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Abstract. A displacement and rotation-based dynamic Finite Element formulation for Cosserat plates is discussed in 

detail in this paper. Special attention is given to the validation of the element through adequate benchmarks and patch 

tests. The choice of the interpolation functions and the order of integration of the stiffness and the mass matrices are 

extensively argued. The possibility of local system deficiencies is explored and a shear locking investigation 

specifically elaborated for Cosserat plates is carried out. It is shown how the present formulation has interesting 

computational properties, as compared to a classical continuum-based formulation, and how it can provide suitable 

results despite the use of reduced integration. An example of application of the finite element is given, in which the 

natural frequencies of a masonry panel modelled by means of Discrete Elements are computed and compared with the 

Finite Elements solution.  

 

1 Introduction 

Cosserat (or micropolar) continuum has recently attracted the attention of researchers from many different 

disciplines of Mechanics. Either facing it as an adequate mathematical framework for the regularization of ill-posed 

problems in the softening plasticity regime of classical (Cauchy) continua [1], or as the starting point for the 

constitutive description of systems with internal lengths, or, again, as a medium with dispersive properties, the theory 

of Cosserat continuum has found numerous applications up to present.  

Models based on Cosserat continuum have been employed, for instance, in the representation of granular media 

[2]–[4], rock masses [5], [6], block [7]–[9] and layered structures [10], polycrystals and composites materials [10], 

[11], structures of beams, nanostructures and continuous robotic systems [12]–[14]. Other models have been 

formulated for the modelling of porous and multiphase materials [15], but also particle fluids and materials with 

electro- and ferromagnetic properties [16], [17]. Micropolar descriptions are also used in biomechanics, for the 

mechanical behaviour of bones [18]–[20] and other biological tissues with microstructure [21], [22]. For a more 

comprehensive review of Cosserat (or micropolar) models for solids and plates, we refer to [23]. 

Problems involving boundary layer phenomena, localization of deformations and wave dispersion can be properly 

solved using Cosserat Finite Elements (FE). Sluys and de Borst presented a comprehensive study on the advantages 

of Cosserat FE compared to classical formulations based on Cauchy continuum, which suffer from the problem of 

mesh dependency when localization of shear strains takes place, see [24]–[26] among others. Interesting applications 

of Cosserat FE in modelling layered structures are given by [27]–[29]. Cosserat FE for masonry structures are also 

formulated in [30]–[33]. In modeling masonry, it is the non-symmetry of the stress tensor that makes Cosserat-

continuum-based models preferable [34] with respect to models based on other non-classical continua. Other more 

general FE formulations for micropolar plates and shells and for solids with microstructure are those recently proposed 

by [35], [36] and  [37]–[40]. 

However, even though many applications of Cosserat continuum using FE are found in the literature, the details 

of each FE formulation are partially exposed or not presented at all. Moreover, the performance of the element is 

seldom investigated, making hard to assess the chosen FE formulation and its applicability to other problems. The 

purpose of this paper is to propose a Cosserat finite element that may be used for different applications in structural 

and materials engineering.  

The presented element is obtained by the superposition of a quadratic small-strains Cosserat membrane rectangle 

with a thick plate element with enriched kinematics. It results in a versatile shell-type flat element equipped with six 

degrees of freedom (DOF) per node, capable of modelling complex spatial structural configurations.  

This Cosserat finite element has the advantage of providing accurate results even in the case of reduced integration, 

without using any hourglass control method. In classic FE formulations the hourglass control is frequently made by 

introducing an artificial stiffness to the in-plane rotations [41]–[46]. In FE formulations based on Cosserat continuum, 

this stiffness is introduced in a physical way, because of the inherent drilling rotational DOF. The occurrence of zero-

energy modes can be thus naturally avoided in the Cosserat FE formulations, and the element stiffness matrix is never 

deficient. 
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The paper has the following structure. In Section 2 we outline the basic definitions and relations of a Cosserat 

continuum in three dimensions that are necessary for the rest of the paper. In Section 3 we present a model for 

micropolar plates, through reduction of the three-dimensional problem. In Section 4 we propose a general Cosserat 

dynamic formulation for the FE method. In Section 5 we present a specific finite element: the choice of the 

interpolation order is discussed, the use of different integration techniques for the computation of the element stiffness 

and mass matrices are argued and the possibility of system deficiencies is explored. The validation of the element is 

made in Section 6, where we investigate the shear locking phenomenon applied to micropolar plates. In Section 7 we 

give an illustrative example of the use of the element in representing the modal response of a masonry structure 

consisted of discrete interacting building blocks.  

Throughout the paper much attention is paid to the capacity of the formulation to predict the membrane (or in-

plane) as well as the flexural (or out-of-plane) behaviour. Even though from a theoretical point of view they will be 

presented separately, only their superposition give the full, herein referred to as plate, structural response. 

Common matrix notation is adopted. Upper case letters denote variables referring to the nodes of the element, 

while lower case letters refer to the local variables of the continuum field problem. It is implicitly assumed that the 

former are only time-dependent whereas the latter are space and time-dependent. Partial differentiation with respect 

to orthogonal coordinates is indicated by [ ∙ ]𝑖,𝑗 = 𝜕[ ∙ ]𝑖 𝜕𝑥𝑗⁄ . Time derivative is [ ∙ ]̇ 𝑖 = [ ∙ ]𝑖,𝑡. 

2 3D Cosserat dynamics prerequisites 

Following Germain’s terminology [47], Cosserat continuum is a special case of a micromorphic continuum of first 

order (Fig. 1). Therein, the particle (the material point in the sense of Germain) is considered rigid and, consequently, 

its kinematical description in the three-dimensional (3D) space is fulfilled by six DOF, i.e. three translations 𝑢𝑖 and 

three rotations 𝜔𝑖. 

 

 

Fig. 1 Higher order continuum theories according to Germain [47] terminology. Cosserat continuum is a special case 

of a micromorphic continuum of first order. 

It results that the deformation measures of the medium, herein expressed in Cartesian coordinates and in the frame 

of a small strain theory, are given by two second order tensors, 𝛾𝑖𝑗 and 𝜅𝑖𝑗, representing respectively the relative strains 

and the curvatures: 

Cosserat or Micropolar

(The particle is 

considered rigid) 

Continuum Media

Classic or Cauchy

or Boltzmann

Micromorphic

(cf. Mindlin, Eringen, Germain)

Higher order 

Micromorphic 

(2nd, 3rd etc.)

1st order Micromorphic

Second gradient
(The particle deforms 

as the continuum) 

Indeterminate couple 

stress
(The particle is restrained 

to rotate as the continuum)
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𝛾𝑖𝑗 = 𝑢𝑖,𝑗 + 𝑒𝑖𝑗𝑘𝜔𝑘 (1) 

𝜅𝑖𝑗 = 𝜔𝑖,𝑗, (2) 

with 𝑒𝑖𝑗𝑘 the permutation symbol. The symmetric part of the strain tensor, denoted with 𝛾(𝑖𝑗), coincides with the strain 

tensor of a classical (Cauchy) continuum, whereas its skew-symmetric part 𝛾[𝑖𝑗] accounts for the relative deformations: 

𝛾(𝑖𝑗) =
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

2
 (3) 

𝛾[𝑖𝑗] = 𝑒𝑖𝑗𝑘(�̂�𝑘 − 𝜔𝑘), (4) 

where 𝑒𝑖𝑗𝑘�̂�𝑘 =
𝑢𝑗,𝑖−𝑢𝑖,𝑗

2
 is the infinitesimal rotation tensor. 

The above deformation measures are energy conjugate with the non-symmetric stresses 𝜏𝑖𝑗 and the couple stresses 

𝜇𝑖𝑗. According to Boltzmann, the assumption of symmetry of the stress tensor in classical continua has an axiomatic 

character (see [48], [49]). In the Cosserat medium, the loss of symmetry is due to the rotational DOF attached to the 

particle, as shown by Eq.(4), and the presence of the couple stresses (angular momentum). This makes rich the number 

of the material parameters to be identified within the constitutive relations, and makes Cosserat continuum suitable 

for the description of a great variety of problems. For instance, for a centrosymmetric material, a constitutive law can 

be defined in a general manner as: 

𝜏𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛾𝑘𝑙  

𝜇𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙𝜅𝑘𝑙    (5) 

where 𝐶𝑖𝑗𝑘𝑙  and 𝐷𝑖𝑗𝑘𝑙  are fourth order tensors containing the material parameters. In this case, an isotropic micropolar 

material require the definition of six parameters, whereas a classical solid would only demand two moduli [23]. 

For a Cosserat continuum, the Cauchy tetrahedron can be generalized as follows [47]: 

𝑇𝑖
𝑑 = 𝜏𝑖𝑗𝑛𝑗

𝑀𝑖
𝑑 = 𝜇𝑖𝑗𝑛𝑗 ,

    (6) 

where 𝑇𝑖
𝑑 and 𝑀𝑖

𝑑 are the stress and the couple stress vectors applied on the boundary 𝜕𝛺Σ of a configuration 𝛺, and 

𝑛𝑗 is the normal outward unit vector at ∂𝛺Σ. Moreover, both translations and rotations can be prescribed on the 

boundary 𝜕𝛺𝑈: 

𝑢𝑖 = 𝑢𝑖
𝑑

𝜔𝑖 = 𝜔𝑖
𝑑 .

