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Abstract

In order to increase the reachable workspace of parallel robots, a promising solution consists in the definition of
optimal trajectories that ensure the non degeneracy of the dynamic model in the Type 2 (or parallel) singularity.
However, this assumes that the control law can perfectly track the desired trajectory, which is impossible due to
modelling errors.

This paper proposes a robust multi-model approach allowing parallel robots to cross Type 2 singularities. The
main idea is to shift near singularities to a simplified dynamic model that can never degenerate. The proposed control
law is validated experimentally through a Five-bar planar parallel mechanism.
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1. Introduction

Contrary to serial robots, which are largely used in industry, parallel robots are under-represented despite having
many advantages, such as higher acceleration capacities and a better payload-to-weight ratio. The small number of
parallel mechanisms in factories can be explained by the relative complexity of their model and by the presence of
singularities [1, 2, 3], which divide their workspace into different aspects (each aspect corresponding to one or more
assembly modes [4]). The manipulator workspace is therefore usually reduced to only one of these aspects, resulting
in a greatly reduced reachable workspace size.

Various type of singularity exist, and for a global overview of the singularity problem the reader is referred to [2].
However, since Type 2 [3] (or parallel) singularities are probably the most constraining ones, this paper will focus
only on this type. In these singularities, one (or more) manipulator’s degree of freedom becomes uncontrollable. In
order to increase the workspace size several approaches have been envisaged in the literature, such as:

• The design of parallel robots without singularities. This can be done by using the optimal design approach [5, 6]
or by creating decoupled mechanisms [7, 8]. This solution is the most usual one, but it usually leads to the design
of robots with a small workspace size or robot architectures with very low practicability.

• The use of redundancy [9, 10] or, to reduce costs, the use of mechanisms with variable actuation modes [1, 11].
These mechanisms can change the way they are actuated without adding additional actuators, but this change
can only be carried out when the mechanism is stopped, thus increasing the time necessary to perform the task.

• Planning assembly mode changing trajectories. A first way to do this is to bypass a cusp point [12]. However,
this solution is hardly practical for two main reasons: i) it forces the mechanism to follow a particular trajectory,
which can be very different from the desired one; ii) only a few mechanisms have cusp points. A second solution
is to go directly through a Type 2 singularity [13, 14]. In [13], a physical criterion, obtained through the analysis
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of the dynamic model, is presented. It enables the computation of a trajectory which can cross a singularity
without the dynamic model degenerating, by respecting the criterion in question on the singularity locus.

This last solution is promising, since it can considerably increase the workspace size of any parallel mechanism.
However, in previous studies it was considered that the controller allowed the mechanism to perfectly track the desired
trajectory. This is obviously impossible due to modeling uncertainties. In order to fill this gap, the aim of the present
paper is to propose an advanced control law dedicated to Type 2 singularity crossing.

In order to correctly track a trajectory, only a dynamic control law can be used [15] since only can control the
accelerations. Moreover, it is the only kind of control law that takes into account the dynamic properties of the
system. Among the different dynamic control loop algorithms, the most efficient one is probably the Computed
Torque Control (CTC) [15, 16, 17]. It computes the actuator torque of the robot based on its dynamic model and
the desired trajectory. However, this control law is sensitive to modeling errors, so the dynamic model must be
well identified [23, 24]. Furthermore, to be used when crossing a Type 2 singularity, the dynamic model must not
degenerate near singularities, even if the trajectory does not perfectly respect the physical criterion mentioned above,
which is unavoidable with usual CTC. As a result, in this paper a new multi-model CTC (e.g. see [16, 17]) is proposed,
which guarantees that the robot dynamic model of the mechanism does not degenerate near a singularity. This multi-
model control law was developed thanks to the definition of a new dynamic criterion based on [13].

A first condensed version of this work has been submitted to ICRA 2014. The proposed paper presents detailed
explanations on:

• The way to choose a metric for a multi-model approach.

• The validation of the identified dynamic model.

• New experimental results for the comparison between using the usual computed torque control (CTC) laws for
singularity crossing and using the proposed approach.

This paper is organized as follows: first the approach used to compute the criterion for crossing Type 2 singularities
is recalled, and a method developed to increase the robustness of the planned trajectory is proposed. Then, in Section
III, the multi-model CTC control law developed for crossing singularities is presented. Section IV introduces the
robot used to validate the Type 2 singularity crossing approach proposed. Finally, the relevancy of this controller is
demonstrated through full-scale experiments on a Five-bar mechanism.

