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We consider fourth-order variational models for image inpainting problems, with empha-

sis on the recovery of low-order sets (edges, corners) and the curvature. The approach
consists of constructing a family of regularized functionals and to select, locally and in

an adaptive way, the regularization parameters which control the diffusion of the recon-

struction operator. Unlike the usual methods which optimize the parameters a priori and
lead, in general, to complex systems of PDEs, our approach is based on a continuous,

linear, high-order diffusion model that is dynamically adjusted at the discrete level. We
analyze the method in the framework of the calculus of variations and the Γ-convergence
tools and we show that it yields results that might be expected from more complex sys-

tems of PDEs. We obtain simple discrete algorithms based on mixed-finite elements. We

present several numerical examples to test our approach and to make some comparisons
with existing methods.
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1. Introduction

Digital image inpainting started with the works of engineers and computer scientists

in the mid-nineties of last century. It refers to restoring a scratched or damaged im-

age with missing information. This type of image processing task is very important

and has many applications in various fields (painted canvas and movies restoration,

augmented reality, etc). Let Ω ⊂ R2 denotes the entire image domain, the basic idea

in image inpainting is to fill-in an incomplete/damaged region D ⊂ Ω based upon

the image information available outside D (i.e., in Ω\D) in such a manner, that a

viewer can not detect the restored parts. Different techniques have been applied to

solve this problem. Among them, Partial Differential Equations (PDEs) are widely

used and are proven to be efficient for solving several image processing problems
11,12,15,24,25,27,31,33,34. The underlying idea of PDE-based methods is to interpolate

image data across the boundaries of the missing region D using a great variety

of partial differential diffusion equations. Various second-order diffusion equations

have been proposed in the literature 15,25,27. They have the advantage of being

well-established theoretically and easy to solve numerically. However, their major

drawbacks are the disconnection of level lines over large distances (Connectivity

Principle), the smooth propagation of edges into the damaged domain or the in-

ability of reproducing features of higher order (curvature, corners,...) of the initial

image due to the lack of information (second-order). Besides, these classical meth-

ods do not work when the damaged region D touches the boundary of Ω. In such a

situation, the authors in 31 proposed a relevant and specialized inpainting method.

Unusual boundary conditions were considered and inpainting was then achieved

by an extrapolation process from one side of D by means of a nonlinear Cauchy

problem in view of the space variable.

The shortcomings of second-order methods gave rise to a new class of higher-

order diffusion models which in general perform better. In fact, whenever the image

is contaminated by noise, higher-order PDEs, specially linear ones, damp the noise

faster than second-order based diffusion models. In addition, they give the possibil-

ity of including information about the curvature (which is of third-order) of edges

in the equation. Moreover, they allow matching edges across large distances because

the supplementary information about edge directions which can be provided by the

use of boundary conditions for both the solution and its derivatives.

Overview on higher-order PDE models

Bertalmio et al. 12 pioneered a two dimensional fourth-order PDE which consists

in propagating both the gradient direction (geometry) and the gray-scale values of

the image inside the region to be filled by solving the following equation:

∂tu−∇⊥ · ∇∆u = 0, in D, u = f, on ∂D, (1.1)

where ∇⊥ denotes the perpendicular gradient (−∂y, ∂x) and f is the initial damaged

image. This model was the subject of other improvements in 11 based on the Navier-
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Stokes equations for fluid dynamics.

Inspired by the elastica model 34,36, T. Chan et al. proposed in 37 to approach

the Euler-elastica functional by considering the following functional:

‖u− f‖L2(Ω) +

∫
K

(a+ bκ2) dH1(x), (1.2)

where H1 is the Hausdorff measure, K is a closed regular subset of Ω and κ =

∇ · (∇u/|∇u|) is the curvature of level sets γr := {x ∈ K | u(x) = r} and a,

b are two positive constant weights. It is a higher-order variational model where

the regularization term combines the total variation, sensitive to the length of the

isolines, and the square of the curvature, which favors curved lines than straight

ones. Minimizing (1.2) leads to a highly nonlinear PDE and therefore its numerical

solution is a non trivial task. It was the subject of many numerical investigations
2,26,27,32. In the same spirit, Esedoglu and Shen proposed in 27 the Mumford-Shah-

Euler image inpainting model which is a high-order correction of the Mumford-

Shah model by incorporating the Willmore energy. They gave an efficient numerical

realization based on the Γ-convergence approximations of Ambrosio and Tortorelli
3,4, and De Giorgi 29.

