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Abstract. We consider a fourth-order variational model, to solve the image
inpainting problem, with the emphasis on the recovery of low-dimensional sets

(edges, corners) and the curvature of the edges. The model permits also to
perform simultaneously the restoration (filtering) of the initial image where
this one is available. The multiscale character of the model follows from an
adaptive selection of the diffusion parameters which allows us to optimise the

regularization effects in the neighborhoods of the small features that we aim to
preserve. In addition, since the model is based on the high-order derivatives,
it favors naturally the accurate capture of the curvature of the edges, hence

to balance the tasks of obtaining long curved edges and the obtention of short
edges, tip points and corners. We analyze the method in the framework of the
calculus of variations and the Γ-convergence to show that it leads to a conver-
gent algorithm. In particular, we obtain a simple discrete numerical method

based on a standard mixed-finite elements with well established approxima-
tion properties. We compare the method to the Cahn-Hilliard model for the
inpainting and we present several numerical examples to show its performances.

1. Introduction. The digital image inpainting started with the works of engi-
neers and computer scientists in the mid-nineties of last century and it refers to
the restoration of a scratched or damaged image. In the image processing, this
task is very important and has many applications in various fields (painted canvas
and movies restoration, augmented reality, . . . ). Let Ω ⊂ R2 denotes the entire
image domain and let D ⊂ Ω be a damaged part of Ω. The basic idea in the im-
age inpainting is to fill-in D, in such a manner that a viewer can not detect the
restored part from the rest of the image. Different techniques have been applied to

2010 Mathematics Subject Classification. 65M32, 65M50, 65M22, 94A08, 65N22, 35G15, 35Q68
.

Key words and phrases. Image inpainting; Inverse problems; Regularization procedures; Mixed

finite elements.

1 c⃝



2 A. Theljani, Z. Belhachmi, M. Kallel and M. Moakher

solve such a problem, e.g. some heuristic “copy-paste” procedures [31], statistical
approaches [5, 34], we refer to the review article [14] and the references therein for
an exhaustive overview on this problem. Among the various methods, the Partial
Differential Equations (PDEs) are now widely used and are proven to be efficient in
this fields [12, 13, 15, 18, 27, 32, 36, 38, 39]. The underlying idea in the PDE-based
methods is to interpolate with a differential operator the data given outside of D.
A large number of differential operator have been considered, in particular, several
second-order diffusion equations have been proposed in the literature [18, 27, 32].
Such operators have the advantage of being well-established theoretically and to
lead to various simple numerical methods. However, they may suffer from major
drawbacks such as the disconnection of level lines over large distances (violating
the connectivity principle), the smooth propagation of the edges into the damaged
domain (blurring effect), or the failure in reproducing some high-order features (cur-
vatures, . . . ). Note also that these methods do not work when the damaged region
D touches the boundary of Ω. In such a situation, the authors in [36] proposed an
inpainting method based on the data completion with a nonlinear Cauchy problem.

The shortcomings of the second-order partial differential equations gave rise to
a class of high-order diffusion models which in general perform better, particularly
for restoring the curvatures and for matching edges across large distances. In fact,
the supplementary information on the level lines directions which may be provided
from the use of boundary conditions both on the solution and its gradient enhance
the quality of the reconstruction. In addition, in the homogeneous areas of Ω the
high-order of the operator damps the noise faster than any second order one.

Overview on higher-order PDE models. Bertalmio et al. [15] pioneered a
two dimensional fourth-order PDE which consists in propagating both the gradient
direction (geometry) and the gray-scale values of the image inside the region to be
filled-in by solving the following equation:

(1) ∂tu−∇⊥ · ∇∆u = 0, in D, u = f, on ∂D,

where ∇⊥ denotes the perpendicular gradient (−∂y, ∂x) and f is the initial damaged
image. This model was the subject of other improvements in [13] based on the
Navier-Stokes equations. IOther authots [39, 41, 42] considered the Euler’s elastica
functional to minimize the following energy:

(2) ∥u− f∥L2(Ω) +

∫
K

(a+ bκ2) dH1(x),

where H1 denotes the Hausdorff measure, K is a closed regular subset of Ω and
κ = ∇ · (∇u/|∇u|) is the curvature of the level sets γr := {x ∈ K | u(x) = r}
and a, b being two positive constants. In this high-order variational model, the
regularization term (Euler’s elastica) combines the total variation, sensitive to the
length of the isolines, and the square of the curvature, which favors curved lines
rather than the straight ones. Minimizing (2) leads to a highly nonlinear PDE and
therefore its numerical solution is usually a non trivial task. It was the subject of
many numerical investigations [2, 30, 32, 37]. In the same spirit, Esedoglu and Shen
proposed in [32] the Mumford-Shah-Euler image inpainting model which is a high-
order correction of the Mumford-Shah model, incorporating the Willmore energy
(integral of the square of the curvature). They propose a numerical scheme based
on the Γ-convergence approximation of Ambrosio and Tortorelli [3, 4]. Another
high-order approach was proposed in [17] based on the Cahn-Hilliard equation for
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binary images inpainting. This semi-linear fourth-order PDE originally introduced
in material sciences by John W. Cahn and John E. Hilliard in [23] describes the
evolution of an interface separating two stable states. A variant named TV −H−1

model was proposed in [22] as a generalization to the gray-scale images. In [28, 29],
the authors studied the existence of global attractors to some generalized Cahn-
Hilliard equations and the effect of the non-linear potential on the model.