 (7) 

In Statics, the minimum of the Total Potential Energy gives the equilibrium equations in weak form. In Dynamics, 

the equations of motion can be derived by application of the Hamilton’s variational Principle. For a virtual variation 

of the displacement δ𝑢𝑖  and the rotational field δ𝜔𝑖, the Principle reads, in case of a conservative holonomic 

continuum systems: 

δ∫ [K𝑐 − (V𝑐 − W𝑐)]d𝑡 = 0
𝑡2

𝑡1

. (8) 

In Eq.(8), we recognise the kinetic energy K𝑐, the deformation energy V𝑐, and the expression for the external works 

W𝑐 . In terms of Cosserat kinematics, these quantities read: 

V𝑐 =
1

2
∫(𝜏𝑖𝑗𝛾𝑖𝑗 + 𝜇𝑖𝑗𝜅𝑖𝑗)d𝛺
𝛺

 (9) 

W𝑐 = ∫(𝑓𝑖𝑢𝑖 + 𝑚𝑖𝜔𝑖)
𝛺

d𝛺 + ∫ (𝑇𝑖
𝑑𝑢𝑖 + 𝑀𝑖

𝑑𝜔𝑖)
𝜕𝛺𝛴

d𝐴 (10) 

K𝑐 =
1

2
∫(𝜌�̇�𝑖�̇�𝑖 + 𝜌�̇�𝑖𝐼𝑖𝑗�̇�𝑗
𝛺

)d𝛺. (11) 

In the above, the body forces 𝑓𝑖 and the body couples 𝑚𝑖 represent long-range actions within the continuum. The 

material mass density is 𝜌, and the micro-inertia tensor is 𝜌𝐼𝑖𝑗 . The linear and angular momentum balance is then: 
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𝜏𝑖𝑗,𝑗 + 𝑓𝑖 − 𝜌�̈�𝑖 = 0

𝜇𝑖𝑗,𝑗 − 𝑒𝑖𝑗𝑘𝜏𝑗𝑘 + 𝑚𝑖 − 𝜌𝐼𝑖𝑗�̈�𝑗 = 0 .
 

 
(12) 

3 Equations of motion for Cosserat elastic plates 

The 3D Cosserat field’s problem presented in Section 2 is governed by six partial differential equations (PDE) of 

second order, expressed in terms of the three unknown displacements and the three unknown rotations, see Eqs.(12). 

In the case of a plate, a homogeneous planar surface of unitary thickness ℎ = 1 oriented in the 1-2 plane, the problem 

is invariant in the out-of-plane direction 𝑥3 and so it can be consequently reduced (Fig. 2). Regarding the curvatures, 

we have 𝜅13 = 𝜅23 = 𝜅33 = 0, which annihilate the conjugate couple stress measures 𝜇13, 𝜇23 and 𝜇33. Concerning 

the relative strains, 𝛾33 vanishes due to the aforementioned hypothesis, and components 𝛾13 and 𝛾23 result in the 

simplified expressions: 

𝛾13 = −𝜔2 
𝛾23 = 𝜔1. 

 
(13) 

A typical assumption which is often taken in the construction of classical and micropolar plate theories and that 

we also adopt for our formulation, consists in neglecting the normal stress 𝜏33 (see [50] for a further discussion). 

However Eq.(13) preserves the stress components 𝜏13 and 𝜏23. Although such components are absent in most of the 

models designed for Cosserat plates, see for instance those obtained by reduction of the 3D problem [51]–[53], they 

are conserved in the present formulation. This allows for the implementation of more complete plate models, as the 

one proposed by Eringen [50].  

Dealing with plates, it is handy to separate the membrane (or in-plane) behaviour from the flexural (or out-of-

plane) behaviour, see Fig. 2. The static and kinematic remaining components are expressed in matrix notation in Table 

1, where subscripts m and f refer respectively to the variables associated with the membrane and flexural behaviour. 

Regarding the membrane behaviour, we recognise the tractions 𝜏𝛼𝛽 (𝛼 = 𝛽, with 𝛼, 𝛽 = 1,2), the in-plane shears 𝜏𝛼𝛽 

(𝛼 ≠ 𝛽), and the in-plane couples 𝜇3𝛼. Concerning the flexural behaviour, we identify the torsions 𝜇𝛼𝛽 (𝛼 = 𝛽), the 

out-of-plane flexions 𝜇𝛼𝛽 (𝛼 ≠ 𝛽), the transverse shears 𝜏3𝛼, and the longitudinal shears 𝜏𝛼3. 

 

 

Fig. 2 Stresses, couple stresses and degrees of freedom of a Cosserat plate: membrane (left) and flexural (right) 

behaviour. 

 

Following this notation, the PDE for the in- and out-of-plane motion of Cosserat plates read respectively, in 

compact form: 

[
𝑳𝒎𝟏[2×4]

𝑡 −𝑳𝒎𝟑[2×2]
𝑡

−𝑳𝒎𝟐[1×4]
𝑡 𝑳𝒎𝟒[1×2]

𝑡] [
𝝉𝒎

𝝁𝒎
] + [

𝒇𝒎

𝑚𝑚
] − [

𝟏𝒎[2×2] 𝟎[2×1]

𝟎[1×2] 𝐼𝑚[1×1]
] [

�̈�𝒎

�̈�𝑚
] = 𝟎 (14) 

and 

[
𝑳𝒇𝟏[1×4]

𝑡 −𝑳𝒇𝟑[2×4]
𝑡

−𝑳𝒇𝟐[1×4]
𝑡 𝑳𝒇𝟒[2×4]

𝑡] [
𝝉𝒇

𝝁𝒇
] + [

𝑓𝑓
𝒎𝒇

] − [
1𝑓[1×1] 𝟎[1×2]

𝟎[2×1] 𝑰𝒇[2×2]
] [

�̈�𝑓

�̈�𝒇
] = 𝟎, (15) 

where the sub-matrices 𝑳𝒎𝒊 and 𝑳𝒇𝒊 are the operators giving the definition of the deformation measures of the plate 

(Eq.(1)-(2)): 

μ21

x1

τ11

x3

μ31
τ12

x2

τ21

τ22

μ32

μ11

μ12

x3

x2

μ22

τ31

τ32

μ31

U3 Ω2

Ω1

U2

U1

Ω3

x1
τ23

τ13

flexural behaviourmembrane behaviour

h
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[
𝜸𝒎

𝜿𝒎
] = [

𝑳𝒎𝟏[4×2] 𝑳𝒎𝟐[4×1]

𝑳𝒎𝟑[2×2] 𝑳𝒎𝟒[2×1]
] [

𝒖𝒎

𝜔𝑚
] (16) 

[
𝜸𝒇

𝜿𝒇
] = [

𝑳𝒇𝟏[4×1] 𝑳𝒇𝟐[4×2]

𝑳𝒇𝟑[4×1] 𝑳𝒇𝟒[4×2]
] [

𝑢𝑓

𝝎𝒇
], (17) 

that is: 

𝑳𝒎𝟏[4×2] =

[
 
 
 
 
[ ∙ ],1 0

0 [ ∙ ],2
[ ∙ ],2 0

0 [ ∙ ],1]
 
 
 
 

𝑳𝒎𝟐[4×1] = [

0
0

+1
−1

] 𝑳𝒎𝟑[2×2] = [
0 0
0 0

] 𝑳𝒎𝟒[2×1] = [
[ ∙ ],1
[ ∙ ],2

] ,

𝑳𝒇𝟏[4×1] = [

0
[ ∙ ],1

0
[ ∙ ],2

] 𝑳𝒇𝟐[4×2] = [

0 −1
0 +1

+1 0
−1 0

] 𝑳𝒇𝟑[4×1] = [

0
0
0
0

] 𝑳𝒇𝟒[4×2] =

[
 
 
 
 
[ ∙ ],1 0

0 [ ∙ ],2
[ ∙ ],2 0

0 [ ∙ ],1]
 
 
 
 

.

 (18) 

In a plate, material symmetries can be defined only with respect to the normal axis 𝑥3 [54], [55]. Therefore, without 

losing generality a constitutive law is introduced in the following form: 

[
𝝉𝒎

𝝁𝒎
] = [

𝑨[4×4] 𝑮[4×2]

𝑯[2×4] 𝑫𝒎[2×2]
] [

𝜸𝒎

𝜿𝒎
] (19) 

[
𝝉𝒇

𝝁𝒇
] = [

𝑭[4×4] 𝟎[4×4]

𝟎[4×4] 𝑫𝒇[4×4]
] [

𝜸𝒇

𝜿𝒇
]. (20) 

In the above: 𝑨 governs the membrane behaviour; 𝑫𝒇 and 𝑫𝒎 control the in- and out-of-plane bending response; 𝑭 

accounts for the transversal and the longitudinal shears. Matrices 𝑮 and 𝑯 are responsible for the coupling between 

the stress and couple stress components. Next, we will focus on the case of Cosserat materials possessing 

centrosymmetric properties. In such case, those matrices are considered zero. For a more complete FE formulation, 

the reader is referred to Appendix 1. 