Bertozzi et al. exploited in 14 the Cahn-Hilliard equation for binary image in-

painting. It is a semilinear fourth-order PDE originally introduced in material sci-

ences by John W. Cahn and John E. Hilliard in 20 and it describes the evolution of

an interface separating two stable states. The TV −H−1 model was proposed in 19

as a generalization of Cahn-Hilliard equation to gray-scale images.

The multiscale approach

Most high-order approaches to the inpainting problem make use of the minimization

of an energy of Willmore type, i.e., (1.2). However, the models obtained this way

are generally highly nonlinear and difficult to solve numerically. In another hand,

the easiest way to obtain a fourth-order PDE is to minimize
∫
D
|∆u|2 dx which has

several interests in image processing and various works are focusing on minimizing

this energy. It was considered by Blake and Zisserman in 16 and afterwards in 21,38

to overcome the limitations of the Mumford-Shah functional (which is of second-

order). Its major benefit is that it leads to the fourth-order PDE:

∆2u = 0, in D, u = f + another boundary condition on ∂D. (1.3)

This isotropic fourth-order (stationary) diffusion equation is richer than second

order ones and has the benefits of connecting edges across (large) missing parts

while preserving the curvature. However, because of its strong smoothing effect, it

cannot capture important features of the image like corners, edges, etc.

In this paper, we consider a multiscale approach to construct functionals based
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on fourth-order PDEs (1.3). More precisely, we consider the following equation:
∂tu+ ∆(∆αu) + λD(u− f) = 0, in R+ × Ω,

u = ∆αu = 0, on R+ × ∂Ω,

u(0, x) = f, in Ω,

(1.4)

where ∆αu = div(α(x)∇u) and λD = λ0χΩ\D for λ0 � 0 and χΩ\D is the indicator

function of the sub-domain Ω \ D. The values of the diffusion function α, which

encodes different scales in the image, are dynamically and locally chosen in order

to control the amount of smoothing of the operator. Note that the homogeneous

boundary condition for u is not a restrictive condition and general boundary data

can be handled by a lifting operator.

It is known that linear diffusion models are not well-suited for capturing fine

geometric structures of an image (edges, corners). However, we prove in this paper

that our approach allows to restore such fine features. The reason of this “apparent

paradox” is that the adaptive process which is the key of the method, is in fact

nonlinear. We construct a nonlinear discrete approximation to a continuous linear

model, this allows for a dynamical “adaptation of the model” during the processes to

make it sensitive to low-order sets and fine features. In addition, the process turns

out to be convergent, in the Γ-convergence sense, to a Willmore-like functional.

Thus, with this approach, we combine, at the same framework, the simplicity of the

linear diffusion model for the image inpainting and, the necessary, nonlinear process

for the selection of the diffusion coefficient to capture the singularities.

Organization of the paper

The remainder of this paper is organized as follows: In Section 2, we prove by stan-

dard variational techniques and a fixed point approach the existence of H1-solution

for the image inpainting problem. We obtain our equation from a minimization

problem −of the regularized functional− based on an H−1-fidelity term. In Sec-

tion 3, we describe in details the adaptive strategy. In particular, we show that it is

a two-step approach where, first a mesh-adaptation based on metric error indicator

is used to fit the geometry of the computed solution, and second a residual type

error indicator is used to locally select the value of α. We perform a Γ-convergence

analysis of this process and we show that the solution u generated by the adaptive

strategy approximates a solution of a new model which combines the Mumford-Shah

functional and the H−1-fidelity term. In Section 4, we recall the Cahn-Hilliard equa-

tion for image inpainting in order to make a comparison with our model. Finally,

in Section 5 we implement our approach and treat several numerical examples to

test its efficiency and robustness.

2. Image inpainting problem

We study in this section the image inpainting problem by considering the system

(1.4). For the sake of clarity, in the rest of the paper we omit the time dependence
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of functions and we use the notation u instead of u(t).

2.1. H1-weak solution of the stationary equation

Assume that Ω is a bounded open set of R2 with piecewise smooth boundary ∂Ω.

We recall that the operator ∆−1 is the inverse of the negative Laplacian with ho-

mogeneous Dirichlet boundary conditions, i.e., u = ∆−1g is the unique solution

of: {
−∆u = g, in Ω,

u = 0, on ∂Ω.
(2.1)

Let H−1(Ω) be the dual space of H1
0 (Ω) with corresponding norm

‖u‖−1 = ‖∇∆−1u‖2 and inner product 〈u, v〉−1 = 〈∇∆−1u,∇∆−1v〉2, where 〈·, ·〉2
and ‖ · ‖2 are the classical inner product and its corresponding norm in the space

L2(Ω).