2. Trajectory generation for crossing a Type 2 singularity

2.1. Dynamic modeling of parallel mechanisms

This section will briefly recall the dynamic equations of a parallel manipulator composed of m links, n degrees of
freedom (dof ) and driven by n actuators. The position and the speed of the manipulator can be fully described using:

• q = [q1,q2, ...,qn]
T and q̇ = [q̇1, q̇2, ..., q̇n]

T which represent respectively the vectors of active joint variables and
active joint velocities,

• x = [x,y,z,φ ,ψ,θ ]T and v =
[
ẋ, ẏ, ż, φ̇ , ψ̇, θ̇

]T which are the end-effector pose parameters and their derivatives
with respect to time; x, y and z represent the position of the platform controlled point and φ , ψ and θ represent
the orientation of the platform about three axes aφ ,aψ and aθ (Briant angles).

Using Lagrangian formalism, the dynamic model of the mechanism can be written as:

τ = wb +BT
λ , (1)

wp = AT
λ (2)

where

• τ is the vector of the input efforts,
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• λ is the vector of the Lagrange multipliers,

• A and B are two matrices deduced from the mechanism loop-closure equations, such that Av = Bq̇ [4],

• wb and wp are related to the Lagrangian L of the system by:

wb =
d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
, wp =

d
dt

(
∂L
∂v

)
− ∂L

∂x
(3)

In this expression, wp is the wrench applied to the platform by the legs and the external forces [13].
Then, assuming that matrix A can be inverted and by substituting (2) into (1), the general dynamic model of

parallel manipulators is obtained [15]:

τ = wb +JT 0wp, (4)

where

• 0wp is the expression of the wrench wp in the base frame, i.e. 0wp = Dwp with D the matrix relating the
platform twist t (expressed in the base frame) to the vector v by t = Dv [4],

• J = 0A−1B is the Jacobian matrix between the platform twist t and q̇, with 0A the expression of matrix A in the
base frame, i.e. 0A = AD−1.

2.2. Type 2 singularity crossing

Based on the analysis of the kinematic model, a classification of singularities into three different types is proposed
in [3]:

◦ Type 1 singularities or serial singularities occur when the mechanism is in a position such that the kinematic
matrix B becomes rank deficient. In such configurations, the mechanism loses its ability to move in one given direc-
tion.

◦ Type 2 singularities or parallel singularities occur when the kinematic matrix 0A becomes rank deficient. In
Type 2 singularities, one or more of the robot’s degrees of freedom become uncontrollable. Such singularities divide
the workspace into different aspects, resulting in a reduction in the manipulator’s workspace. Moreover, in the pres-
ence of these singularities, the robot may also not be able to resist an external wrench applied to the platform, and the
reactions in its joints grow to infinity.

◦ Type 3 singularities are configurations where both Type 1 and Type 2 singular configurations appear at the same
time. They are disregarded in the rest of the paper as they appear if both Type 1 and Type 2 singularities exist.

Finally, parallel mechanisms with fewer than 6 dof can have another type of singularity: the constraint singular-
ity [19, 2].

If a parallel mechanism is in a singular Type 2 position, matrix AT cannot be inverted in Equation (2). The
dynamic model degenerates and therefore cannot be solved. However, as explained in the introduction, it has been
proven in [13] that a mechanism can cross a Type 2 singularity without a torque discontinuity. Indeed, on a Type 2
singularity, the columns of 0A are linearly dependent, i.e. a vector ts exists such that:

0Ats = 0⇔ ts
T 0AT = 0 (5)

The vector ts represents the twist of the uncontrollable motion of the platform at the singularity locus [4]. Thus,
multiplying (2) by tT

s leads to:
tT
s

0AT
λ = 0 (6)
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In this case, the following condition must also be satisfied:

tT
s

0wp = 0 (7)

which is the condition for the non-degeneracy of the dynamic model [13].
As a result, if the desired manipulator motion does not guarantee the achievement of a wrench wp that respects

condition (7), the dynamic model is degenerated and the desired manipulator input strains must grow to infinity to
produce the desired platform motion. Physically, this condition means that the parallel manipulator can cross the Type
2 singularity if and only if the wrench 0wp exerted by the legs and external efforts on the platform is reciprocal to the
twist ts of the uncontrollable motion in the Type 2 singularity.