4 Element formulation 

In Cosserat FE, nodes are equipped with translational and rotational DOF. The number of nodes to which refer the 

translations and the rotations depends to the degree of interpolation attended for those fields. As it will be discussed 

in Section 5.1, many choices are possible in this sense. In order to keep the formulation general, we assume that the 

element translations are defined on N nodes, whereas element rotations are attached to M nodes. Therefore, the vectors 

containing the nodal variables of the element can be written as: 

[𝑼𝒎
𝑡 𝜴𝒎

𝑡] = [𝑼𝒎
 𝟏 𝑡

… 𝑼𝒎
 𝐍𝑡

𝛺𝑚
 1 … 𝛺𝑚

 M] 

[𝑼𝒇
𝑡 𝜴𝒇

𝑡] = [𝑈𝑓
 1 … 𝑈𝑓

 N 𝜴𝒇
 𝟏𝑡

… 𝜴𝒇
 𝐌𝑡

] 
(21) 

The aforementioned N nodal displacements and the M nodal rotations are interpolated by means of general shape 

functions 𝑵 and 𝜱, respectively:  

[
𝒖𝒎

𝜔𝑚
] = [

𝑵𝒎[2×2𝑁] 𝟎[2×𝑀]

𝟎[1×2𝑁] 𝜱𝒎[1×𝑀]
] [

𝑼𝒎

𝜴𝒎
]  (22) 

[
𝑢𝑓

𝝎𝒇
] = [

𝑵𝒇[1×𝑁] 𝟎[1×2𝑀]

𝟎[2×𝑁] 𝜱𝒇[2×2𝑀]
] [

𝑼𝒇

𝜴𝒇
]. (23) 

In particular, 𝑵𝒎 interpolate the in-plane displacements, 𝑵𝒇 the out-of-plane displacements, 𝜱𝒎 the in-plane rotational 

field and 𝜱𝒇 the out-of-plane rotational fields: 
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𝑵𝒎[2×2𝑁] = [
𝑁1 0 𝑁𝑁 0
0 𝑁1 … 0 𝑁𝑁

] 𝑵𝒇[1×𝑁] = [𝑁1 … 𝑁𝑁]  

𝜱𝒎[1×𝑀] = [𝛷1 … 𝛷𝑀] 𝜱𝒇[2×2𝑀] = [
𝛷1 0 𝛷𝑀 0
0 𝛷1 … 0 𝛷𝑀

] .

 (24) 

It follows that the expressions of the deformation measures within the FE are:   

[
𝜸𝒎

𝜿𝒎
] = [

𝑩𝒎𝟏[4×2𝑁] 𝑩𝒎𝟐[4×𝑀]

𝑩𝒎𝟑[2×2𝑁] 𝑩𝒎𝟒[2×𝑀]
] [

𝑼𝒎

𝜴𝒎
] (25) 

[
𝜸𝒇

𝜿𝒇
] = [

𝑩𝒇𝟏[4×𝑁] 𝑩𝒇𝟐[4×2𝑀]

𝑩𝒇𝟑[4×𝑁] 𝑩𝒇𝟒[4×2𝑀]
] [

𝑼𝒇

𝜴𝒇
], (26) 

where the definition of compliant matrices 𝑩𝜶𝐢 can be found by introducing Eq.(24) into Eq.(16)-(17), and obtaining, 

in very compact form, the following relations: 

𝑩𝜶𝐢 = 𝑳𝜶𝐢𝑵𝜶, for 𝑖 = 1,3
𝑩𝜶𝐢 = 𝑳𝜶𝐢𝜱𝜶, for 𝑖 = 2,4

with 𝛼 = 𝑚, 𝑓. (27) 

Notice that matrices 𝑩𝒎𝟐 and 𝑩𝒎𝟒 are associated with the in-plane (or drilling) nodal rotations 𝛺3, which are absent 

in the classical engineering plate theories.  

4.1 Stiffness matrix 

The substitution of the relations (22)-(23) and (25)-(26) into the expressions of the deformation energy V𝑐 (from 

Eq.(9)) and of the external works W𝑐  (from Eq.(10)) for the plate, leads to the definitions of the element stiffness 

matrix and the nodal load vectors. Adopting the notation used by [56] for the in-plane behaviour, it holds: 

V𝑚
𝑐 =

1

2
[𝑼𝒎

𝑡 𝜴𝒎
𝑡] [

𝑲𝑼𝑼
𝒎 𝑲𝑼𝜴

𝒎

𝑲𝜴𝑼
𝒎 𝑲𝜴𝜴

𝒎 ] [
𝑼𝒎

𝜴𝒎
] W𝑚

𝑐 =[𝑷𝒎
𝑡 𝑸𝒎

𝑡] [
𝑼𝒎

𝜴𝒎
] (28) 

with the stiffness sub-matrices: 

𝑲𝑼𝑼
𝒎 = ∫ [𝑩𝒎𝟏[2𝑁×4]

𝑡𝑨[4×4]𝑩𝒎𝟏[4×2𝑁]]d𝐴
𝛺𝑒

 (29) 

𝑲𝑼𝜴
𝒎 = ∫ [𝑩𝒎𝟏[2𝑁×4]

𝑡𝑨[4×4]𝑩𝒎𝟐[4×𝑀]]d𝐴
𝛺𝑒

= 𝑲𝜴𝑼
𝒎 𝑡

   (30) 

𝑲𝜴𝜴
𝒎 = ∫ [𝑩𝒎𝟐[𝑀×4]

𝑡𝑨[4×4]𝑩𝒎𝟐[4×𝑀] + 𝑩𝒎𝟒[𝑀×2]
𝑡𝑫𝒎[2×2]𝑩𝒎𝟒[2×𝑀]]d𝐴

𝛺𝑒
, (31) 

and the nodal load vectors: 

[
𝑷𝒎

𝑸𝒎
] = ∫ [

𝑵𝒎[2𝑁×2]
𝑡 𝟎[2𝑁×1]

𝟎[𝑀×2] 𝜱𝒎[𝑀×1]
𝑡] [

𝒇𝒎

𝑚𝑚
]

𝛺𝑒

d𝐴 + ∫ [
𝑵𝒎[2𝑁×2]

𝑡 𝟎[2𝑁×1]

𝟎[𝑀×2] 𝜱𝒎[𝑀×1]
𝑡] [

𝑻𝒎
𝒅

𝑀𝑚
𝑑
]

𝜕𝛺Σ
𝑒

d𝑆. (32) 

defined on the element configuration 𝛺𝑒 . The vectors 𝑻𝒎
𝒅 , 𝑀𝑚

𝑑  represent the in-plane forces and moments prescribed 

on the boundary 𝜕𝛺Σ
𝑒 of the finite element. It is worth mentioning that the sub-matrix 𝑲𝑼𝑼

𝒎  represents the stiffness 

matrix of a classical membrane element, whereas 𝑲𝑼𝜴
𝒎  and 𝑲𝜴𝜴

𝒎  are additional terms associated to the drilling rotations. 

This is the difference between the present Cosserat FE formulation and a classical Cauchy-continuum-based 

formulation, as far it concerns the in-plane behaviour. As it will be shown in Section 5.2, the first term of 𝑲𝜴𝜴
𝒎  

alleviates the local stiffness matrix rank deficiency that occurs in case of reduced integration of classical elements 

against membrane actions.  

The out-of-plane behaviour can be separated into pure bending (b) and shear (s) components. In this case the 

stiffness matrix is: 

𝑲𝒇 = [
𝑲𝑼𝑼

𝒔 𝑲𝑼𝜴
𝒔

𝑲𝜴𝑼
𝒔 𝑲𝜴𝜴

𝒔 + 𝑲𝜴𝜴
𝒃 ], (33) 

with 
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𝑲𝑼𝑼
𝒔 = ∫ [𝑩𝒇𝟏[𝑁×4]

𝑡𝑭[4×4]𝑩𝒇𝟏[4×𝑁]]d𝐴
𝛺𝑒

 (34) 

𝑲𝑼𝜴
𝒔 = ∫ [𝑩𝒇𝟏[𝑁×4]

𝑡𝑭[4×4]𝑩𝒇𝟐[4×2𝑀]]d𝐴
𝛺𝑒

= 𝑲𝜴𝑼
𝒔 𝑡

   (35) 

𝑲𝜴𝜴
𝒔 = ∫ [𝑩𝒇𝟐[2𝑀×4]

𝑡𝑭[4×4]𝑩𝒇𝟐[4×2𝑀]]d𝐴
𝛺𝑒

 (36) 

𝑲𝜴𝜴
𝒃 = ∫ [𝑩𝒇𝟒[2𝑀×4]

𝑡𝑫𝒇[4×4]𝑩𝒇𝟒[4×2𝑀]]d𝐴
𝛺𝑒

. (37) 

The nodal load vectors are: 

[
𝑷𝒇

𝑸𝒇
] = ∫ [

𝑵𝒇[𝑁×1]
𝑡 𝟎[𝑁×2]

𝟎[2𝑀×1] 𝜱𝒇[2𝑀×2]
𝑡] [

𝑓𝑓
𝒎𝒇

] d𝐴

𝛺𝑒

+ ∫ [
𝑵𝒇[𝑁×1]

𝑡 𝟎[𝑁×2]

𝟎[2𝑀×1] 𝜱𝒇[2𝑀×2]
𝑡] [

𝑇𝑓
𝑑

𝑴𝒇
𝒅
] d𝑆

𝜕𝛺Σ
𝑒

.  (38) 

In Eq.(38), 𝑇𝑓
𝑑  and 𝑴𝒇

𝒅 represent the vertical force and out-of-plane moments prescribed on the boundary 𝜕𝛺Σ
𝑒 . It is 

worth pointing out that, as far as it concerns the out-of-plane behaviour, the expressions of the stiffness matrix 𝑲𝒇 and 

of its sub-matrices obtained for the Cosserat plate element (Eq.(33)) have the same structure and form with those of a 

thick (Reissner-Mindlin) plate element. Indeed, the present Cosserat FE formulation is more general and encloses the 

Reissner-Mindlin FE formulation. This latter can be retrieved by a) neglecting the longitudinal shears 𝜏13 and 𝜏23 in 

the constitutive matrix 𝑭 (Eq.(20)) and b) by redefining of the operator 𝑳𝒇𝟒 in Eq.(18), in order to take into account 

only the symmetric part of the rotation gradient into the definition of the out-of-plane curvatures 𝜿𝒇 (see Table 1). In 

this sense, the FE formulation provided for Reissner-Mindlin plates is a special case of the FE formulation for Cosserat 

plates presented herein. Due to this similarity, shear locking phenomenon is expected in the limit of very thin 

geometries in the present Cosserat formulation. This issue will be explored in Section 6.2.  