The multiscale approach. It ressorts from this overview that most high-order
approaches to the inpainting problem lead to the minimization of an energy of type
(2). Such models are generally highly nonlinear and require some sophisticated
discretizations to be solved numerically. In another hand, the easiest way to obtain
a fourth-order PDE is to minimize

∫
D
|∆u|2 dx [19, 24, 43] which leads to solve the

isotropic fourth-order (stationary) diffusion equation:

(3) ∆2u = 0, in D, u = f + another boundary condition on ∂D.

Of course, because of its strong smoothing effect, this model cannot capture some
relevant features of the image like the corners and the edges which belong to the
singular set of the image f .

In this article, we consider the following equation:

(4)


∂tu+∆(∆αu) + λD(u− f) = 0, in R+ × Ω,

u = ∆αu = 0, on R+ × ∂Ω,

u(0, x) = f, in Ω,

where ∆αu = div(α(x)∇u) and λD = λ0χΩ\D for λ0 ≫ 0 and χΩ\D is the indicator
function of the sub-domain Ω \ D. The values of the diffusion function α, which
encodes different scales in the image, are dynamically and locally chosen in order
to control the “amount” of smoothing of the operator. Note that the homogeneous
boundary condition for u is not a restrictive condition and general boundary data
can be handled by a lifting operator.

As the model remains linear with respect to u, it seems not well suited for
capturing fine geometric structures of an image at a first glance. However, we prove
that this approach allows us to restore such relevant features. The reason for this,
is that the adaptive process which is the key of the method is in fact a nonlinear
process, where the values of α are modified during the resolution. Together with a
mesh adaption technique, we construct a nonlinear discrete approximation to make
the method sensitive to the low-dimensional sets contained in the singular set of u.
In addition, the process turns out to be Γ-convergent. Loosely speaking, the method
allows us to adjust the model by modifying locally the diffusion coefficients instead
of using a priori some nonlinear diffusion law or some nonlinear potential like in
the Cahn-Hilliard based equations. This yields -and it is not a small advantage-
a simple numerical method which consists of solving only linear problems on u
and updating the diffusion parameters from the informations given by some error
indicators. In addition, we emphasize that a strong point in this approach is that it
conciliates a local character of the parameter selection which enhance the accuracy
and the global character given by the PDEs framework which ensures the coherence
of the reconstruction for large features. Thus, it constitutes, as showed by the
numerical simulations a balance between the performances of the local methods,
mainly based on “copy-paste” procedures and well suited for textured images, and
the performances of global methods (typically PDEs).
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Organization of the paper. The remainder of this article is organized as follows:
In Section 2, we prove by standard variational techniques and a fixed point theorem
the existence of H1-solutions for the image inpainting problem. We obtain our
equation as the gradient flow of an energy based on an H−1-fidelity term. In
Section 3, we describe in details the adaptive strategy. In particular, we show
that it is a two-step approach where, a mesh-adaptation based on the metric error
indicator is used first to fit the geometry of the computed solution, and second a
residual type error indicator is used to locally select the value of α. We perform the
Γ-convergence analysis of this process and we show that the solution u generated
by the adaptive strategy approximates a solution of a new model which combines
the Mumford-Shah functional and the H−1-fidelity term. In Section 4, we recall
the Cahn-Hilliard equation for image inpainting that we will use for the comparison
with our model. Finally, in Section 5 we implement our approach and treat several
numerical examples to test its efficiency and robustness.

2. Image inpainting problem. We study in this section the image inpainting
problem by considering the system (4). For the sake of clarity, in the rest of the
paper we omit the time dependence of functions and we use the notation u instead
of u(t).

2.1. H1-weak solution of the stationary equation. Assume that Ω is a bounded
open set of R2 with piecewise smooth boundary ∂Ω. We recall that the operator
∆−1 is the inverse of the negative Laplacian with homogeneous Dirichlet boundary
conditions, i.e., u = ∆−1g is the unique solution of:

(5)

{
−∆u = g, in Ω,

u = 0, on ∂Ω.

LetH−1(Ω) be the dual space ofH1
0 (Ω) with corresponding norm ∥u∥−1 = ∥∇∆−1u∥2

and inner product ⟨u, v⟩−1 = ⟨∇∆−1u,∇∆−1v⟩2, where ⟨·, ·⟩2 and ∥·∥2 are the clas-
sical inner product and its corresponding norm in the space L2(Ω).