2.3. Generation of a robust trajectory for crossing a Type 2 singularity

In order to cross a singularity without a torque discontinuity, the mechanism has to follow a trajectory which
respects criterion (7) on the singularity locus. Theoretically, the dynamic model degenerates only at the singularity
locus; however, numerically matrix A is singular in a space around the singularity locus. Therefore criterion (7) has
to be respected in this space around the singularity locus in order to prevent the dynamic model from degenerating.

Trajectory generation is achieved using polynomials, whose degree can vary. Indeed, in order to guarantee that
criterion (7) is respected around the singularity locus (contrary to what was done previously), it is proposed in this
work to vanish the criterion (7) and n of its derivatives:

tT
s

diwp

dt i = 0 i = 1, ...,n, (8)

To the best of our knowledge, this is the first time that such criteria have been proposed. Generating a trajectory
based on these criteria (8) enables us to increase robustness in order to model uncertainties and control error around
the singularity. Experimental results show that nullifying the first two derivatives of the criterion might be sufficient.

The next section will present the control law used to enable singularity crossing.

3. Control law dedicated to Type 2 singularity crossing

3.1. Computed Torque Control

The Computed Torque Control (CTC) [17, 18] is an advanced control law which computes the input torques that
the actuators must apply to the mechanism in order to follow a given trajectory. It is based on the dynamic model
presented in Part 2.

As for any type of control law in robotics, the aim of the CTC controller is to minimize the error in either joint
or task space. Since near to a Type 2 singularity the kinematic matrix A is singular, it is not possible to compute the
Cartesian velocities v from the joint velocities q̇ using the DKM (Direct kinematic Model). Furthermore, on industrial
robots on-board sensors usually measure joint space values, and therefore only the joint space control law should be
used to cross Type 2 singularities.

Let us rewrite the dynamic model of the mechanism as [17, 20]:

τ = wb +JT wp = Mq̈+H(q, q̇) (9)

By replacing the angular acceleration q̈ in Equation (9) by an adapted control signal u, the dynamic of the system
is linear with respect to the control variable. Therefore, a double integrator between the control signal and the joint
variables appears. Thus, only a PD control law is used to impose a second-order dynamic on the error:

u = q̈ = q̈d +Kd ė+Kpe ⇒ ë+Kd ė+Kpe = 0 (10)

where

• qd (respectively q̇d and q̈d) is the desired joint position (respectively velocity and acceleration),
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• q (respectively q̇ and q̈) is the current measured joint position (respectively velocity and acceleration).

• e (respectively ė and ë) is the position error (respectively speed and acceleration) in the joint space (e = qd−q).

• Kp and Kd are the two gain tunings.

Consequently, CTC computes the input torques by substituting Eq. (10) into the dynamic model presented in
Eq. (9):

τ = M(q̈d +Kd ė+Kpe)+H(q, q̇) (11)

Figure (1) represents a classic Computed Torque Control law applied to a parallel mechanism whose dynamic
model can be expressed by Equation (9).
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Figure 1: Classic Computed Torque Control law

It should be noted that the vector of positions in the task space x is necessary to compute matrices M and H.
However, in industrial cases sensors only measure the vector of positions in the joint space q. Therefore the DKM is
required. Unfortunately, when planning a Type 2 singularity crossing trajectory, the mechanism changes its assembly
mode, and so the solution of the DKM has to change. To do so, the controller needs the information that the mechanism
has changed its assembly mode, which cannot be deduced from the joint positions. Experimentally, the most reliable
solution is to choose the DKM solution based on the desired trajectory.

It should be mentioned that, when using the proposed CTC for crossing Type 2 singularities, the trajectory planned
in order to respect the crossing criterion (cf. Part 2) will be different from the real one, due to errors in the dynamic
model. As a result, numerically speaking, the crossing criterion (7) will never be respected and the computed torque
control could send infinite torques to the robot, preventing singularity crossing due to the inversion of the matrix A.

The next section presents a multi-model control law which allows the controller to avoid this issue.