4.2 Mass matrix 

The mass matrix can be computed by substituting Eq.(22)-(23) into the equation of the kinetic energy K𝑐 (Eq.(11)) 

calculated for the plate. For the in-plane behaviour this results in the expression: 

K𝑚
𝑐 =

1

2
[�̈�𝒎

𝑡
�̈�𝒎

𝑡] [
𝑴𝒎 𝟎
𝟎 𝜣𝒎] [

�̈�𝒎

�̈�𝒎

], (39) 

with the mass sub-matrices: 

[
𝑴𝒎 𝟎
𝟎 𝜣𝒎] = ∫ [

𝑵𝒎[2𝑁×2]
𝑡 𝟎[2𝑁×1]

𝟎[M×2] 𝜱𝒎[𝑀×1]
𝑡] [

𝟏𝒎[2×2] 𝟎[2×1]

𝟎[1×2] 𝐼𝑚[1×1]
] [

𝑵𝒎[2×2𝑁] 𝟎[2×𝑀]

𝟎[1×2𝑁] 𝜱𝒎[1×𝑀]
]

𝛺𝑒
d𝐴. (40) 

For the out-of plane behaviour it holds: 

[𝑴
𝒇 𝟎

𝟎 𝜣𝒇
] = ∫ [

𝑵𝒇[𝑁×1]
𝑡 𝟎[𝑁×2]

𝟎[2𝑀×1] 𝜱𝒇[2𝑀×2]
𝑡] [

1𝑓[1×1] 𝟎[1×2]

𝟎[2×1] 𝑰𝒇[2×2]
] [

𝑵𝒇[1×𝑁] 𝟎[1×2𝑀]

𝟎[2×𝑁] 𝜱𝒇[2×2𝑀]
]

𝛺𝑒
d𝐴. (41) 

In the present formulation the micro-inertia tensor is considered isotropic. A rigorous way to determine the inertial 

terms of a Cosserat medium could be that dictated by Germain [47] and Eringen [16] (see also [57]). The mass density 

𝜌 may be defined by identification of the rigid microstructure with the material particle of the underlying continuum, 

as the integral of the mass density distribution 𝜌′ over the volume of the particle 𝑉: 

𝜌d𝑉 = ∫𝜌′d𝑉′
𝑉

, (42) 

where [ ∙ ]′ denotes that the variable is defined at the scale of the particle. Similarly, the micro-inertia tensor can be 

defined as the second order moment with respect to the position of the centre of the mass of the particle, i.e. [16]: 

𝜌𝐼𝑖𝑗d𝑉 = ∫𝜌′𝑥𝑖
′𝑥𝑗

′d𝑉
𝑉

′. (43) 
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4.3 Element motion 

Following the definitions given in this Section, the PDE for a Cosserat plate FE are expressed in matrix form as: 

[
𝑲𝑼𝑼

𝒎 𝑲𝑼𝜴
𝒎

𝑲𝜴𝑼
𝒎 𝑲𝜴𝜴

𝒎 ] [
𝑼𝒎

𝜴𝒎
] + [

𝑴𝒎 𝟎
𝟎 𝜣𝒎] [

�̈�𝒎

�̈�𝒎

] = [
𝑷𝒎

𝑸𝒎
] 

[
𝑲𝑼𝑼

𝒔 𝑲𝑼𝜴
𝒔

𝑲𝜴𝑼
𝒔 𝑲𝜴𝜴

𝒔 + 𝑲𝜴𝜴
𝒃 ] [

𝑼𝒇

𝜴𝒇
] + [𝑴

𝒇 𝟎
𝟎 𝜣𝒇

] [
�̈�𝒇

�̈�𝒇

] = [
𝑷𝒇

𝑸𝒇
]. 

(44) 

Eq.(44) governs the motion of the element and is to be solved at each step of the analysis. To this purpose, a 

number of solution methods exist and some of them are exploited in the commercial code Abaqus [58], where the 

presented formulation has been implemented as a particular User ELement (UEL) and employed within an implicit 

time-discretization procedure. This makes possible to control the analysis at each step of a prescribed procedure, to 

compute the stress and deformation state at every Gauss point of the element and to combine the new element solution 

with that obtained by the pre-existing elements of the code. 

5 The COSS8R element 

The implemented element is an isoparametric quadratic plane rectangle with eight nodes and constant thickness 

(Fig. 3). Reduced integration is made to avoid shear locking and therefore four Gauss points are used. Each node of 

the element is equipped with three translational and three rotational DOF. This results in a complete six-degree-of-

freedom FE formulation, allowing to model shell structures as an assembly of these flat elements [41].  

 

Fig. 3 The COSS8R element, with 4 Gauss points (X), 8 nodes and 6 DOF per node: translations (square) and 

rotations (circle). 

A similar FE formulation has been proposed in literature by [59], but to the author’s knowledge its performance 

has not been yet explored. 

5.1 Choice of the polynomial order of interpolation 

The same quadratic shape functions 𝑵 and 𝜱 are used for the polynomial interpolation of the translational and the 

rotational kinematic fields. This choice is not the only one possible. 

An alternative would be to consider Lagrangian elements with linear interpolations for both kinematic fields. 

However, in this case, Eq.(3)-(4) indicate that some integral terms, as for example the product between the symmetric 

tensors [𝜏(𝑖𝑗)𝛾(𝑖𝑗)] and the product between the couple stresses and the curvatures [ 𝜇𝑖𝑗𝜅𝑖𝑗], would be of zero degree 

(constants). On the other hand, the product between the skew-symmetric tensors [𝜏[𝑖𝑗]𝛾[𝑖𝑗]] would be of second degree. 

In that case, a selective integration technique should be attempted in order to redress the same level of accuracy in the 

representation of both deformation measures, since, if only the lower order of interpolation was respected, it would 

result in a decrease of accuracy for coarse element discretisations.  

Another approach could be to choose high precision Hermitian elements, as done by [60]. However, in spite of the 

higher accuracy reached by this approach, the plate formulation with Hermitian elements would be not trivial and 

more computationally intensive.  

In [56] it is demonstrated that, in the case of an explicitly derived formulation where no numerical integration is 

involved, a triangular Cosserat element for plane elasticity that uses quadratic shape functions for both displacements 

1 2

3
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5

68

7

Ω2
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U2
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x1

x2
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and rotations produces excellent results if compared to linear interpolations. Only marginally better would be the 

behavior of elements with quadratic (for translations) and linear (for rotations) approximations [56].  

Indeed, the adoption of quadratic shape functions for the displacement field and of linear shape functions for the 

rotational field would assure the same order of interpolation, as far as it concerns the in-plane strain vector 𝜸𝒎. This 

as consequence of its definition (Eq.(1)). Nevertheless, the adoption of linear functions for the rotations would lead, 

after Eq.(2), to constant in-plane 𝜿𝒎 and out-of-plane 𝜿𝒇 curvatures within the element. In view of the representation 

of flexural problems, this is considered as a limitation.  

In order to overcome this problem, we make use of quadratic shape functions for both the translational and the 

rotational fields over the FE. Such a formulation allows to cover the interpolation order given by a linear/quadratic 

formulation and to increase the precision with respect to the curvatures. Aiming at modelling both the in-plane and 

the out-of-plane behaviour, this choice is expected to provide a good level of accuracy in case of coarse meshes and 

be still advantageous in view of the dynamic analyses, where the use of too refined formulations would increase 

excessively the computational cost.  

5.2 Zero-energy modes investigation 

Reduced integration comes with the price of introducing modes of deformation with zero energy, i.e. modes for 

which the element does not exhibit any stiffness [61]. In the case of classical quadrilateral membrane elements such 

modes take the shape of an hourglass and they have to be controlled in order to assure accurate results. One way 

consists, for instance, in introducing an additional drilling rigidity into the element stiffness matrix [41]–[43]. This 

artificial stiffness does not have a particular physical meaning except in the framework of a Cosserat continuum, where 

it is provided by the in-plane particle rotations. 

HOURGLASS MODES 

In a general manner we consider the following standard eigenproblem: 

[𝑲 − 𝜆𝟏]�̅� = 0. (45) 

The solution of Eq.(45) gives L eigenvalues 𝜆𝑙  and L nodal eigenvectors �̅�𝑙, with 𝑙 = 1,… , L and L being the dimension 

of the considered local stiffness matrix 𝑲. It is known that every eigenvalue is equal to twice the strain energy due to 

the displacement field provided by the associated eigenvector [62]. As a consequence, one may expect from the 

solution of the eigenproblem as many null eigenvalues as the number of rigid motions and, for each additional null 

eigenvalue, an associated non-rigid motion with zero deformation energy can be found. In computational terms, this 

indicates a matrix rank deficiency. In mechanical terms, this shows that the formulation is affected by the presence of 

zero-energy modes. 

 

 

Fig. 4 Elements tested for zero-energy modes investigation: (A) Cosserat element, plate configuration; (B) Cosserat 

element, membrane configuration; (C) classical Cauchy element, membrane part. 

Starting from the present Cosserat formulation, we calculate the eigenvalues of the stiffness matrix 𝑲 for three 

different cases (Fig. 4). First, the eigenproblem is solved for a complete six-degree-of-freedom Cosserat assembly 

(Fig. 4-(A)). The same investigation is made by considering only the membrane behaviour of the Cosserat element 

(Fig. 4-(B)). Then, only the in-plane translations are kept, reducing the present formulation to a classical Cauchy 

membrane element (Fig. 4-(C)). The stiffness matrix considered in each case is one (or an assembly) of the sub-

matrices defined in Section 4.1. For the case (C) we also impose symmetry into the in-plane shear stress in order to 

retrieve Cauchy continuum. As shown in Appendix 2, this can be accounted for in the construction of the material 

matrix 𝑨, by respecting the following identities: 

𝐴1212 = 𝐴2121 = 𝐴1221 = 𝐴2112. (46) 

In Table 2, we give the comparison between the three aforementioned configurations, in terms of the number of 

computed zero-energy modes. Despite the reduced integration, the COSS8R element does not show any rank 

deficiency.  