We consider the solution of the following stationary problem:

(6)

{
∆(∆αu) + λD(u− f) = 0, in Ω,

u = ∆α u = 0, on ∂Ω,

which can be seen as stationary solution of (4). Problem (6) can be rewritten as
follows:

(7)

{
∆αu+∆−1(λD(f − u)) = 0, in Ω,

u = ∆α u = 0, on ∂Ω,

or equivalently as a coupled elliptic system:

(8)


−∆αu = w, in Ω,

−∆w = λD(f − u), in Ω,

u = w = 0, on ∂Ω.

The weak formulation of problem (7) is: Find u ∈ H1
0 (Ω) such that:

(9) ⟨α∇u,∇ϕ⟩2 − ⟨(λD(f − u), ϕ⟩−1 = 0, ∀ϕ ∈ H1
0 (Ω).
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Throughout the paper, we suppose that he domain Ω is partitioned into I disjoint
sub-domains (Ωℓ)ℓ such that α is given by the piecewise constant scalar function:

α = αℓ, in Ωℓ, ℓ = 1, . . . , I.

We denote αm = min
1≤ℓ≤I

αℓ > 0 and αM = max
1≤ℓ≤I

αℓ.

Note that even if f ∈ L2(Ω), from the elliptic regularity results, one has w ∈
H2 ∩H1

0 (Ω) however, the solution u might be only H1
0 (Ω) since α is only bounded

and measurable. In fact, we recall the following regularity result for the operator
−div(α∇(·)):[9, Proposition 2.5]

Proposition 1. There exists a constant c depending only on the geometry of Ω,
such that a weak solution u of the associated Dirichlet problem belongs to Hs+1(Ω),
for all real numbers s < s0, where s0 is given by:

s0 = min

{
1

2
, c| log(1− αm

αM
)|
}
.

Following the methodology used in [22], we now prove the existence of the H1-
weak solution of the stationary problem by means of Schauder’s fixed-point theorem.

Proposition 2 (Schauder’s fixed-point theorem [33]). Let X be a Banach space and
K ⊂ X be a compact and convex set of X. Assume that the operator T : K −→ K
is continuous. Then T admits a fixed point.

For R > 0, to be chosen later, we define the convex set:

V = {u ∈ H1
0 (Ω); ∥u2∥ ≤ R},

and we consider the following minimization problem:

(10) min
u∈H1

0 (Ω)
J (u, v),

where

(11) J (u, v)=


∫
Ω

α(x)
2 |∇u|2 dx+ 1

2λ0
∥λ0u− λDf − ΛDv∥2−1, if u ∈ V,

+∞, otherwise,

with f and v ∈ L2(Ω) and where we set ΛD = λ0 − λD for brevity.

Proposition 3. Let v ∈ L2(Ω), the functional J (·, v) admits a unique minimizer
u ∈ V .

Proof. The functional J (·, v) is strictly convex. In fact, let u1 and u2 be two
functions in H1

0 (Ω) such that u1 ̸= u2 and t ∈]0, 1[, we have:
tJ (u1, v) + (1− t)J (u2, v)− J (tu1 + (1− t)u2, v)

=
t(1− t)

2

[∫
Ω

α(x)|∇u1|2dx+

∫
Ω

α(x)|∇u2|2dx− 2

∫
Ω

α(x)∇u1 · ∇u2dx
]

+
t(1− t)

2λ0

[
∥λ0u1 − λDf − ΛDv∥2−1 + ∥λ0u2 − λDf − ΛDv∥2−1

]
− t(1− t)

λ0

[∫
Ω

∇∆−1(λ0u1 − λDf − ΛDv) · ∇∆−1(λ0u2 − λDf − ΛDv)dx

]
=
t(1− t)

2

∫
Ω

α(x)|∇(u1 − u2)|2dx+
t(1− t)

2λ0
∥λ0(u1 − u2)∥2−1 > 0.
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Furthermore, J (·, v) is weakly lower semi-continuous in H1(Ω). We consider a
minimizing sequence (un)n∈N of J (·, v), i.e.,

J (un, v) −→
n→∞

inf
u∈V

J (u, v) = L.

Then, there is a constant M > 0 such that
∫
Ω
α(x)|∇un|2 dx ≤ M for all n ≥ 0,

and also we have ∥un∥2 ≤ R (otherwise J (un, v) would not be finite). Then, using
the boundedness of α(x), we get that the sequence (un)n∈N is uniformly bounded
in H1(Ω). Therefore, there exists a subsequence, still denoted (un)n∈N, such that
un ⇀

n→∞
u weakly in H1(Ω) and un −→

n→∞
u in L2(Ω), with ∥u∥2 ≤ R. Thanks to

the continuity of the operator ∆−1 : H−1(Ω) −→ L2(Ω), we get:

J (u, v) ≤ lim inf
n→∞

J (un, v).

The limit u is then a minimizer for J (·, v). The uniqueness is guaranteed by the
strict convexity of J (·, v).

The Euler-Lagrange equation corresponding to (10) reads:

(12)

{
−∆αu−∆−1(λD(f − u) + ΛD(v − u)) = 0, in Ω,

u = ∆−1(λD(f − u) + ΛD(v − u)) = 0, on ∂Ω.