We consider the solution of the following stationary problem:{
∆(∆αu) + λD(u− f) = 0, in Ω,

u = ∆α u = 0, on ∂Ω,
(2.2)

which can be seen as stationary solution of (1.4). Problem (2.2) can be rewritten

as follows: {
∆αu+ ∆−1(λD(f − u)) = 0, in Ω,

u = ∆α u = 0, on ∂Ω,
(2.3)

or equivalently as a coupled elliptic system:
−∆αu = w, in Ω,

−∆w = λD(f − u), in Ω,

u = w = 0, on ∂Ω.

(2.4)

The weak formulation of problem (2.3) is: Find u ∈ H1
0 (Ω) such that:

〈α∇u,∇φ〉2 − 〈(λD(f − u), φ〉−1 = 0, ∀φ ∈ H1
0 (Ω). (2.5)

Throughout the paper, we suppose that he domain Ω is partitioned into I disjoint

sub-domains (Ω`)` such that α is given by the piecewise constant scalar function:

α = α`, in Ω`, ` = 1, . . . , I.

We denote αm = min
1≤`≤I

α` > 0 and αM = max
1≤`≤I

α`.

Note that even if f ∈ L2(Ω), from the elliptic regularity results, one has w ∈
H2 ∩H1

0 (Ω) however, the solution u might be only H1
0 (Ω) since α is only bounded

and measurable. In fact, we recall the following regularity result for the operator

−div(α∇(·)):8
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Proposition 2.1. There exists a constant c depending only on the geometry of Ω,

such that a weak solution u of the associated Dirichlet problem belongs to Hs+1(Ω),

for all real numbers s < s0, where s0 is given by:

s0 = min

{
1

2
, c| log(1− αm

αM
)|
}
.

Following the methodology used in 19, we now prove the existence of theH1-weak

solution of the stationary problem by means of Schauder’s fixed-point theorem.

Proposition 2.2 (Schauder’s fixed-point theorem 28). Let X be a Banach

space and K ⊂ X be a compact and convex set of X. Assume that the operator

T : K −→ K is continuous. Then T admits a fixed point.

For R > 0, to be chosen later, we define the convex set:

V = {u ∈ H1
0 (Ω); ||u||2 ≤ R},

and we consider the following minimization problem:

min
u∈H1

0 (Ω)
J (u, v), (2.6)

where

J (u, v)=


∫

Ω

α(x)
2 |∇u|

2 dx+ 1
2λ0
‖λ0u− λDf − ΛDv‖2−1, if u ∈ V,

+∞, otherwise,
(2.7)

with f and v ∈ L2(Ω) and where ΛD = λ0 − λD.

Proposition 2.3. Let v ∈ L2(Ω), the functional J (·, v) admits a unique minimizer

u ∈ V .

Proof. The functional J (·, v) is strictly convex. In fact, let u1 and u2 be two

functions in H1
0 (Ω) such that u1 6= u2 and t ∈]0, 1[, we have:

tJ (u1, v) + (1− t)J (u2, v)− J (tu1 + (1− t)u2, v)

=
t(1− t)

2

[∫
Ω

α(x)|∇u1|2dx+

∫
Ω

α(x)|∇u2|2dx− 2

∫
Ω

α(x)∇u1 · ∇u2dx

]
+
t(1− t)

2λ0

[
||λ0u1 − λDf − ΛDv||2−1 + ||λ0u2 − λDf − ΛDv||2−1

]
− t(1− t)

λ0

[∫
Ω

∇∆−1(λ0u1 − λDf − ΛDv) · ∇∆−1(λ0u2 − λDf − ΛDv)dx

]
=
t(1− t)

2

∫
Ω

α(x)|∇(u1 − u2)|2dx+
t(1− t)

2λ0
||λ0(u1 − u2)||2−1 > 0.

Furthermore, J (·, v) is weakly lower semi-continuous in H1(Ω). We consider a min-

imizing sequence (un)n∈N of J (·, v), i.e.,

J (un, v) −→
n→∞

inf
u∈V
J (u, v) = L.
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Then, there is a constant M > 0 such that
∫

Ω
α(x)|∇un|2 dx ≤ M for all n ≥ 0,

and also we have ||un||2 ≤ R (otherwise J (un, v) would not be finite). Then, using

the boundedness of α(x), we get that the sequence (un)n∈N is uniformly bounded

in H1(Ω). Therefore, there exists a subsequence, still denoted (un)n∈N, such that

un ⇀
n→∞

u weakly in H1(Ω) and un −→
n→∞

u in L2(Ω), with ||u||2 ≤ R. Thanks to

the continuity of the operator ∆−1 : H−1(Ω) −→ L2(Ω), we get:

J (u, v) ≤ lim inf
n→∞

J (un, v).