SPURIOUS MODES 

(A) (B)                                        (C) 

U2

U1

U2

U1

Ω3

U2

U1

Ω1

Ω2

U3Ω3



10 

 

The origin of the zero-energy modes can be found in the difference between the number of local deformation 

variables of the continuum model that we intend to discretise and the number of deformation modes of the actual 

numerical model. Hence, given the continuum, it is sufficient to increase the number of degrees of freedom, for 

example through mesh refinement or by increasing the interpolation order, in order to alleviate the matrix deficiency 

and make the zero-energy mode non-communicable [61]. There exist, however, certain situations in which the problem 

still occurs. 

 

 

Fig. 5 (a) a highly rigid element resting upon a layer of flexible elements with reduced integration; (b) propagating 

spurious mode in an assembly of Cauchy (S8R) elements; (c) accurate results from a COSS8R subdivision. 

Herein we consider the well-discussed plane problem of Fig. 5 (see [41]). Because of the reduced integration, an 

hourglass mode is activated in the rigid element as a result of the applied force, and it gives rise to a spurious (or 

communicable) mode which is able to propagate within a certain area in the elements below. In the case of the classical 

S8R element (Fig. 5-(b)), only the use of a complete integration would allow to overcome such problem and give 

accurate solutions, with the price of shear locking behaviour. On the contrary, the COSS8R element does not have 

this problem, as the rotational DOF perform an intrinsic action of hourglass control (Fig. 5-(c)).  

It is interesting to investigate how these spurious modes become manifest. To this end, we consider a homogeneous 

isotropic Cosserat centrosymmetric material. Matrices 𝑨 and 𝑫𝒎 in Eq.(19) are expressed as: 

𝑨 =

[
 
 
 
 
𝐾 + 𝐺 𝐾 − 𝐺 0 0
𝐾 − 𝐺 𝐾 + 𝐺 0 0

0 0 𝐺 + 𝐺𝑐 𝐺 − 𝐺𝑐

0 0 𝐺 − 𝐺𝑐 𝐺 + 𝐺𝑐

]
 
 
 
 

𝑫𝒎 = [
2𝐺𝑙𝑐 0

0 2𝐺𝑙𝑐
], 

(47) 

 

where 𝐾 is the compression modulus, 𝐺 is the shear modulus, 𝐺𝑐 is the Cosserat shear modulus and 𝑙𝑐  denotes the 

internal length under shear. It is useful to define 𝛼 = 𝐺𝑐/𝐺  as the coupling factor. As we show in Appendix 2, this 

parameter allows to control the magnitude of the skew-symmetric term of the membrane strain vector, i.e. 𝛾[12]. 

For 𝛼 = 0, in-plane rotations are annihilated and the classical Cauchy element is retrieved through Eq.(46) (Fig. 5-

(b)). For 𝛼 = 1, the COSS8R element is recalled (Fig. 5-(c)). Intermediate values of 𝛼 allows to control the magnitude 

of, say, the Cosserat’s term 𝛾[12].  

 

 

Fig. 6 Definition of the distorsion 𝛿 of the rigid element. 

Always with reference to the above example (Fig. 5), a parametric analysis is carried out on 𝛼. The results are 

presented in Fig. 7, in terms of the distortion 𝛿 and the displacement 𝑣, which are defined in Fig. 6 and normalized 

with the values calculated for 𝛼 = 0. Fig. 7 shows an immediate decrease of distortion due to the introduction of the 

Cosserat’s term (Fig. 7-left). Moreover, the exact solution is reached rapidly by varying the coupling factor 𝛼 from 0 

to 1 (Fig. 7-right). Therefore we can defend the idea that the non-symmetry of the stress tensor permits to avoid the 

rank deficiency into the element membrane stiffness in case of reduced integration. The non-symmetry of the stress 

tensor is a key feature of Cosserat continuum. 

 

(a) (b) (c)

l UA

UB

v
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Fig. 7 Normalised distortion factor (left) and normalised vertical displacement (right) versus the coupling factor 𝛼. 

The classical Cauchy (S8R) element is retrieved for 𝛼 = 0. The COSS8R element is for 𝛼 = 1. 

STIFFNESS MATRIX DEFICIENCIES IN MODELLING SHELL STRUCTURES 

Regarding the complete plate formulation and the possibility to model shell spatial structures, we demonstrate in 

Appendix 3 that the coupling factor 𝛼 enters the definition of the first term of the stiffness sub-matrix (31). Such 

matrix, as it is indicated by [44], has also a stabilization effect in the modelling of shell structures by assembling flat 

plate elements. We can thus conclude on the good computational performance of the present Cosserat plate element. 

The non-symmetry of the stress tensor has in fact a general rank stabilization effect versus the occurrence of hourglass 

modes in membrane behaviour, and matrix deficiencies in shell structures assemblies. This is a clear advantage as 

compared to classical-continuum-based FE formulations, where the use of artificial hourglass control techniques is 

inevitable. 

5.3 Consistent mass matrix 

The dynamic counterpart of Eq.(45) is the generalized eigenproblem:  

[𝑲 − 𝜆𝑴]�̅� = 0. (48) 

Always employing a reduced integration for the computation of the stiffness matrix 𝑲 (the case (A) of Fig. 4 is herein 

referred to), reduced and complete integration are performed for the computation of the local mass matrix 𝑴. 

Generalized eigenvalue analyses are carried on the aforementioned matrices and reveal the occurrence of infinite 

eigenvalues, in the case of reduced integration of the mass matrix. From a mechanical point of view, this corresponds 

to the presence of massless degrees of freedom [63], for which the system exhibits infinite stiffness. A static 

condensation would then be necessary on such variables in order to give accurate results, and the element would result 

in lumped mass components. Therefore complete integration is used over the mass matrix, so as to keep an effectively 

consistent formulation.  

Through this method we also confirm the absence of zero-energy modes in the dynamic regime. 

6 Element validation 

A number of numerical tests and examples are presented in this Section with the goal of assessing the performance 

of the present COSS8R element both in static and dynamic regime. In particular, a patch test specifically designed for 

Cosserat continua is made to prove the efficiency of the element in representing homogeneous in-plane relative strain 

and curvature states. Shear locking investigation is then carried out to attest the out-of-plane response of the element 

in the limit of thin geometries. The wave dispersion functions are finally calculated with reference to a one-

dimensional problem and compared to the analytical solution. 

6.1 Patch test 

We consider the rectangular region of Fig. 8, where an internal element is introduced within the patch in order to 

induce a geometric distortion to the whole discretization.  
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Fig. 8 Element discretization employed for the patch test. 

The patch test used here is inspired by [56], who used it for triangular elements, and it is adequately modified for 

rectangular FE. A homogeneous isotropic linear elastic Cosserat material is taken into account. The material matrix 

given by Eq.(47). Three tests are performed dealing with the membrane (or in-plane) behaviour [56], see Table 3. Test 

1 verifies that the element is capable of reproducing constant symmetric shear components, as in a classical 

formulation. In Test 2, a non-symmetric constant shear is imposed through the application of external couples 𝑚3. For 

Test 3, the solution is such that the in-plane couple stresses are identical and constant.  

 

The boundary conditions which allow the situations above to be achieved are applied to the external nodes of the patch 

and the solution is checked at Gauss point 𝑃1 of the internal element (Fig. 8). As shown in Table 4, good agreement 

with the theoretical solution is achieved in all tests. In Test 3, the level of accuracy reached by the formulation is 

comparable with that found by [56] for their quadratic triangular element MQUAT. 

6.2 Shear locking investigation 

We consider the example of simply-supported and clamped-edge 𝐿 × 𝐿 square plates of constant thickness ℎ, 

subjected to uniform distributed load 𝑝 (Fig. 9). In order to investigate the shear locking phenomenon, several analyses 

are carried out on these configurations by considering various FE subdivisions of increasing 𝐿 ℎ⁄  ratios.  

 

 

Fig. 9 Bending-plate in two configurations: simply supported (left) and clamped edges (right). 

To this purpose, we take into account the constitutive law proposed by Altenbach & Eremeyev [53], who, starting 

from a Cosserat 3D flat configuration, deduce an isotropic relation for micropolar plates by integration in the thickness 

direction. Matrices 𝑭 and 𝑫𝒇 in Eq.(20) yield: 

𝑭 = [

0 0 0 0
0 𝛼4 0 0
0 0 0 0
0 0 0 𝛼4

] 𝑫𝒇 = [

𝛽1 + 𝛽2 + 𝛽3 𝛽1 0 0
𝛽1 𝛽1 + 𝛽2 + 𝛽3 0 0
0 0 𝛽3 𝛽2

0 0 𝛽2 𝛽3

], 

 

(49) 

where the parameters 𝛼4, 𝛽1, 𝛽2, 𝛽3 are here retrieved from the works of Lakes made on high-density rigid polyurethane 

closed-cell foams (see Table 2-PU in [53]).  
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Fig. 10 Normalised central deflection versus length-to-thickness ratio for given meshes. Left: simply supported 

plate. Right: clamped-edge plate. 

In Fig. 10 we show the resultant deflection 𝑤𝑐, measured at the centre of the plate. The out-of-plane bending 

rigidity used for normalization is 𝐷𝑓 ≡ 𝛽3. The results are qualitatively similar to those found in literature for the thick 

(Reissner-Mindlin) plate elements (see [41]). In particular, the performance of the element reduces as the geometry of 

the plate becomes thin, and this phenomenon is more apparent for the plate with clamped edges than for the simply 

supported one. Nevertheless, in both cases convergence is guaranteed upon mesh refinement. It is to note that, for high 

𝐿 ℎ⁄  ratios, the structural response reaches the solution predicted by the thin (Love-Kirchhoff) plate theory (see [64]). 