Its weak formulation is: Find u ∈ H1
0 (Ω) such that:

(13) ⟨α∇u,∇ϕ⟩2 − ⟨(λD(f − u) + ΛD(v − u)), ϕ⟩−1 = 0, ∀ϕ ∈ H1
0 (Ω).

Let T : L2(Ω) −→ L2(Ω) be the operator such that T (v) = u where u is the
unique solution of (13). Therefore, if there exists a fixed point u = v of the operator,
it will be a solution of problem (9).

Proposition 4. The operator T admits a fixed point u ∈ V . Moreover, u is H1-
weak solution of the equation (6).

Proof. Let v ∈ B(0, R) (where B(0, R) denotes the ball in L2(Ω) with center 0 and
radius R). From Proposition 3, the minimization problem (11) admits a unique
minimizer u = T (v) in the space H1(Ω) such that u ∈ B(0, R). Since the embedding
H1(Ω) ↪→ L2(Ω) is compact, the operator T then maps L2(Ω) → K, where K is a
compact subset of L2(Ω). Thus we have:

T : B(0, R) −→ B(0, R) ∩K = K̃,

where K̃ is a compact and convex subset of L2(Ω). To apply Schauder’s fixed-point
theorem, it remains to prove that T is continuous in B(0, R). Let (vk)k≥0 be a
sequence which converges to v ∈ L2(Ω) and T (vk) = uk. The function uk is then
the unique minimizer of (11) associated with vk, and we have: J (uk, vk) ≤ J (0, vk),
i.e.,

J (uk, vk) ≤ 1
2λ0

∥λDf + ΛDvk∥2−1.

Since L2(Ω) ↪→ H−1(Ω), we get ∥vk∥−1 ≤ C∥vk∥L2(Ω) ≤ CR and also ∥λDf∥−1 ≤
C ′ for some given constants C,C ′ > 0. Accordingly, we obtain the following esti-
mate:

J (uk, vk) ≤ C ′ + CR2,

and then (uk)k≥0 is uniformly bounded in H1(Ω). Thus, we can consider a conver-
gent subsequence ukj

⇀
j→∞

u ∈ H1(Ω) and ukj
−→
j→∞

u in L2(Ω). Hence, the unique
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(weak) solution T (vk) = uk of:{
−∆αuk −∆−1(λD(f − uk) + ΛD(vk − uk)) = 0, in Ω,

uk = ∆−1(λD(f − uk) + ΛD(vk − uk)) = 0, on ∂Ω,

weakly converges to the unique weak solution u of (12). From the uniqueness of
the solution in V , we obtain u = T (v). We then deduce that T is continuous in
L2(Ω) and the existence of a stationary solution u follows from Schauder’s fixed-
point theorem. In addition, this solution satisfies (7), or equivalently, is a stationary
solution of the problem (4).

Remark 1. The solution u of equation (6) verifies the estimate:

αm∥∆u∥2 +
λ0
2
∥u∥2 ≤ λ0

2
∥f∥2.

Therefore, we may choose R = ∥f∥2.

2.2. The evolution equation. Now, observe that the previous existence proof of
a stationary solution applies to show that the following unbounded operator (in
L2):

A(u) = ∆(∆αu) + λDu,

is maximal. Moreover, we have:

⟨A(u), u⟩2 ≥
I∑

ℓ=1

αm ⟨∆u,∆u⟩L2(Ωℓ)
+ ⟨λDu, u⟩2 ≥ 0,

which means that it is monotone. Thus it follows from the theory of maximal
monotone operators [21], that the evolution problem (4) admits a unique solution
u ∈ L2(0, T ;H1

0 (Ω) ∩H1(0, T ;H−1(Ω)) ∩ C([0, T ] ;L2(Ω)).
As in the stationary case, problem (4) can be splitted into two second-order

equations by introducing an auxiliary function w such that:

(14)


∂tu−∆w + λD(u− f) = 0, in R+ × Ω,

−∆αu = w, in R+ × Ω,

u = w = 0, on R+ × ∂Ω,

u(0, x) = f(x), in Ω.

The weak formulation reads then:
Find a pair (u,w) ∈ L2(0, T ;H1

0 (Ω)∩H1(0, T ;H−1(Ω)))×L2(0, T ;H1
0 (Ω)), u(0, x) =

f(x), such that:

(15)

{
⟨∂tu, ϕ⟩2 + ⟨∇w,∇ϕ⟩2 + ⟨λDu, ϕ⟩2 = ⟨λDf, ϕ⟩2, ∀ϕ ∈ H1

0 (Ω),

⟨α∇u,∇ψ⟩2 − ⟨w,ψ⟩2 = 0, ∀ψ ∈ H1
0 (Ω).