3.2. Multi-model control law

Robot dynamic models dedicated to the multi-model control law
As explained previously, the complete dynamic model can numerically degenerate when the mechanism ap-

proaches a singularity. To avoid these numerical issues, the proposed solution is to plan a trajectory respecting around
the singularity locus the criterion:

wp = 0 and
di

dt i wp = 0, i = 1, ...,n (12)

This new criterion still guarantees that (8) and (10) are respected. Of course during the real robot displacement,
numerically wp will not be null, but such a new criterion enables the implementation of a multi-model control law.
The multi-model CTC law presented in this paper consists of using two models (Fig. (2)):

• Model 1 – The complete dynamic model, as long as matrix A introduced in Sec. (2.1) is invertible:

τA = wb +JT wp = Mq̈+H(q, q̇) (13)
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• Model 2 – A reduced dynamic model which cannot degenerate when the mechanism is close to a singular
position:

τB = wb = M′q̈+H′(q, q̇) (14)
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Figure 2: Multi-model computed torque control law

The second dynamic model is used to compute input torques only when the trajectory has been planned in order
to have wp = 0. Considering that the control law is correctly adjusted, the effective trajectory is close enough to the
desired one and therefore the hypothesis wp = 0 is acceptable. Once the mechanism is far enough from the singularity
locus, the control switches back to the complete dynamic model and the mechanism can finish its trajectory.

Metric choice for model switching
In order to cross the singularity locus, the controller requires a metric which defines the moment when Model 2 has

to be used. The discussion about the best indicator of singularity proximity is a well-known problematic [4, 21, 22].
However, since Model 2 is valid only when wp is null, here the metric used will be based on the value of wp.

Therefore, based on the assumption that the control error is well regulated, the desired value of wp (computed
according to the reference trajectory) is used as the switching variable. This prevents issues due to the computation of
the actuators’ accelerations.

Switching function: σ

In order to guarantee torque continuity when the control switches from one model to another, the input torques are
computed using the logistic function σ (shown in Fig. (3)) such that:

τ = στA +(1−σ)τB (15)

This function σ is equal to:

- 1 when the first model must be used,

- 0 when the second model must be used, i.e. when the mechanism is close to a singular position,

- 1
1+e−αt or 1− 1

1+e−αt when switching between the two models, where t is the current time,
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Figure 3: Variation of the logistic function and influence of parameter α

The logistic function σ varies continuously between 0 and 1, which prevents any torque discontinuity. Here, the
logistic function is defined using a parameter α , which can be adjusted to change the length of the transition phase.
This parameter is computed based on the value of the derivative of wp such that σ is null when wp and its derivatives
are null, i.e. when the mechanism is in a singular position, as presented in Fig (4).
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Figure 4: Variation in sigma based on the value of wp when crossing a singularity

The next section presents experimental results for Type 2 singularity crossing using this multi-model control law
on a planar Five-bar mechanism. F

4. Case study

4.1. Presentation of the Five-bar mechanism

A Five-bar mechanism is a planar parallel mechanism composed of two actuators located at the revolute joints
positioned at points A and E and 3 passive revolute joints at points B, C and D (Fig. 5). The mechanism used in this
work was designed so that it can reach all the workspace positions without any collision between the proximal and
the distal legs.
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Figure 5: Five-bar mechanism designed and manufactured at IFMA

The mechanism and its parameters are presented in Fig. 5. The link dimensions were calibrated using a Laser
Tracker (Table 1).

Table 1: Five-bar mechanism: geometric parameters

Parameter a L1 L2 L3 L4
Value (m) 0.2822 0.2130 0.1888 0.1878 0.2130
Precision (m) 1.10−5 1.10−5 1.10−5 1.10−5 1.10−5

4.2. Gain tuning
The proportional and derivative gains were tuned based on the mechanism’s natural frequency [15]. This fre-

quency was retrieved using a ring-out procedure. The mechanism was excited using an impedance hammer, and its
response was recorded using 5 accelerometers. The first natural frequency of the Five-bar mechanism in its isotropic
configuration (when links BC and CD are perpendicular) is 34.2 Hz.

For a given control bandwidth fixed by a frequency ω both gains are adjusted as:

Kp = ω
2, Kd = 2ξ ω (16)

where ξ is a damping coefficient, usually fixed as 1 to have a critically damped system. To guarantee that the gains
do not bring the system into the neighborhood of the instability domain, the chosen frequency must be smaller than
the natural resonant frequency [15]. Therefore a frequency of ω = ωr/2 was chosen, resulting in the following gain
values:

Kp = 300, Kd = 34 (17)

4.3. Dynamic modeling and identification
A full dynamic model of the robot was computed using the methodology presented in [24] and its identification

was performed using a weighted least square method based on the use of exciting trajectories, followed by a classic
geometrical control law [23]. The identification resulted in the following model that fully describes the robot dynamics
of the studied mechanism:

τ = m3JT
(

ẍ
ÿ

)
+

(
zz1 q̈1
zz2 q̈2

)
+

(
fv1q̇1
fv2q̇2

)
+

(
fs1sign(q̇1)
fs2sign(q̇2)

)
(18)

where:
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• m3 is a mass equivalent located on the end effector; m3 = 0.40±0.02kg

• zz1 and zz2 are rotational equivalent inertial terms, respectively on the first and second actuator; zz1 = 1.83 ·
10−2±6.97 ·10−4kg.m2; zz2 = 1.96 ·10−2±6.60 ·10−4kg.m2;

• fs1 is a Coulomb friction term on the first actuator (respectively fs2 on the second actuator); fs1 = 2.94±
0.10N.m; fs2 = 2.95±0.09N.m;

• fv1 is a viscous friction term on the first actuator (respectively fv2 on the second actuator); fv1 = 6.76±
0.018N.m.s fv2 = 6.75±0.17N.m.s.

This identified dynamic model is related to Eq. (2) by:

wp = m3

(
ẍ
ÿ

)
,

wb =

(
zz1 q̈1
zz2 q̈2

)
+

(
fv1q̇1
fv2q̇2

)
+

(
fs1sign(q̇1)
fs2sign(q̇2)

) (19)

It should be noted that the friction terms in both passive joints are insignificant and therefore the identification
routine returned null values.

Different trajectories were computed in order to cross-validate the dynamic model identified. For each trajectory,
the positions, velocities and input torques were retrieved for both actuators. Using the identified dynamic model and
the measured positions and velocities, the input torques can be computed and compared to the measured ones, as
illustrated in Fig. (6) which represents the input torques measured and computed along a trajectory.
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Figure 6: Verification of identified dynamic model

4.4. Control law implementation

The Five-bar mechanism is controlled by an industrial control architecture developed by ADEPT with an open
architecture. This control architecture allows the user to control the mechanism either in position, speed or torque,
using a C/C++ software developed by ADEPT France: CIDE. This software was designed mostly for position control;
therefore safety elements preventing mostly physical damage had to be developed for the computed torque control
law.

The dynamic model identified contains accelerations in both the joint space and the task space. Therefore, in order
to express the dynamic model as in Eq. (9), the task space acceleration has to be expressed as a function of the joint
space acceleration. This can be done by differentiating the kinematic model:

v = Jq̇⇒ v̇ = J̇q̇+Jq̈ (20)

By substituting (20) into (18) one can obtain the dynamic model used for the computed torque control law as
presented in Equation (9):
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τ = M
(

q̈1
q̈2

)
+H,where (21)

M = m3JT J+
(

zz1 0
0 zz4

)
(22)

H = m3JT J̇
(

q̇1
q̇2

)
+

(
fv1q̇1 + fs1sign(q̇1)
fv2q̇2 + fs2sign(q̇2)

)
(23)

Finally, in order to compute the dynamic model of the robot and the CTC control law on-line, the actuator’s posi-
tions and speeds were filtered by using the oversampling method at 1Khz (the control law running at 250 Hz).

4.5. Experimental results

4.5.1. Generation of a crossing trajectory
Crossing trajectories were generated using two polynomials Px and Py such that:

x = Px(x f − x0)+ x0, y = Py(y f − y0)+ y0 (24)

where

• Px(t0) = Py(t0) = 0,

• Px(t f ) = Py(t f ) = 1,

They are both 8th order polynomials, corresponding to 8 conditions on each axis: two conditions for the initial
position and speed, two for the final position and speed, one for the singular position and three to guarantee that the
singularity crossing criterion (12) is respected around the singularity locus [13].

Figure 7 represents a crossing trajectory in the task space as well as the evolution of the task space coordinates
along this trajectory and the evolution of the dynamic criterion (12) for:

x0 = 0.1, y0 = 0.34,
xs = 0.05475, ys = 0.2,
x f = 0, y f = 0.1,

(25)
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Figure 7: Example of 8th order polynomial trajectory crossing a Type 2 singularity locus
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4.5.2. Type 2 singularity crossing with classic computed torque control law
Theoretically, the computed torque control law can cross a singularity following a trajectory generated as explained

in Sec. (4.5.1). However, numerically the dynamic model degenerates (e.g. Sec. (3.1)) and the control law computes
infinite torques. Fig. (8) presents the experimental results when following a crossing trajectory computed as presented
in Sec. (4.5.1) with a classic CTC.
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Figure 8: Measured input torques, tracking error and trajectory when following a crossing trajectory with a classic computed torque control law

When the mechanism approaches the singularity locus, the input torques τ become discontinuous and tend to
infinity. Therefore, even if the mechanism should reach the singularity locus after 0.5s, it can be seen in Fig. (8) that
the input torques tend to infinity before reaching the singularity. The result of the robot displacement is shown in Fig.
(9). To avoid causing physical damage to the actuator, a security stops the mechanism, which remains blocked inside
the singularity, resulting in an increase of the articular error.