The limit u is then a minimizer for J (·, v). Uniqueness is guaranteed by the strict

convexity of J (·, v).

The Euler-Lagrange equation corresponding to (2.6) reads:{
−∆αu−∆−1(λD(f − u) + ΛD(v − u)) = 0, in Ω,

u = ∆−1(λD(f − u) + ΛD(v − u)) = 0, on ∂Ω.
(2.8)

Its weak formulation is: Find u ∈ H1
0 (Ω) such that:

〈α∇u,∇φ〉2 − 〈(λD(f − u) + ΛD(v − u)), φ〉−1 = 0, ∀φ ∈ H1
0 (Ω). (2.9)

Let T : L2(Ω) −→ L2(Ω) be the operator such that T (v) = u where u is the

unique solution of (2.9). Therefore, if there exists a fixed point u = v of the operator,

it will be a solution of problem (2.5).

Proposition 2.4. The operator T admits a fixed point u ∈ V . Moreover, u is

H1-weak solution of the equation (2.2).

Proof. Let v ∈ B(0, R) (where B(0, R) denotes the ball in L2(Ω) with center 0 and

radius R). From Proposition 2.3, the minimization problem (2.7) admits a unique

minimizer u = T (v) in the space H1(Ω) such that u ∈ B(0, R). Since the embedding

H1(Ω) ↪→ L2(Ω) is compact, the operator T then maps L2(Ω) → K, where K is a

compact subset of L2(Ω). Thus we have:

T : B(0, R) −→ B(0, R) ∩K = K̃,

where K̃ is a compact and convex subset of L2(Ω). To apply Schauder’s fixed-point

theorem, it remains to prove that T is continuous in B(0, R). Let (vk)k≥0 be a

sequence which converges to v ∈ L2(Ω) and T (vk) = uk. The function uk is then

the unique minimizer of (2.7) associated with vk, and we have: J (uk, vk) ≤ J (0, vk),

i.e.,

J (uk, vk) ≤ 1
2λ0
‖λDf + ΛDvk‖2−1.

Since L2(Ω) ↪→ H−1(Ω), we get ‖vk‖−1 ≤ C‖vk‖L2(Ω) ≤ CR and also ‖λDf‖−1 ≤
C ′ for some given constants C,C ′ > 0. Accordingly, we obtain the following esti-

mate:

J (uk, vk) ≤ C ′ + CR2,
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and then (uk)k≥0 is uniformly bounded in H1(Ω). Thus, we can consider a conver-

gent subsequence ukj ⇀
j→∞

u ∈ H1(Ω) and ukj −→
j→∞

u in L2(Ω). Hence, the unique

(weak) solution T (vk) = uk of:{
−∆αuk −∆−1(λD(f − uk) + ΛD(vk − uk)) = 0, in Ω,

uk = ∆−1(λD(f − uk) + ΛD(vk − uk)) = 0, on ∂Ω,

weakly converges to the unique weak solution u of (2.8). From the uniqueness of the

solution in V , we obtain u = T (v). We then deduce that T is continuous in L2(Ω)

and the existence of a stationary solution u follows from Schauder’s fixed-point

theorem. In addition, this solution satisfies (2.3), or equivalently, is a stationary

solution of the problem (1.4).

Remark 2.1. The solution u of equation (2.2) verifies the estimate:

αm‖∆u‖2 +
λ0

2
‖u‖2 ≤

λ0

2
‖f‖2.

Therefore, we may choose R = ‖f‖2.

2.2. The evolution equation

Now, observe that the previous existence proof of a stationary solution applies to

show that the following unbounded operator (in L2):

A(u) = ∆(∆αu) + λDu,

is maximal. Moreover, we have:

〈A(u), u〉2 ≥
I∑
`=1

αm 〈∆u,∆u〉L2(Ω`)
+ 〈λDu, u〉2 ≥ 0,

which means that it is monotone. Thus it follows from the theory of maximal

monotone operators 18, that the evolution problem (1.4) admits a unique solution

u ∈ L2(0, T ;H1
0 (Ω) ∩H1(0, T ;H−1(Ω)) ∩ C([0, T ] ;L2(Ω)).