Let u the solution of problem (4). Then, it is easy to verify that the pair (u,−∆αu),
is a weak solution of (15). We consider another solution (u1, w1) ∈ H1

0 (Ω)×H1
0 (Ω)

of the system (15), we then have:{
⟨∂t(u− u1), ϕ⟩2 + ⟨∇(w − w1),∇ϕ⟩2 + ⟨λD(u− u1), ϕ⟩2 = 0, ∀ϕ ∈ H1

0 (Ω),

⟨α∇(u− u1),∇ψ⟩2 − ⟨(w − w1), ψ⟩2 = 0, ∀ψ ∈ H1
0 (Ω).
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Let (ζℓ)
I
ℓ=1 be a partition of unity associated to the decomposition (Ωℓ)

I
1, and picking

ψ = α−1
ℓ ζℓ(w − w1), in the second equation, we have the identity:

(16)

∫
Ωℓ

α−1
ℓ ζℓ (w−w1)

2 dx =

∫
Ωℓ

αℓ∇(u−u1)α−1
ℓ ∇ζℓ (w−w1) dx, ∀l = 1, · · · , I.

Summing up, we get (after integrating by parts twice the right-hand side):

(17)
I∑

ℓ=1

α−1
ℓ

∫
Ωℓ

ζℓ (w − w1)
2 dx =

∫
Ω

∇(u− u1)∇(w − w1) dx ≥ 0.

By choosing the test function ϕ = u − u1 in the first equation and using (17) and
the positivity of λD, we obtain:

⟨∂t(u− u1), u− u1⟩2 = −⟨∇(u− u1),∇(w − w1)⟩2 − ⟨λD(u− u1), (u− u1)⟩2 ≤ 0.

So that

∂t(∥u(t)− u1(t)∥22) = 2⟨∂t(u− u1), u− u1⟩2 ≤ 0.

It follows that the function t 7→ ∥u(t)− u1(t)∥22 is decreasing on R+. Since u(0) =
u1(0), we get u = u1 which implies that w = w1. Thus, problems (4) and (15) are
equivalent.

2.3. Semi-discrete time problem. For the discretization of the time derivative

∂tu, we use the forward Euler scheme. Let
u− uold

∆t
be an approximation of ∂tu,

where ∆t is a time step, uold and u are the solutions at time told and t = told +∆t,
respectively. Therefore, time discretization together with splitting scheme (14) leads
to the following time-stepping problem:

(18)

⟨u− uold

∆t
, ϕ⟩2 + ⟨∇w,∇ϕ⟩2 + ⟨λDu, ϕ⟩2 = ⟨λDf, ϕ⟩2, ∀ϕ ∈ H1

0 (Ω),

⟨α∇u,∇ψ⟩2 − ⟨w,ψ⟩2 = 0, ∀ψ ∈ H1
0 (Ω).

Proposition 5. For a fixed uold ∈ H1
0 (Ω), the problem (18) admits a solution

(u,w) ∈ H1
0 (Ω)×H1

0 (Ω).

Proof. For a given v ∈ L2(Ω), uold ∈ H1
0 (Ω) and ∆t > 0, we define:

λ′D = λD +
1

∆t
and f ′ =

1

λ′D

(
λDf +

uold
∆t

)
.

We then consider the following problem:

(19)

{
−∆αu−∆−1(λ′D(f ′ − u)) = 0, in Ω,

u = ∆αu = 0, on ∂Ω.

Similarly to Proposition 3, we can prove the existence of H1- solution of (19) such
that the pair (u,−∆αu) satisfies the system (18). To prove the uniqueness, let
(u1, w1) ∈ H1

0 (Ω)×H1
0 (Ω) be another solution of the system (18), we then have:{

⟨∇(w − w1),∇ϕ⟩2 + ⟨λ′D(u− u1), ϕ⟩2 = 0, ∀ϕ ∈ H1
0 (Ω),

⟨α∇(u− u1),∇ψ⟩2 − ⟨(w − w1), ψ⟩2 = 0, ∀ψ ∈ H1
0 (Ω).

Following the same lines than for the system (15) and using the inequality (17), we
obtain:

⟨λ′D(u− u1), (u− u1)⟩2 = −⟨∇(u− u1),∇(w − w1)⟩2 ≤ 0.
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From the nonnegativity of λ′D, we get:

⟨λ′D(u− u1), (u− u1)⟩2 = 0.

Therefore u = u1 and consequently w = w1.

3. Fully discrete problem and the adaptive strategy. We assume that the
domain Ω is polygonal and we consider a regular family of triangulations Th made
of element which are triangles (or quadrilaterals) with a maximum size h, satisfying
the usual admissibility assumptions, i.e., the intersection of two different elements
is either empty, a vertex, or a whole edge. For h > 0, we introduce the following
discrete space:

Xh =
{
vh ∈ C(Ω)|∀K ∈ Th, vh|K ∈ P1(K)

}
∩H1

0 (Ω).

The discretized version of the splitted problem (15) leads to finding a pair
(uh, wh) ∈ Xh ×Xh solution of:
(20) ⟨uh − uoldh

∆t
, ϕh⟩2 + ⟨∇wh,∇ϕh⟩2 + ⟨λDuh, ϕh⟩2 = ⟨λDfh, ϕh⟩2, ∀ϕh ∈ Xh,

⟨α∇uh,∇ψh⟩2 − ⟨wh, ψh⟩2 = 0, ∀ψh ∈ Xh,

where fh is a finite element approximation of f associated with Th. Since Xh ⊂
H1

0 (Ω), the well-posedness of the problem (20) follows from (18).