This can be explained by the fact that, as for the Reissner-Mindlin formulation, the limit of thin geometries plays the 

role of an internal kinematical constraint, for which the transverse shear deformations tend to vanish. Moreover, due 

to the symmetry of the problem and the constitutive law considered, the torsional response is symmetric in the plate 

directions. These two conditions allow to retrieve the kinematics of a thin plate, in the limit of 𝐿 ℎ⁄ → ∞. 

6.3 Dispersion functions 

We consider a narrow infinite strip of Cosserat material in the 𝑥2-direction, invariant in the 𝑥1 and 𝑥3 directions. The 

flexural problem of this one-dimensional configuration is governed by the following PDE (Eq.(12)): 

𝜏32,2 − 𝜌�̈�3 = 0 

𝜇12,2 + 𝜏32 − 𝜌𝐼1�̈�1 = 0. 
(50) 

By using the definition of the deformation measures (Eq.(1)-(2)) and the constitutive relations (Eq.(20)) one obtains: 

𝐹3232[𝑢3,2 − 𝜔1],2 − 𝜌�̈�3 = 0 

𝐷𝑓
1212𝜔1,22 + 𝐹3232[𝑢3,2 − 𝜔1] − 𝜌𝐼11�̈�1 = 0. 

(51) 

which has indeed the same structure of that governing the free-vibrations of a Timoshenko beam. Setting:  

𝑢3 = 𝐴ⅇⅈ(𝜅𝑥2+𝜈𝑡) 
𝜔1 = 𝐵ⅇⅈ(𝜅𝑥2+𝜈𝑡), 

(52) 

in which 𝜅 is the wave number, 𝜈 denotes the angular frequency, and 𝐴, 𝐵 are imaginary constants and by substituting 

Eq.(52) into Eq.(51), we obtain, in matrix notation: 

[
−𝐹3232𝜅2 + 𝜌𝜈2 −ⅈ𝐹3232𝜅

ⅈ𝐹3232𝜅 −𝐹3232 − 𝐷𝑓
1212𝜅2 + 𝐼1𝜌𝜈2] [

𝐴
𝐵
] = [

0
0
]. (53) 

The above system admits non-trivial solutions only when: 

𝜅4 − (
𝜌𝐼11

𝐷𝑓
1212 +

𝜌𝐷𝑓
1212

𝐹3232
) 𝜅2𝜈2 −

𝜌

𝐷𝑓
1212 𝜈2 +

𝜌2𝐼11

𝐹3232𝐷𝑓
1212 𝜈4 = 0. (54) 

The roots of Eq.(54) are called dispersion relations and they can be expressed in a form similar to [24] as follows: 
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𝜈1,2(𝜅) = √−
𝛽(𝑘)

2𝛼(𝑘)
± √[

𝛽(𝑘)

2𝛼(𝑘)
]
2

−
𝛾(𝑘)

𝛼(𝑘)
, (55) 

where 

𝛼(𝜅) = 𝜌2𝐼1  

𝛽(𝜅) = −(𝜌𝜅2𝐼1𝐹
3232 + 𝐷𝑓

1212𝜌𝜅2 + 𝐹3232𝜌) 

𝛾(𝜅) = 𝐷𝑓
1212𝐹3232𝜅4. 

(56) 

Similar to the Timoshenko beam theory, the dispersion relations reveal the two basic oscillation modes of the system. 

With reference to Fig. 11 we have: mode 1, the micro-rotation mode, describing the pure bending shape, and mode 2, 

the shear deformation mode, representing a shear strain state. The superposition of such modes gives the flexural 

response of the beam.  

The membrane problem of the aforementioned one-dimensional Cosserat configuration is governed by the 

following PDE: 

𝜏22,2 − 𝜌�̈�2 = 0. (57) 

By using again Eq.(1)-(2) and (19), one can rewrite the above equation as: 

𝐴2222𝑢2,22 − 𝜌�̈�2 = 0. (58) 

Looking for a solution of the form similar to Eq.(52), we obtain the following linear relation: 

𝜈3(𝜅) = √
𝐴2222

𝜌
𝜅, (59) 

which is associated to a mode3 of longitudinal waves.  

 

Fig. 11 Dispersion relations for a one-dimensional Cosserat flexural problem: micro-rotation mode 𝜈1 and shear 

strain mode 𝜈2. 

For validation purposes, we consider as illustrative example a simply supported beam of length 𝐿. In such case, 

the resulting wave numbers are: 

𝜅𝑛 =
𝑛𝜋

𝐿
,  with 𝑛 = 1, 2,3, … (60) 

corresponding to wave lengths: 

𝜆𝑛 =
2𝜋

𝜅𝑛

=
2𝐿

𝑛
,  with 𝑛 = 1, 2,3, … . (61) 

Once the modal wave numbers are calculated, it is necessary to pass by the dispersion relations (Fig. 11) to obtain the 

corresponding natural frequencies. 

The beam is discretized by a series of 20, 40, 80 and 160 FE over its length. Natural frequencies are computed by 

a modal analysis based on Lanczos method and compared with the analytical values indicated above. The relative 

error committed by the FE in representing the longitudinal vibrations is zero even with the coarsest discretization. The 

relative error committed in the evaluation of the first eleven flexural oscillation modes is plotted in Fig. 12, versus the 

normalised wave length 𝜆𝑛/𝐿. A 9-digit precision is used for the wave lengths. The relative error is defined as: 
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𝜖𝑛
𝜆 = 100 ×

𝜆𝑛 − 𝜆𝑛
𝐹𝐸

𝜆𝑛

. (62) 

In general, we may note how the convergence to the analytical values is achieved by the COSS8R element upon mesh 

refinement. As expected, we observe that, for a given discretization, the relative error decreases for increasing wave 

lengths. Therefore, a quite fine mesh is needed to extract the highest frequencies from the FE model: a 40-element 

subdivision is considered acceptable. 

 

 

Fig. 12 Relative error committed in the evaluation of the first eleven flexural wave lengths.  

7 Application to masonry structures 

The purpose of this Section is to highlight the practical interest of the above Cosserat FE formulation in view of 

engineering applications. The case of masonry panels is selected, due to the apparent microstructure of such material. 

Through illustrative examples, we investigate the performance of the COSS8R element for the prediction of the modal 

response of masonry panels, considered as equivalent Cosserat plates. In particular, we focus on the specific role 

played by the drilling rotations. 

For the analyses, we adopt the homogenized constitutive law for Cosserat plates proposed by Stefanou et al. [8]. 

This model is derived by identification of a periodic lattice made of regular rigid building blocks with an equivalent 

3D Cosserat continuum. The resulting model is an equivalent micropolar plate with orthotropic properties, which 

accounts for both the in- and the out-of-plane deformation of masonry in the dynamic regime. For the expression of 

the matrices for the constitutive laws and the inertial terms, the reader is referred to the original work [8]. 

 

Fig. 13 The three simulated masonry panels modelled with DE and with equivalent Cosserat plates by the COSS8R 

element: notation, boundary conditions and aspect ratios 𝐴𝑅 = 𝐵/𝐴. 
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Modal analyses are carried out on plates having 3 different aspect ratios 𝐴𝑅 = 𝐵/𝐴 (see Fig. 13). For each of these 

three configurations, several simulations are launched by increasing the number of blocks 𝑁𝑏 that compose the panels 

in both the horizontal and the vertical direction. This operation is done simultaneously, so that, for every given 

simulation, the panel’s aspect ratio is kept constant and equal to the blocks’ aspect ratio: 𝐵/𝐴 = 𝑏/𝑎. The scale ratio, 

that is defined herein as the ratio between the size of the blocks and the size of the panel, decreases with the inverse 

of the number of blocks disposed in each direction, i.e. 𝑎/𝐴 = 𝑏/𝐵 = 1/𝑁𝑏. On the contrary, the length-to-thickness 

ratio (representing the slenderness of the panel) increases as 𝐵/𝑑 = 𝑁𝑏𝑏/𝑑 (the thickness of the panel is kept 

constant). This is exactly equivalent with keeping fixed the overall size of the panel and reducing the size of the blocks, 

without varying their shape.  

7.1 Comparison with Discrete Elements solution 

The Cosserat homogenized constitutive law for masonry [8] is implemented in the COSS8R element and 

incorporated in Abaqus through the subroutine UEL. The results produced by FE are compared with those obtained 

from the use a Discrete Elements (DE) analogue model. This latter is created by means of the numerical package 

3DEC ([65], [66]). The analogue DE model consists in an assemblage of rigid blocks, which are disposed as presented 

in Fig. 13. The blocks interact with the adjacent blocks through linear elastic interfaces, that are governed by the same 

coefficients used in the homogenization model considered in [8]. In this way, the same assumptions are made as far 

as it concerns the lattice studied by [8], and, consequently, no calibration is needed between the DE and Cosserat FE 

model.  

Modal analyses are carried out on the analogue DE model using the same strategy as described above for the FE 

model: the number of blocks is progressively increased, while the thickness of the assembled masonry panel is kept 

constant. It is worth mentioning that, according to [67], a large number of contact-points are required across the 

thickness of the panel in order to obtain an accurate representation of the out-of-plane behaviour with the DE model. 

This remarkably increases the calculation cost of the DE model, to FE’s advantage, for which a 8x8-FE discretization 

is considered sufficient after having performed a mesh convergence analysis (see Section 6.3). 