As in the stationary case, problem (1.4) can be splitted into two second-order

equations by introducing an auxiliary function w such that:
∂tu−∆w + λD(u− f) = 0, in R+ × Ω,

−∆αu = w, in R+ × Ω,

u = w = 0, on R+ × ∂Ω,

u(0, x) = f(x), in Ω.

(2.10)

The weak formulation reads then:

Find a pair (u,w) ∈ L2(0, T ;H1
0 (Ω)∩H1(0, T ;H−1(Ω)))×L2(0, T ;H1

0 (Ω)), u(0, x) =

f(x), such that:{
〈∂tu, φ〉2 + 〈∇w,∇φ〉2 + 〈λDu, φ〉2 = 〈λDf, φ〉2, ∀φ ∈ H1

0 (Ω),

〈α∇u,∇ψ〉2 − 〈w,ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

(2.11)
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Let u the solution of problem (1.4). Then, it is easy to verify that the pair (u,−∆αu),

is a weak solution of (2.11). We consider another solution (u1, w1) ∈ H1
0 (Ω)×H1

0 (Ω)

of the system (2.11), we then have:{
〈∂t(u− u1), φ〉2 + 〈∇(w − w1),∇φ〉2 + 〈λD(u− u1), φ〉2 = 0, ∀φ ∈ H1

0 (Ω),

〈α∇(u− u1),∇ψ〉2 − 〈(w − w1), ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

Let (ζ`)
I
`=1 be a partition of unity associated to the decomposition (Ω`)

I
1, and picking

ψ = α−1
` ζ`(w − w1), in the second equation, we have the identity:∫

Ω`

α−1
` ζ` (w − w1)2 dx =

∫
Ω`

α`∇(u− u1)α−1
` ∇ζ` (w − w1) dx, ∀l = 1, · · · , I.

(2.12)

Summing up, we get:

I∑
`=1

α−1
`

∫
Ω`

ζ` (w − w1)2 dx =

∫
Ω

∇(u− u1)∇(w − w1) dx ≥ 0. (2.13)

By choosing the test function φ = u− u1 in the first equation and using (2.13) and

the positivity of λD, we obtain:

〈∂t(u− u1), u− u1〉2 = −〈∇(u− u1),∇(w − w1)〉2 − 〈λD(u− u1), (u− u1)〉2 ≤ 0.

So that

∂t(||u(t)− u1(t)||22) = 2〈∂t(u− u1), u− u1〉2 ≤ 0.

It follows that the function t 7→ ||u(t)− u1(t)||22 is decreasing on R+. Since u(0) =

u1(0), we get u = u1 which implies that w = w1. Thus, problems (1.4) and (2.11)

are equivalent.

2.3. Discretization

For the discretization of the time derivative ∂tu, we use the forward Euler scheme.

Let
u− uold

∆t
be an approximation of ∂tu, where ∆t is a time step, uold and u are the

solutions at time told and t = told + ∆t, respectively. Therefore, time discretization

together with splitting scheme (2.10) leads to the following time-stepping problem:〈
u− uold

∆t
, φ〉2 + 〈∇w,∇φ〉2 + 〈λDu, φ〉2 = 〈λDf, φ〉2, ∀φ ∈ H1

0 (Ω),

〈α∇u,∇ψ〉2 − 〈w,ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

(2.14)

Proposition 2.5. For a fixed uold ∈ H1
0 (Ω), the problem (2.14) admits a solution

(u,w) ∈ H1
0 (Ω)×H1

0 (Ω).

Proof. For a given v ∈ L2(Ω), uold ∈ H1
0 (Ω) and ∆t > 0, we define:

λ′D = λD +
1

∆t
and f ′ =

1

λ′D

(
λDf +

uold
∆t

)
.
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We then consider the following problem:{
−∆αu−∆−1(λ′D(f ′ − u)) = 0, in Ω,

u = ∆αu = 0, on ∂Ω.
(2.15)

Using the same reasoning as in Proposition 2.3, we can prove the existence of H1-

solution of (2.15) such that the pair (u,−∆αu) satisfies the system (2.14). To prove

uniqueness, let (u1, w1) ∈ H1
0 (Ω)×H1

0 (Ω) be another solution of the system (2.14),

we then have:{
〈∇(w − w1),∇φ〉2 + 〈λ′D(u− u1), φ〉2 = 0, ∀φ ∈ H1

0 (Ω),

〈α∇(u− u1),∇ψ〉2 − 〈(w − w1), ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

Reasoning like for the system (2.11) and using the inequality (2.13), we obtain:

〈λ′D(u− u1), (u− u1)〉2 = −〈∇(u− u1),∇(w − w1)〉2 ≤ 0.