3.1. Γ-convergence analysis and the adaptive algorithm. In this section, we
will prove that the approach considered in the article allows us to approximate,
in the Γ-convergence sense, a new model that couples a Mumford-Shah functional
with an H−1-term, which we will call MS−H−1.
Γ-convergence analysis. A Γ-convergence study of this adaptive strategy was pre-
sented in [11] for optic flow estimation. The authors proved that this algorithm
is equivalent to the adaptive one introduced by Chambolle-Dal Maso [26] and
Chambolle-Bourdin [25] where a numerical discrete approximation of the Mumford-
Shah energy was proposed. This approach, based on finite-element discretization
and adaptive mesh strategy, is a good approximation, in the Γ-convergence sense
[20] of the Mumford-Shah energy [40] (see [26] for more details). We briefly re-
call the results and the numerical approximation of this method. For a fixed angle
0 < θ0 ≤ 2π/3, a constant c ≥ 6, and for ϵ > 0, let Tϵ(Ω) = Tϵ(Ω; θ0; c) be the set
of all triangulations of Ω whose triangles K have the following characteristics:

(i) The length of each of the three edges of K is between ϵ and ϵc.
(ii) The three angles of K are greater than or equal to θ0.

Let Vϵ(Ω) be the set of all continuous functions u : Ω −→ R such that u is affine on
each triangle K of a triangulation T ∈ Tϵ(Ω). For a given u, we define Tϵ(u) ⊂ Tϵ(Ω)
as the set of all triangulations adapted to the function u, i.e., such that u is piecewise
affine on T. We consider a non-decreasing continuous function g : [0,+∞) −→
[0,+∞) such that:

lim
t→0

g(t)

t
= 1, lim

t→+∞
g(t) = g∞ < +∞.

For any u ∈ Lp(Ω), (p ≥ 1) and T ∈ Tϵ(Ω), the authors in [26] introduced the
following minimization problem:

(21) Gϵ(u) = min
T∈Tϵ(Ω)

G̃ϵ(u,T),
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where

G̃ϵ(u,T) =


∑

K∈T |K ∩ Ω| 1

hK
g(hK |∇u|2), u ∈ Vϵ(Ω),T ∈ Tϵ(Ω),

+∞, otherwise.

When ϵ goes to zero and provided θ0 is less than some Θ > 0, it was proven that
the energy Gϵ Γ-converges to the Mumford-Shah functional:

G(u) =


∫
Ω

|∇u(x)|2 dx+ g∞H1(Su), u ∈ L2(Ω) ∩GSBV (Ω),

+∞, u ∈ L2(Ω)\GSBV (Ω),

where is GSBV (Ω) the generalized special function of bounded variation (see [1]).

Remark 2. If F : X −→ [−∞,+∞] is continuous and (Gϵ)ϵ Γ-converges to G then
(F +Gϵ)ϵ Γ-converges to F +G.

From the result of the Γ-convergence of Gϵ to G, see [26, Theorem 2], the continu-
ity of the second term of the functional in L2(Ω) (which follows from the continuity
of ∆−1, i.e., the stability in the elliptic problems) and Remark 2, we have:

Proposition 6. Let f and v in L2(Ω) be two given functions and ϵ > 0 be a positive
parameter. Therefore, the sequence of functionals

Gϵ(uϵ) +
1

2λ0
∥λ0uϵ − λDf − (λ0 − λD)v∥2−1,

Γ-converges for ϵ −→ 0 in the topology of L2(Ω) to

G(u) + 1
2λ0

∥λ0u− λDf − (λ0 − λD)v∥2−1.

In the theorem we note that the variable α do not appear explicitly in G or Gϵ.
To introduce such an α, let ψ be the Legendre-Fenchel transform of g. For a given
triangulation Tϵ, it was proven in [26] that the minimization of Gϵ is equivalent to
the minimization of the following functional:

G′
ϵ(u, v,Tϵ) =

∑
K∈Tϵ

|K ∩ Ω| 1

hK

(
vK |∇u|2 + ψ(vK)

hK

)
,

over all u ∈ Vϵ(Ω) and v = (vK)K∈Tϵ(Ω), piecewise constant on each K ∈ Tϵ. For a
fixed u, it follows from standard convex analysis that the minimizer over each v is
explicitly given by:

(22) vK = g′(hK |∇u|2).
Choosing α = v leads to the adaptive strategy that we describe now..

Remark 3. The analysis presented here is carried out with the Neumann boundary
conditions on u, which is the framework used in [11, 25, 26] for a denoising problem
or optic flow estimation. The application to the Dirichlet case requires some (tedious
but non-essential) modifications and the result still holds.