4.5.3. Type 2 singularity crossing with the multi-model CTC: results and process repeatability
This section presents the results of Type 2 singularity crossing for different trajectories computed according to the

method presented in Section 2.3 and in the previous paragraph.
Figure 10 shows the input torques generated by the computed torque control law along different crossing trajec-

tories from one assembly mode to another, as well as the desired trajectory and the control error. For each trajectory,
the mechanism crosses the singularity without torque discontinuity. Figure (11) presents different configurations of
the motion of the mechanism along the first trajectory at different time instants.

The multi-model control law leads to an increase of the error around the singularity locus. Therefore, when the
control law switches back to the complete dynamic model, the input torques can significantly increase in order to
nullify this error. This can be seen for the first trajectory at 0.7s.
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Figure 9: Images of the mechanism trying to cross a singularity with a classic CTC control law
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Figure 10: Different crossing trajectories and corresponding input torque applied

All three trajectories represented in Figure 10 were planned to cross the singularity at 0.5s and end at 1s. For
each trajectory, the first figure illustrates the desired trajectory in the task space and the Type 2 singularity of the
mechanism.

Each trajectory was run five times to test the robustness of the proposed controller. Moreover, the starting and end-
ing points were chosen randomly and neither those points nor the crossing direction had any effect on the singularity
crossing.
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Figure 11: Trajectory reproduction during a singularity crossing

Figure (12) represents the Cartesian coordinates of the end-effector along 5 other examples of crossing trajectories,
each of them having different starting and ending points and crossing in either direction. It can be seen that even if
the starting and ending points are chosen randomly, the multi-model CTC is able to cross the singularity successfully.
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Figure 12: Cartesian coordinates along 5 different crossing trajectories

During our different experiments using this controller, the robot has always successfully crossed the singularity
locus without any difficulty. Thus the new controller proposed, coupled with the new dynamic criterion, enables a
parallel mechanism to cross a Type 2 singularity without torque discontinuity. Even though the multi-model control
law induces an overshoot, it does not impact the singularity crossing, which is totally robust with respect to the
desired trajectory. This methodology can therefore considerably increase the end-effector reachable space of almost
any parallel mechanism.
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5. Conclusion

The presence of singularities in the workspace of parallel robots greatly reduces their effector’s reachable posi-
tions. Several solutions have been proposed to either increase the workspace size (e.g. changing the assembly mode)
or bypass the singularity problem (e.g. design mechanisms without singularities). A promising solution consists of
changing the assembly mode by crossing Type 2 singularities. This solution requires the definition of an optimal
trajectory that must be tracked by a dynamic controller. However, the classic dynamic control laws are unsuitable.
This solution requires that the crossing trajectory respect a dynamic criterion at the singularity locus, which prevents
the dynamic model from degenerating. However, if this criterion is not perfectly verified (which is always the case
numerically) the kinematic and dynamic model degenerates, resulting in the computation of infinite torques.

This paper proposes a multi-model controller dedicated to Type 2 singularity crossing which avoids dynamic
model degeneration near the Type 2 singularity locus. It does so by generating a trajectory that nullifies the degener-
ating part of the dynamic model around the singularity locus. A dynamic multi-model controller is used to follow the
trajectory generated this way; the controller switches to a simplified dynamic model when the mechanism is close to
a singularity. This prevents the dynamic model from degenerating even thought the desired trajectory is not perfectly
tracked, and therefore allows the mechanism to cross the Type 2 singularity without torque discontinuity.

This new controller was validated experimentally on a Five-bar mechanism. It was compared to a standard dy-
namic control law that was not able to cross the singularity, while the multi-model CTC was validated on various
singularity crossing trajectories, thus proving its experimental robustness.