From the positivity of λ′D, we get:

〈λ′D(u− u1), (u− u1)〉2 = 0.

From the positivity of λ′D, it follows that u = u1. Therefore, w and w1 solve following

problem: {
−∆w + λ′D(u− f ′) = 0, in Ω,

w = 0, on ∂Ω,
(2.16)

which clearly admits a unique solution and consequently w = w1.

3. Discrete problem and adaptive strategy

We assume that the domain Ω is polygonal and we consider a regular family of

triangulations Th made of element which are triangles (or quadrilaterals) with a

maximum size h, satisfying the usual admissibility assumptions, i.e., the intersection

of two different elements is either empty, a vertex, or a whole edge. For h > 0, we

introduce the following discrete space:

Xh =
{
vh ∈ C(Ω)|∀K ∈ Th, vh|K ∈ P1(K)

}
∩H1

0 (Ω).

The discretized version of the splitted problem (2.11) leads to finding a pair

(uh, wh) ∈ Xh ×Xh solution of: 〈uh − u
old
h

∆t
, φh〉2 + 〈∇wh,∇φh〉2 + 〈λDuh, φh〉2 = 〈λDfh, φh〉2, ∀φh ∈ Xh,

〈α∇uh,∇ψh〉2 − 〈wh, ψh〉2 = 0, ∀ψh ∈ Xh,

(3.1)

where fh is a finite element approximation of f associated with Th. Since Xh ⊂
H1

0 (Ω), the well-posedness of the problem (3.1) follows from (2.14).
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3.1. Adaptive procedure

For each element K ∈ Th, the following local discrete energy:

ηK = α
1
2

K‖∇uh‖L2(K), (3.2)

contains some information on the error distribution of the computed solution uh.

In fact, the discontinuities (edges) are contained in regions where the brightness

changes sharply and consequently where this error indicator is large. Moreover, it

may be proven that the gradient of uh captures this change in brightness and its

magnitude provides an information about the “strength” of the edges (see 9). Thus,

the quantity (3.2) acts as an edge detector and locates such regions. Furthermore,

this local error indicator is in some sense equivalent to the energy norm mostly

used as an edge detection in the topological gradient based-methods 5,6,7. This

particularity makes it well suited to control and locally select the diffusion coefficient

α using the following algorithm:

Algorithm 1

(1) Start with the initial grid T0
h corresponding to the image.

(2) Adaptive steps:

• Compute u0
h on T0

h with a large constant α = α0.

• Build an adapted mesh T1
h (in the sense of the finite element method,

i.e., with respect to the parameter h) with a metric error indicator.

• In triangles where ηK is large (with respect to its mean value), we

perform a local choice of α(x) on T1
h to obtain a new function α1(x).

(3) Go to steps 1. and 2. and compute u1
h on T1

h.

During the adaptation, we use the following formula for each triangle K:

αk+1
K = max

 αkK

1 + τ ∗
((

ηK
‖η‖∞

)
− 0.1

)+ , αtrh

 , (3.3)

where αtrh is a threshold parameter and τ is a coefficient which controls the

rate of decrease in α, u+ = max(u, 0). Here η is the piecewise-constant function

such that η|K = ηk, ∀K ∈ T1
h.

Remark 3.1. There are other possible choices for this formula as it will appears

in the Γ-convergence analysis. The one given here is the one implemented for the

numerical computations. Loosely speaking, it may be viewed as follows: in regions

of high gradients, it decreases the values of α when the error indicator deviates more

then 10% from its mean value. α decreases nearly as a geometric sequence with the

iteration number, until a given threshold is attained.
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Let us give more details on the implementation of this algorithm. First, we build

an adapted mesh T1
h as follows: close to the jump sets of uh, the error is large, we

then cut the element K into a finite number of smaller elements to decrease such

an error and to fit the edges, while, far from these jump sets, there is no restric-

tion on how to choose the triangles and the initial grid is coarsened. The adopted

meshes have small number of degrees of freedom in the homogeneous regions which

makes the method considerably fast. Second, we perform an “optimal” choice of the

function α following the map furnished by the error indicator (ηK)K∈Th , on each

element K and in accordance with (3.3) in order to correctly approximate edges.