3.2. Adaptive procedure. For each element K ∈ Th, the following local discrete
energy:

(23) ηK = α
1
2

K∥∇uh∥L2(K),

contains some information on the error distribution of the computed solution uh.
In fact, the discontinuities (edges) are contained in regions where the brightness
changes sharply and consequently where this error indicator is large. Moreover, it
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may be proven that the gradient of uh captures this change in brightness and its
magnitude provides an information about the “strength” of the edges (see [10]).
Thus, the quantity (23) acts as an edge detector and locates such regions. Fur-
thermore, this local error indicator is in some sense equivalent to the energy norm
mostly used as an edge detection in the topological gradient based-methods [6, 7, 8].
This particularity makes it well suited to control and locally select the diffusion co-
efficient α using the following algorithm:

Algorithm

1. Start with the initial grid T0
h corresponding to the image.

2. Adaptive steps:
• Compute u0h on T0

h with a large constant α = α0 by solving (20).
• Build an adapted mesh T1

h (in the sense of the finite element method,
i.e., with respect to the parameter h) with a metric error indicator
(to solve (21)).

• In the triangles where ηK is large (with respect to its mean value), we
perform a local choice of α(x) on T1

h to obtain a new function α1(x)
following (22).

3. Go to steps 1. and 2. and compute u1h on T1
h.

We emphasize that we have to solve only linear problems on u and then to update
α. Actually, in place of introducing a function g like in the theorem, we use the
following formula for the update of α in each triangle K:

(24) αk+1
K = max

 αk
K

1 + τ ∗
((

ηK
∥η∥∞

)
− 0.1

)+ , αtrh

 ,

where αtrh is a threshold parameter and τ is a coefficient which controls the rate of
decrease in α, u+ = max(u, 0). Here η is the piecewise-constant function such that
η|K = ηk, ∀K ∈ T1

h.

Remark 4. There are other several possibles choices of functions g to compute α.
The formula (24) corresponds to min(t, g∞) and is the one we implemented for the
numerical computations here. Loosely speaking, it may be understood as follows:
in regions of high gradients, it decreases the values of α when the error indicator
deviates more then 10% from its mean value. α decreases nearly as a geometric
sequence with the iteration number, until a given threshold is attained.

Let us give more details on the implementation of this algorithm. First, we build
an adapted mesh T1

h as follows: close to the jump sets of uh, the error is large, we
then cut the element K into a finite number of smaller elements to decrease such
an error and to fit the edges, while, far from these jump sets, there is no restriction
on how to choose the triangles and the initial grid is coarsened. The adopted
meshes have small number of degrees of freedom in the homogeneous regions which
makes the method considerably fast. Second, we perform an “optimal” choice of the
function α following the map furnished by the error indicator (ηK)K∈Th

, on each
element K and in accordance with (24) in order to correctly approximate edges.
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To conclude this section let us try to interpret in term of a PDE the Γ-limit G.
We may say that the sequence (uϵ, αϵ) constructed by the adaptive algorithm is
Γ-convergent to a Mumford-Shah-H−1 functional (MS-H−1) and that it solves

∆(∆αϵuϵ) + λD(uϵ − f) = 0, inΩ,

after eliminating wϵ from the mixed formulation (20). Of course there are others
Γ-convergent approximation functionals to the MS-H−1, e.g. The Cahn-Hilliard
model.

4. Cahn-Hilliard equation. For the sake of completeness, we will make a com-
parison with the Cahn-Hilliard model [16, 17, 18] that we now recall. The Cahn-
Hilliard equation [23] originally refers to JohnW. Cahn and John E. Hilliard [23] and
was introduced to phenomenologically describe phase separation, i.e., the change
from one state to another. It is a fourth-order semi-linear PDE and is obtained as
the H−1-gradient flow of the following Ginzburg-Landau energy:

(25)
1

2

∫
Ω

|∇u|2dx+
1

ϵ2
W (u),

where phase separation is modeled by the smooth free energy, e.g., double-well
potentials W such that:

(26) W (u) = (1− u2)u2,

or a non-smooth free energy as follows:

(27) W (u) = ψ(u) + I[0,1](u),

where ψ(u) = 1
2u(1− u), and I[0,1](u) :=

{
1
2u(1− u), 0 ≤ u ≤ 1,
+∞, otherwise.

The analogy between the Cahn-Hilliard model in material sciences and Cahn-
Hilliard model in image inpainting is that the two state phases are considered as
two homogeneous regions and the interface is considered as an edge. In image
inpainting, it was exploited by Bertozzi et al. in [17] and afterwards in [16, 18, 22]
by considering the following equation:

(28)

 ∂tu+∆(ϵ∆u− 1
ϵW

′(u)) + λD(u− f) = 0, in R+ × Ω,
u = f and ϵ∆u− 1

ϵW
′(u) = 0, on R+ × ∂Ω,

u(0, x) = f, in Ω,

which was obtained by incorporating the data fidelity term λD(f − u). Note that
the classical Chan Hilliard equation (28) is only appropriate for two-scale (binary)
images inpainting due to the double well potential W which vanishes on only the
values 0 and 1.