The first in-plane and the first two out-of-plane modes, corresponding respectively to shear, bending and torsion 

oscillation modes are extracted from the COSS8R (Abaqus) and the DE analogue model (3DEC). The natural 

frequencies for each mode are compared in Fig. 14-Fig. 16 in function of the number of bundling blocks 𝑁𝑏 composing 

the panel in both directions (Fig. 13). We observe that the frequencies provided by FE are slightly lower than those 

produced by DE, and that, for increasing number of blocks, DE and FE converge. 

 

 

Fig. 14 Modal frequencies of the masonry panel versus the number of building blocks composing the panel in both 

directions. Comparison between the results extracted by DE and by the use of the equivalent Cosserat plate model for 

masonry implemented in a COSS8R FE discretisation. Results for aspect ratio 𝐴𝑅 = 0.50. 
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Fig. 15 Modal frequencies of the masonry panel versus the number of building blocks composing the panel in both 

directions. Comparison between the results extracted by DE and by the use of the equivalent Cosserat plate model for 

masonry implemented in a COSS8R FE discretisation. Results for aspect ratio 𝐴𝑅 = 1.00. 

 

Fig. 16 Modal frequencies of the masonry panel versus the number of building blocks composing the panel in both 

directions. Comparison between the results extracted by DE and by the use of the equivalent Cosserat plate model for 

masonry implemented in a COSS8R FE discretisation. Results for aspect ratio 𝐴𝑅 = 1.50. 

7.2 The role of drilling rotations 

In Fig. 17 we present the percentage of the modal effective mass related to the first in-plane deformation mode of 

the masonry panels. The modal effective mass associated to the horizontal and the vertical translations 𝑢1, 𝑢2 is 

computed over the element in the following manner [58]: 

ℳ̅1 =
(�̅�𝒎

𝑡
 𝑴𝒎𝚫𝟏)

2

�̅�𝒎
𝑡
 𝑴𝒎�̅�𝒎

ℳ̅2 =
(�̅�𝒎

𝑡
 𝑴𝒎𝚫𝟐)

2

�̅�𝒎
𝑡
 𝑴𝒎�̅�𝒎

. (63) 
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The present Cosserat formulation also allows the calculation of the modal effective moment of inertia over each finite 

element. This effective inertia is associated to the drilling rotations of the plate 𝜔3, through the expression: 

ℑ̅3 =
(�̅�𝒎

𝑡
 𝜣𝒎𝚫𝟑)

2

�̅�𝒎
𝑡
 𝜣𝒎�̅�𝒎

. (64) 

In the above, �̅�𝒎 and  �̅�𝒎 denote the in-plane nodal translations and rotations composing the eigenvector associated 

to the oscillation mode considered. The element mass sub-matrices are calculated according to Eq.(40). The vectors 

𝚫𝒊 give the response of every DOF of the element to a unitary motion applied in the 𝑖-th direction, which consists in 

a displacement (for 𝑖 = 1,2,) and in an axis rotation (for 𝑖 = 3). Note that the modal effective masses ℳ̅1, ℳ̅2 and the 

moment of inertia ℑ̅3 are computed by Abaqus for the whole element discretisation. In Fig. 17 we present the effective 

mass and inertia moment normalized, respectively, by the total mass ℳTOT and the total in-plane moment of inertia 

ℑTOT of the plate: 

ℳTOT = 𝜌𝐴𝐵𝑑 = 𝜌𝑁𝑏
2𝑎𝑏𝑑 

ℑTOT =
ℳTOT

12
𝜌(𝐴2 + 𝐵2)𝑑 =

ℳTOT

12
𝜌𝑁𝑏

2(𝑎2 + 𝑏2)𝑑. 
 

We observe that the amount of the modal inertia that is taken by the drilling rotations for the first in-plane mode 

increases remarkably with the aspect ratio of the panel and with elongated blocks. In particular, for aspect ratios higher 

than the unit, this quantity amounts to approximately 50% of the total rotary inertia (see Fig. 17, 𝐴𝑅 = 1.50). The rest 

of the effective modal mass (until 100%) is covered by other higher frequency membrane modes that are not examined 

herein. This suggests that the drilling rotations can have a significant participation in the inertial response of masonry 

panels. 

 

 

Fig. 17 Percentage of modal effective masses and moment of inertia for the first in-plane mode of the masonry panel, 

versus the number of building blocks composing the panel in both directions. The modal masses ℳ̅1 and ℳ̅2 are 

associated to the horizontal and the vertical displacements. The modal moment of inertia ℑ̅3 is associated to the drilling 

rotations. 

8 Conclusions 

Nowadays Cosserat Finite Elements find numerous applications in mechanics and engineering. However, the 

details of the FE formulation are partially exposed in literature or not presented at all, and its performance is seldom 

investigated. Therefore, it is hard to assess the chosen formulation and to extend its applicability to other problems. 

In this paper, a Cosserat dynamic Finite Element formulation for elastic plates has been presented and investigated 

in a detailed manner. In particular, a quadrilateral element with quadratic interpolation functions for both the 

displacement and the rotational fields has been proposed and validated through adequate patch tests and benchmarks. 

It has been demonstrated how, due to the non-symmetry of the stress tensor and the drilling rotation that is inherent to 
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the micropolar continuum, this element has advantageous computational properties when compared to classical 

formulations. Local matrix deficiencies are not detected in the case of reduced integration, without the use of hourglass 

control techniques. Cosserat continuum introduces in a physical way the stiffness associated to the drilling rotations, 

which prevents the hourglass modes to occur and makes the presented formulation suitable for the assemblage of shell 

structures. The performance of the element in representing the bending behaviour in the limit of thin geometries has 

been also studied, showing a quite good performance against the shear locking phenomenon. The element has been 

then validated under dynamic conditions. Wave dispersion has been studied with respect to a Cosserat one-

dimensional configuration. The comparison between the results of the numerical model against the theoretical solution 

has demonstrated the precision of the formulation in modelling in-plane and out-of-plane modal shapes with high 

frequencies.  

The presented Cosserat Finite Element formulation is very general and allows various constitutive laws for 

materials with micro-structure to be implemented. In order to highlight the practical interest of the formulation, an 

application has been given, in which a masonry panel made of rigid building blocks with deformable interfaces has 

been modeled through the validated finite element. The in- and out-of-plane modal response of masonry has been 

considered, by focusing on the shearing, flexural and torsional oscillation modes of the panel. The role of the micro-

structure has been also studied, by modelling panels with various aspect ratios and slenderness. The results from the 

homogenized Cosserat Finite Element analyses have been juxtaposed to those obtained by the use of an analogue 

Discrete Elements model, and a good agreement has been found. The role of the drilling rotations has been then 

assessed, showing their significant participation to the inertial response of the masonry panels against in-plane seismic 

excitations. 

 

Appendix 1 

Considering a Cosserat material without specific centrosymmetric properties and always supposing uncoupled in-

plane and out-of-plane behavior, Eq.(9) reads:  

V𝑚
𝐶 = [𝑼𝒎

𝑡 𝜴𝒎
𝑡] [[

𝑲𝑼𝑼
𝒎 𝑲𝑼𝜴

𝒎

𝑲𝜴𝑼
𝒎 𝑲𝜴𝜴

𝒎 ] + [
𝟎 �̃�𝑼𝜴

𝒎

�̃�𝜴𝑼
𝒎 �̃�𝜴𝜴

𝒎 ]] [
𝑼𝒎

𝜴𝒎
]. (65) 

The additional terms are indicated with [ ∙ ]̃ and are: 

�̃�𝑼𝜴
𝒎 = ∫ [𝑩𝒎𝟏[2𝑁×4]

𝑡𝑮[4×2]𝑩𝒎𝟒[2×𝑀]]d𝐴
𝛺𝑒

 (66) 

�̃�𝜴𝑼
𝒎 = ∫ [𝑩𝒎𝟒[𝑀×2]

𝑡𝑯[2×4]𝑩𝒎𝟏[4×2𝑁]]d𝐴
𝛺𝑒

 (67) 

�̃�𝜴𝜴
𝒎 = ℎ∫ [𝑩𝒎𝟒[𝑀×2]

𝑡𝑯[2×4]𝑩𝒎𝟐[4×𝑀] + 𝑩𝒎𝟐[𝑀×4]
𝑡𝑮[4×2]𝑩𝒎𝟒[2×𝑀]]d𝐴

𝛺𝑒 . (68) 

Appendix 2 

Let us consider the elastic deformation energy associated to the present Cosserat plate model due to the in-plane 

deformations:  

V𝑚
C =

1

2
∫ [𝝉𝒎

𝑡𝜸𝒎 + 𝝁𝒎
𝑡𝜿𝒎]

𝛺𝑒
d𝐴. (69) 

Taking into account the constitutive law (19), we obtain: 

V𝑚
C =

1

2
∫ [𝜸𝒎

𝑡𝑨 𝜸𝒎 + 𝜿𝒎
𝑡𝑫𝒎𝜿𝒎]

𝛺𝑒
d𝐴. (70) 

The derivation of the skew-symmetric part from the element formulation is made possible by separating every term 

of the strain vector into its symmetric and skew-symmetric part and by reordering the resulting components in a new 

vectorial form:  

�̃�𝒎 = [𝛾11 𝛾22 𝛾(12) 𝛾[12]]𝑡 (71) 
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�̃�𝒎 = [𝜅31 𝜅32]𝑡 = 𝜿𝒎. 