Remark 3.2. It is easily seen that if u wants to jump across a triangle K then

ηK tends to +∞ and thus αK is chosen such that it tends to 0. If ηK tends to

0, then αK remains constant, otherwise ηK tends to 0 and αK remains constant.

The overall decrease of the global error is guaranteed by a balance between the

energy in these two parts of the domain. Chosen this way, the function α plays in

the present context a role similar to that of the z-field in the Ambrosio-Tortorelli

approximation 3 for the Mumford-Shah energy 35.

3.2. Γ-convergence analysis for the adaptive algorithm

In this section, we motivate our approach by analyzing the limit behavior of the

solution generated by the adaptive algorithm. More precisely, we want to prove that

this approach allows to approximate, in the Γ-convergence sense, a new model that

couples a Mumford-Shah function with an H−1-term, which we will call MS−H−1.

Γ-convergence analysis A Γ-convergence study of this adaptive strategy was

presented in 10 for optic flow estimation. The authors proved that this algo-

rithm is equivalent to the adaptive one introduced by Chambolle-Dal Maso 23 and

Chambolle-Bourdin 22 where a numerical discrete approximation of the Mumford-

Shah energy was proposed. This approach, based on finite-element discretization

and adaptive mesh strategy, is a good approximation, in the Γ-convergence sense 17

of the Mumford-Shah energy 35 (see 23 for more details). We briefly recall the results

and the numerical approximation of this method. For a fixed angle 0 < θ0 ≤ 2π/3, a

constant c ≥ 6, and for ε > 0, let Tε(Ω) = Tε(Ω; θ0; c) be the set of all triangulations

of Ω whose triangles K have the following characteristics:

(i) The length of each of the three edges of K is between ε and εc.

(ii) The three angles of K are greater than or equal to θ0.

Let Vε(Ω) be the set of all continuous functions u : Ω −→ R such that u is affine on

each triangle K of a triangulation T ∈ Tε(Ω). For a given u, we define Tε(u) ⊂ Tε(Ω)

as the set of all triangulations adapted to the function u, i.e., such that u is piecewise

affine on T. We consider a non-decreasing continuous function g : [0,+∞) −→
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[0,+∞) such that:

lim
t→0

g(t)

t
= 1, lim

t→+∞
g(t) = g∞ < +∞.

For any u ∈ Lp(Ω), (p ≥ 1) and T ∈ Tε(Ω), the authors in 23 introduced the following

minimization problem:

Gε(u) = min
T∈Tε(Ω)

G̃ε(u,T), (3.4)

where

G̃ε(u,T) =


∑
K∈T |K ∩ Ω| 1

hK
g(hK |∇u|2), u ∈ Vε(Ω),T ∈ Tε(Ω),

+∞, otherwise.

When ε goes to zero and provided θ0 is less than some Θ > 0, it was proven that

the energy Gε Γ-converges to the Mumford-Shah functional:

G(u) =


∫

Ω

|∇u(x)|2 dx+ g∞H1(Su), u ∈ L2(Ω) ∩GSBV (Ω),

+∞, u ∈ L2(Ω)\GSBV (Ω),

where is GSBV (Ω) the generalized special function of bounded variation (see 1).

Remark 3.3. If F : X −→ [−∞,+∞] is continuous and (Gε)ε Γ-converges to G

then (F +Gε)ε Γ-converges to F +G.

From the result of the Γ-convergence of Gε to G, see 23 , the continuity of the

second term of the functional in L2(Ω) (which follows from the continuity of ∆−1,

i.e., the stability in the elliptic problems) and Remark 3.3, we have:

Proposition 3.1. Let f and v in L2(Ω) be two given functions and ε > 0 be a

positive parameter. Therefore, the sequence of functionals

Gε(uε) + 1
2λ0
‖λ0uε − λDf − (λ0 − λD)v‖2−1,

Γ-converges for ε −→ 0 in the topology of L2(Ω) to

G(u) + 1
2λ0
‖λ0u− λDf − (λ0 − λD)v‖2−1.

Let ψ be the Legendre-Fenchel transform of g. For a given triangulation Tε, it

was proven in 23 that the minimization of Gε is equivalent to the minimization of

the following functional:

G′ε(u, v,Tε) =
∑
K∈Tε

|K ∩ Ω| 1

hK

(
vK |∇u|2 +

ψ(vK)

hK

)
,

over all u ∈ Vε(Ω) and v = (vK)K∈Tε(Ω), piecewise constant on each K ∈ Tε. For a

fixed u, the minimizer over each v is explicitly given by:

vK = g′(hK |∇u|2). (3.5)
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The adaptive strategy presented in this paper is then similar to the iterative method

used in 23 and the local choice of α using the error indicator ηK is similar of the

choice of vK in (3.5) with v = α.