Remark 5. For the time discretization of Cahn-Hilliard equation, we use a con-
vexity splitting scheme (see [18, 22]). The idea is to divide the energy functional
into two parts; a convex part plus a concave one. The convex part is then treated
implicitly while the concave part is treated explicitly.
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5. Numerical experiments. In this work, all the PDEs are solved with the open
source software FreeFem++ [35]. In all examples, the damaged/missed regions are
delimited by the red contour. We give some examples for the application of our
proposed approach to image inpainting. The goal is to reconstruct the missing
information in the red parts, i.e., D, by the diffusion of the information from the
intact part, i.e, Ω\D. In all examples, we set λ0 = 107, and ∆t = 0.1 and an initial
guess u(0, x) = 0.5, ∀x ∈ D.

Curvature inpainting. We present the numerical results for the adaptive in-
painting approach in order to illustrate the effectiveness of the proposed algorithm
for the inpainting of curvature. In Fig. 1, we present the reconstruction of quarter
of a circle. We display the evolution of the restored image for iterations 1, 5 and
20. In the first iteration (α is constant), we solved a biharmonic equation which
gives a curved, but a very smooth (blurred), edge in D. By iterations, we can see
the efficiency of the adaptation process in the damaged region where the edge was
inpainted sharply by simultaneously keeping its curvature.

Other examples are presented in Fig. 2 and Fig. 4. The curvature in Fig. 2 is
well inpainted which proves that our approach, based on fourth-order linear diffu-
sion model, allows us to obtain a very interesting result that one might expect by
solving comlpex PDEs like the Euler’s elastica [42], which is highly nonlinear and
numerically difficult to solve. We give in Fig. 5 a zoom caption in the damaged
region 2 which proves that the missing part is well restored and is very close to the
original one.

“Real world”-image inpainting. The experiments in Fig. 6 show the effi-
ciency of the proposed method in a real image inpainting. The portions of unknown
pixels are 45%, 55% and 75%, respectively. From these experiments, we can see that
the proposed model can successfully recover the inpainting domain even when up
to 75% of pixels are unknown.

Comparison with the Cahn-Hilliard model. In Fig. 7, we have chosen the
same image presented by Bertozzi, Esedoglu and Gillette (see [17]). We give the
result obtained by solving the Cahn-Hiliard equation and the one obtained using
our approach. We display the evolution of the restored image at iteration 1, 5 and
10 which show that the edges are progressively and sharply approximated and the
four corners are very accurately matched. Notice that the image for Cahn-Hilliard
equation is computed in a two-steps process. In the first step, the authors solved
their equation with a large value of ϵ, e.g., ϵ = 0.1, until the numerical scheme is
close to a steady state. In this step, the level lines are continued into the missing
domain. In a second step, they used the previous result as an initial time condition
u0 for a smaller ϵ (e.g., ϵ = 0.01) in order to sharpen the contours. This is an
adaptive choice for ϵ, however, subjected to a hand tuning and being uniform in
the entire domain.

Broken three bars. In Fig. 8, we show the inpainting result for a synthetic
image which represents three broken bars forming a T -junction. We give the restored
images using total variation, harmonic and biharmonic models, respectively. As
excepted, total variation inpainting model is unable to connect the edges between
the three bars because it does not fulfill the connectivity principle. Harmonic and
biharmonic inpainting models produce a smooth solution u in D, blurring the edges.
However, the proposed approach is able to sharply connect the edges between three
bars while enforcing the curvature.
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6. Conclusion. In this article, we have investigated a multiscale approach to a
diffusion operator of fourth-order for the image inpainting. The model is linear
with respect to the variable u representing the image to be reconstructed and is
depending on a spatially varying diffusion function. We introduced an adaptive
approximation procedure based on some a posteriori error indicators, which allows
us to select the diffusion coefficient using the available data and the informations
on the computed solution. We analyzed this approach from the variational point
of view and we established its connections with a Mumford-Shah-like energy, in
the sense of the Γ-convergence. We have implemented the considered model to
test the method, we have also made some comparisons with existing approaches to
demonstrate its capabilities. We have underlined, in the presented tests, the good
quality in the recovery of low-dimensional sets (edges, corners) and of the curvature
(of edges) in the inpainted zones. We emphasize that in our approach the adaptive
selection of the diffusion coefficients is:

(i) Fully automatic, i.e., no external intervention on the algorithm is required.
(ii) Objective and a posteriori, i.e., the scale of α (the rate of decreasing its values)

is explicitly obtained from computable quantities (error indicators) which are
sensitive to the singularities of the solution. Thus, no a priori guess is neces-
sary

(iii) Local, i.e., made at each location in the computation domain (finite-element
cell, thus the pixel scale).

(iv) Low-cost, in the sens of the number of degrees of freedom, thanks to the
coarsening of the mesh in the homogeneous parts of the domain.

In addition, the method may be improved straightforwardly by considering α, the
diffusion function, as a matrix which introduces some anisotropy in the models and
the overall approach is easy to implement in the framework of variational methods
of approximation.
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