incident radiation is

8 keV which gives a Bragg angle of 0.93°. Figure 2 displays the steady-state reflectivity
versus 0 angle for N = 100; the value of the peak reflectivity (PR) is around 0.64. In all

calculations we use for the optical indices, the values tabulated in the CXRO database

[29].
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Figure 2: Steady-state reflectivity versus the glancing angle 0 at 8 keV of the 1D-PC, the
parameters of which are given in the main text.

Figure 3 shows the instantaneous PR, hereafter denoted I?@(t), calculated at 8 keV for a
constant intensity source switched on abruptly at t =0 ; this quantity is the indicial
response in terms of peak reflectivity. Let us note that the superscript " will be used to
denote the PR obtained at the Bragg angle which must be distinguished from the
reflectivity without superscript obtained at any glancing angle 6. One observes that
Re(t) starts from zero then grows and tends asymptotically to the steady-state value
(0.64) after a transient period of duration 7; estimated to be around 42 fs. We define the
transient time 7; as the rise-time required to go from 10% to 90% of the asymptotic PR.
For the 1D-PC and in the s-polarisation case, the extinction length Lex is given by the

formula
A

B JRe(Dx?u_pu,)

Lexc

(36)
In our example, Lexc takes a value close to 2570 nm, so that the characteristic time
Tc = Lexc/c is around 8.5 fs. The time-dependent diffraction in crystals shows that the
saturation time 7; [24] is of the order of a few 7.: 7s= o T.with oaround 4 as mentioned
in Figure 1 of Ref. [24]. The latter formula gives 34 fs for 7, in agreement with our

transient time value 7.
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PeakReflectivity
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Time fs
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Figure 3: Instantaneous peak reflectivity Rg(t) at 8 keV of the 1D-PC, the parameters of
which are given in the main text (red curve), steady-state peak reflectivity (dashed blue
curve), tangent line at the inflection point of the instantaneous reflectivity (solid blue
line).

Let us now consider the transfer function Rs(s) in terms of peak reflectivity that is the
Laplacian transform of the impulse response Rs(t). This impulse response corresponds
to the instantaneous peak reflectivity obtained when the system is struck by a Dirac
pulse at t = 0 and must not be confused with the indicial response Rg(t). There are a lot
of methods to deduce the transfer function Rs(s) from the indicial response Rg(t).In a
first basic approach, we apply the graphic method introduced by Strejc [30]. We briefly
present the method; the transfer function Rs(s) is written on the following form for an

aperiodic system without delay :

(37)

where K, n and 7 are parameters to be determined from the curve Ry (t) : K is given by

the asymptotic value lim,_,o, Rg(t), nis a tabulated value depending on the ratio%
27t

and 7 is also a tabulated value depending on n and the difference t, — t; ; the quantities
t;, t, are the intersections of the tangent line at the inflection point of Rg(t) with the
abscissa (time) axis and the asymptotic line respectively (see Figure 3). In our example

t; = 0.0025 fs, t, = 35.34 fs and consequently from the tables, one findsn =1 and

T = 35.34 fs . Finally in our case :

K 0.64

R = ~
6(8) = T4 75 1735345

(38)

12



By performing an inverse Laplacian transform, one finds that the indicial response can

be approximated by

. t
Re(t) ~ K (1— e 1)
(39)
If we consider an incident pulse of shape E(t), the time-depend reflected pulse S(t) is

obtained from the convolution product involving the impulse response Ry(t)

S(t) =E(t)* Rs(t) = me(e)I?,g(t — 6)do

(40)
that is by virtue of the convolution theorem
S(s) = E(s) R(s)
(41)

where as usual, Y (s) stands for the Laplacian transform of a function Y (t). If E(t) has a

sine-squared shape, E(t) = sin? (n %), in the interval [0,T] and 0 outside, as shown in

the inset of Figure 4, then the Laplacian transform reads
2Kn?(1— esT)e(T)
(1+s1)4nm?2s+s3T?)

S(s) =

(42)
where O(T) stands for the Heaviside unit-step function. The formula for the inverse
Laplacian transform of S(s) is too long to be explicitly given in the text, but Figure 4

displays S(t) for an incident pulse of width T = 10 fs, for the system under consideration.

Reflected Pulse Height
0.08 |

0.06 |
0.04 -

0.02

Time fs

20 20 60
Figure 4: Time dependence of the reflected pulse height S(t) with a sine-squared incident
pulse of width T = 10 fs, for the system under consideration (see main text).

13



One observes clearly the time-delay effect : at t = 10 fs corresponding to the width of the
incident pulse, the reflected pulse reaches its maximum intensity which is only 8% of its
initial value. Let us also note that the full width at half maximum is about 25 fs, much

larger than the initial pulse width.

5. Conclusion

The coupled-wave theory has been successfully implemented to treat the problem of
time-dependent Bragg reflection by a 1D-PC. In the framework of this approach, we have
shown that the instantaneous peak reflectivity of 1D-PC under unit-step striking
presents a time-delay effect : this reflectivity starts from a zero value at the switching-on
time and tends asymptotically towards the steady-state value. The transient time seems
to be conditioned by the extinction length. This result is in agreement with the
conclusions drawn from the study of the time-dependent diffraction by crystals [25,26].
Our conclusion has potential consequences in time-dependent optics, in particular x-ray
optics because x-ray pulse sources such as X-FEL have time duration comparable with
the transient time of the multilayer Bragg mirrors.

An important but no trivial extension of the present study is to incorporate a pertinent
description of the possible distortion of the structure due to the large power which can
be deposited in the materials. Indeed short pulses sources, because they generally
deliver high power (high energy in short duration), can distort or even damage the

optics [31,32].
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