The stress components can be also separated into their symmetric and skew-symmetric parts: 

�̃�𝒎 = [𝜏11 𝜏22 𝜏(12) 𝜏[12]]𝑡 

�̃�𝒎 = [𝜇31 𝜇32]𝑡 = 𝝁𝒎. 
(72) 

A new constitutive law between (71) and (72) can be expressed through the basic linear relation 

�̃� =
𝜕2

𝜕�̃�𝒎𝜕�̃�𝒎
[Ṽ𝑚

C ],  (73) 

where Ṽ𝑚
C  takes the form: 

Ṽ𝑚
C =

1

2
∫ [�̃�𝒎

𝑡�̃� �̃�𝒎 + 𝜿𝒎
𝑡𝑫𝒎𝜿𝒎]

𝛺𝑒
d𝐴. (74) 

Thus, starting from matrix 

𝑨 = [

𝐴1111 𝐴1122

𝐴2211 𝐴2222

𝐴1212 𝐴1221

𝐴2112 𝐴2121

], (75) 

we obtain: 

�̃� = [

𝐴1111 𝐴1122

𝐴2211 𝐴2222

𝐴(12)(12) 𝐴(12)[12]

𝐴[12](12) 𝐴[12][12]

], (76) 

with 

𝐴(12)(12) = [𝐴1212 + 𝐴1221 + 𝐴2121 + 𝐴2112] 2⁄  (77) 

𝐴(12)[12] = [𝐴1212 − 𝐴1221 − 𝐴2121 + 𝐴2112] 2⁄  (78) 

𝐴[12](12) = [𝐴1212 + 𝐴1221 − 𝐴2121 − 𝐴2112] 2⁄  (79) 

𝐴[12][12] = [𝐴1212 − 𝐴1221 + 𝐴2121 − 𝐴2112]/2 . (80) 

Cauchy continuum can be retrieved by annihilating the skew-symmetric terms contained in Eq.(78)-(80), which 

automatically guarantees the self-satisfaction of the balance equations, without the necessity of any couple stress 

addition. In the case that 𝑨 is given by the first sub-matrix of Eq.(47), we have: 

𝐴[12][12] = 2𝐺𝑐 = 2𝐺𝛼 = 2𝐴(12)(12)𝛼 𝐴(12)[12] = 𝐴[12](12) = 0.   (81) 

Therefore the term 𝛼 controls in magnitude the skew-symmetric part of the shear stress within the constitutive law.  

Appendix 3 

Given 𝑨 by Eq.(75) and 𝑩𝒎𝟐 by Eq.(27), the first term of the stiffness matrix in Eq.(31) reads: 

𝑲𝜴𝜴
𝒎 (1)

= ∫ [

0 0
0 0

𝛷1 𝛷𝑁

−𝛷1 … −𝛷𝑁

]

𝑡

[

𝐴1111 𝐴1122

𝐴2211 𝐴2222

𝐴1212 𝐴1221

𝐴2112 𝐴2121

] [

0 0
0 0

𝛷1 𝛷𝑁

−𝛷1 … −𝛷𝑁

] d𝐴

𝛺𝑒

. (82) 

Recalling the definitions (18) and (80) , the above matrix is: 

𝑲𝜴𝜴
𝒎 (1)

= ∫ 2𝐴[12][12]𝜱𝒎 ⊗ 𝜱𝒎𝑑𝐴
𝛺𝑒

= ∫ 2𝐴[12][12]𝜱𝒎
𝑡𝜱𝒎d𝐴

𝛺𝑒
, (83) 
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where the outer product ( ∙ ⊗ ∙ ) has been expressed as a scalar product, with 𝜱𝒎 from Eq.(24). We note that only the 

matrix 𝑲𝜴𝜴
𝒎 (1)

 contains the elastic modulus 𝐴[12][12] associated to the Cosserat’s term responsible for the hourglass 

control, i.e. 𝛾[12]. Writing the elastic potential associated to that matrix as: 

V𝛺𝛺
𝐶𝑚(1)

=
1

2
𝜴𝒎

𝑡𝑲𝜴𝜴
𝒎 (1)

𝜴𝒎, (84) 

and by introducing Eq.(83), we have: 

V𝛺𝛺
𝐶𝑚(1)

=
1

2
∫ [𝜱𝒎𝜴𝒎]𝑡2𝐴[12][12][𝜱𝒎𝜴𝒎]d𝐴
𝛺𝑒

. (85) 

In the above we recognise the second expression of Eq.(22). It results in: 

V𝛺𝛺
𝐶𝑚(1)

=
1

2
∫ 2𝐴[12][12]𝜔3

2d𝐴
𝛺𝑒

. (86) 

So 𝑲𝜴𝜴
𝒎 (1)

 depends on the drilling rotations 𝜔3 and if 𝐴[12][12] = 2𝐺𝛼 (Eq. (81)), then 𝛼 gives a weight to the drilling 

rotations in the assemblage of the element membrane stiffness matrix.  

The above potential is similar to that generally proposed by [44] for the construction of shell structures by 

assemblage of flat FE. This latter can be expressed as: 

V𝛺𝛺
𝑃𝐾(1)

= 𝛽𝛾 ∫ [�̂�30 − 𝜔3]
2d𝐴

𝛺𝑒
≈ 𝛽𝛾 ∫ 𝛾[12]

2d𝐴
𝛺𝑒

, (87) 

where �̂�30 the average infinitesimal rotation (Eq.(4)) of the element, 𝛽 depends on the material and 𝛾 is an arbitral 

parameter thought which one makes the stiffness matrix non-singular, against possible membrane actions.  
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  membrane behaviour flexural behaviour 

 

statics: 
 

body forces  

 

𝒇𝒎 = [𝑓1 𝑓2]
𝑡 

 

𝑓𝑓 = [𝑓3] 

 body couples 𝑚𝑚 = [𝑚3] 𝒎𝒇 = [𝑚1 𝑚2]t 

 stresses  𝝉𝒎 = [𝜏11 𝜏22 𝜏12 𝜏21]𝑡 𝝉𝒇 = [𝜏13 𝜏31 𝜏23 𝜏32]𝑡 

 couple stresses  𝝁𝒎 = [𝜇31 𝜇32]𝑡 𝝁𝒇 = [𝜇11 𝜇22 𝜇12 𝜇21]𝑡 

kinematics:  displacements  𝒖𝒎 = [𝑢1 𝑢2]t 𝑢𝑓 = [𝑢3] 

 rotations  𝜔𝑚 = [𝜔3] 𝝎𝒇 = [𝜔1 𝜔2]t 

 strains  𝜸𝒎 = [𝛾11 𝛾22 𝛾12 𝛾21]𝑡 𝜸𝒇 = [𝛾13 𝛾31 𝛾23 𝛾32]𝑡 

 curvatures  𝜿𝒎 = [𝜅31 𝜅32]𝑡 𝜿𝒇 = [𝜅11 𝜅22 𝜅12 𝜅21]𝑡 

inertia terms: lateral inertia 𝟏𝒎 = 𝜌 [
1 0
0 1

] 1𝑓 = 𝜌 

 
rotary inertia 𝐼𝑚 = 𝜌𝐼33 𝑰𝒇 = 𝜌 [

𝐼11 0
0 𝐼22

] 

Table 1 Field variables of the Cosserat plate-type model in matrix notation. Membrane and flexural behaviour. The 

components of the inertia tensor are represented in the principal basis. 

 

   number of integration points 

              element formulation K 2x2 3x3 

(A) Cosserat plate Eq.(29)-(31), (34)-(37) 0 0 

(B) Cosserat membrane Eq.(29)-(31) 0 0 

(C) Cauchy membrane Eq.(29) 1 0 

Table 2 Computed number of zero-energy modes other than those associated with rigid body modes. 

 

Test 1 

𝑢1 = 10−3(𝑥 + 0.5 𝑦) 

 𝜏11 = 𝜏22 = 4 

𝑢2 = 10−3(𝑥 + 𝑦) 

𝜏12 = 𝜏21 = 1.5 
𝜔3 = 0.25 × 10−3 

𝜇31 = 𝜇32 = 0 
𝑓1 = 𝑓2 = 0  𝑚3 = 0 

 

Test 2 

𝑢1 = 10−3(𝑥 + 0.5 𝑦) 

𝜏11 = 𝜏22 = 4  
𝑢2 = 10−3(𝑥 + 𝑦) 

𝜏12 = 2        𝜏21 = 1 
𝜔3 = 10−3(0.25 + (4𝛼)−1) 

𝜇31 = 𝜇32 = 0 
𝑓1 = 𝑓2 = 0  𝑚3 = 1 

 

 

Test 3 

𝑢1 = 10−3(𝑥 + 0.5 𝑦) 
𝜏11 = 𝜏22 = 4 

𝑢2 = 10−3(𝑥 + 𝑦) 

𝜏12 = 1.5 + (𝑥 − 𝑦) 

𝜏21 = 1.5 − (𝑥 − 𝑦)  

𝜔3 = 10−3[0.25 + (2𝛼)−1(𝑥 − 𝑦)] 
𝜇31 = −𝜇32 = 4. 

𝑓1 = 𝑓2 = 1  𝑚3 = 2(𝑥 − 𝑦) 

 

Table 3 Patch test for Cosserat plane elements: boundary conditions and expected solutions. 

 

 𝜏11 𝜏22 𝜏12 𝜏21 𝜇31 𝜇32 
 

Test1 4.000  

[4.000] 

4.000  

[4.000] 

1.500  

[1.500] 

1.500  

[1.500] 

0.000  

[0.000] 

0.000  

[0.000] 

Test2 4.000  

[4.000] 

4.000  

[4.000] 

1.000  

[1.000] 

2.000  

[2.000] 

0.010  

[0.000] 

0.022  

[0.000] 

Test3 3.976  

[4.000] 

3.970  

[4.000] 

1.521  

[1.537] 

1.447  

[1.462] 

3.997  

[4.000] 

-4.001  

[-4.000] 

Table 4 Results of patch tests at point 𝑃1. Exact results are reported in parenthesis. 

 