Acknowledgements

This work was sponsored by the French government research program ”Investissements d’avenir” through the
RobotEx Equipment of Excellence (ANR-10-EQPX-44) and by the French Institute for Advanced Mechanics.

References

[1] Arakelian, V., Briot, S., & Glazunov, V., 2008. ”Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms
of variable structure”. Mechanism and Machine Theory.

[2] Conconi, M., & Carricato, M., 2009. ”A new assessment of singularities of parallel kinematic chains”. IEEE Transactions on Robotics, 25(4),
pp. 757-770.

[3] Gosselin, C., & Angeles, J. (1990). ”Singularity analysis of closed-loop kinematic chains”. Robotics and Automation, IEEE Transactions on,
6(3), 281-290.

[4] Merlet, J. P. (1993). ”Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data”. Robotics and Au-
tomation, 1993. Proceedings., 1993 IEEE, 54(2), 200-204.

[5] Briot, S., Pashkevich, A., & Chablat, D., 2010. ”Optimal technology-oriented design of parallel robots for high-speed machining applica-
tions”. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010).

[6] Liu, X.-J., Wang, J., and Pritschow, G., 2006. ”Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms”.
Mechanism and Machine Theory, 41(2), pp. 119-144.

[7] Kong, X., & Gosselin, C., 2002. ”A class of 3-dof translational parallel manipulators with linear input-output equations”. In Proceedings of
the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, pp. 3-4.

[8] Gogu, G., 2004. ”Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations”. European Journal
of Mechanics. A/Solids.

[9] Kurtz, R., & Hayward, V., ’Multiple-goal kinematic optimization of a parallel spherical mechanism with actuator redundancy’. IEEE Trans-
actions on Robotics and Automation, vol. 8, no. 5, pp. 644-651, 1992.

[10] Nahon, M. A., & Angeles, J., ”Force optimization in redundantly actuated closed kinematic chains”. In Proceedings of the International
Conference on Robotics and Automation, 1989.

[11] Rakotomanga, N., Chablat, D., Caro, S., 2008. ”Kinetostatic performance of a planar parallel mechanism with variable actuation”. Advances
in Robot Kinematics.

[12] Zein, M., Wenger, P., & Chablat, D., 2008. ”Non singular assembly-mode changing motions for 3-RPR parallel manipulators”. Mechanism
and Machine Theory, 43(4), pp. 480-490.

[13] Briot, S., Arakelian, V., & Chablat, D. (2008). ”Optimal Force Generation in Parallel Manipulators for Passing through the Singular Positions”.
The International Journal of Robotics Research, 27(8), 967-983.

[14] Ider, S. K., 2005. ”Inverse dynamics of parallel manipulators in the presence of drive singularities”. Mechanism and Machine Theory, 40, pp.
33-44.

[15] Khalil, W., & Dombre, E. (2004). ”Modeling, identification & control of robots”.
[16] Craig, J. J., & Hall, P. P. (n.d.). ”Introduction to Robotics”.
[17] Spong, M., & Vidyasagar, M. (2004). ”Robot dynamics and control”.

14



[18] Paccot, F., Andreff, N., Martinet, P. (2007) ”A review on dynamic control of parallel kinematic machine: theory and experiments”. Interna-
tional Journal of Robotics Research, Volume 28 Issue 3, March 2009, Pages 395-416.

[19] Zlatanov, D., & Bonev, I. (2002). ”Constraint singularities of parallel mechanisms”. Robotics and Automation.
[20] Ghorbel, F., Chetelat, O., & Longchamp, R. (1994). ”A reduced model for constrained rigid bodies with application to parallel robots”. IFAC

symposium on robot Control SYROCO’94, (3), 57-62.
[21] Glazunov, V., Arakelian, V., Briot, S., & Rashoyan, G. V. (2011). ”Speed and Force Criteria for the Proximity to Singularities of Parallel

Structure Manipulators”. Machinery Mechanics.
[22] Voglewede, P. A., & Ebert-Uphoff, I. (2004). ”Measuring closeness to singularities for parallel manipulators”. IEEE Int. Conf. on Robotics

and Automation, 4539-4544.
[23] Gautier, M. (1997). ”Dynamic identification of robots with power model”. Robotics and Automation 1997, 3, 1922-1927.
[24] Briot, S., & Gautier, M. (2012). ”Global Identification of Drive Gains and Dynamic Parameters of Parallel Robots”. Proceeding of the 19th

CISM-Iftomm Symposium, 93-100.

15