Remark 3.4.

• The analysis presented here is carried out with the Neumann boundary con-

ditions on u, which is the framework used in 10,22,23 for a denoising problem

or optic flow estimation. The application to the Dirichlet case requires some

(tedious but non-essential) modifications and the result still holds.

• Note that, like for second-order models, different PDE-based approaches might

yield a Γ-limit approximation of the Mumford-Shah model. Given a function

α, the computation of the solution u is simple and fast. In fact, after each

adaptation step the number of nodes of the adapted mesh can be reduced.

4. Cahn-Hilliard equation

For the sake of completeness, we will make a comparison with the Cahn-Hilliard

model 13,14,15 that we now recall. The Cahn-Hilliard equation 20 originally refers to

John W. Cahn and John E. Hilliard 20 and was introduced to phenomenologically

describe phase separation, i.e., the change from one state to another. It is a fourth-

order semi-linear PDE and is obtained as the H−1-gradient flow of the following

Ginzburg-Landau energy:

1

2

∫
Ω

|∇u|2dx+
1

ε2
W (u), (4.1)

where phase separation is modeled by the smooth free energy, e.g., double-well

potentials W such that:

W (u) = (1− u2)u2, (4.2)

or a non-smooth free energy as follows:

W (u) = ψ(u) + I[0,1](u), (4.3)

where ψ(u) = 1
2u(1− u), and I[0,1](u) :=

{
1
2u(1− u), 0 ≤ u ≤ 1,

+∞, otherwise.

The analogy between the Cahn-Hilliard model in material sciences and Cahn-

Hilliard model in image inpainting is that the two state phases are considered as two

homogeneous regions and the interface is considered as an edge. In image inpainting,

it was exploited by Bertozzi et al. in 14 and afterwards in 13,15,19 by considering the

following equation:
∂tu+ ∆(ε∆u− 1

εW
′(u)) + λD(u− f) = 0, in R+ × Ω,

u = f and ε∆u− 1
εW
′(u) = 0, on R+ × ∂Ω,

u(0, x) = f, in Ω,

(4.4)
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which was obtained by incorporating the data fidelity term λD(f − u). Note that

the classical Chan Hilliard equation (4.4) is only appropriate for two-scale (binary)

images inpainting due to the double well potential W which vanishes on only the

values 0 and 1.

Remark 4.1. For the time discretization of Cahn-Hilliard equation, we use a con-

vexity splitting scheme (see 15,19). The idea is to divide the energy functional into

two parts; a convex part plus a concave one. The convex part is then treated im-

plicitly while the concave part is treated explicitly.

5. Numerical experiments

In this work, all the PDEs are solved with the open source software FreeFem++
30. In all examples, the damaged/missed regions are delimited by the red contour.

We give some examples for the application of our proposed approach to image

inpainting. The goal is to reconstruct the missing information in the red parts,

i.e., D, by the diffusion of the information from the intact part, i.e, Ω\D. In all

examples, we set λ0 = 107, and ∆t = 0.1 and an initial guess u(0, x) = 0.5, ∀x ∈ D.

Curvature inpainting. We present the numerical results for the adaptive in-

painting approach in order to illustrate the effectiveness of the proposed algorithm

for the inpainting of curvature. In Fig. 1, we present the reconstruction of quarter

of a circle. We display the evolution of the restored image for iterations 1, 5 and

20. In the first iteration (α is constant), we solved a biharmonic equation which

gives a curved, but a very smooth (blurred), edge in D. By iterations, we can see

the efficiency of the adaptation process in the damaged region where the edge was

inpainted sharply by simultaneously keeping its curvature.

Other examples are presented in Fig. 2 and Fig. 4. The curvature in Fig. 2 is

well inpainted which proves that our approach, based on fourth-order linear diffusion

model, allows us to obtain a very interesting result that one might expect by solving

comlpex PDEs like the Euler’s elastica 37, which is highly nonlinear and numerically

difficult to solve. We give in Fig. 5 a zoom caption in the damaged region 2 which

proves that the missing part is well restored and is very close to the original one.

“Real world”-image inpainting. The experiments in Fig. 6 show the effi-

ciency of the proposed method in a real image inpainting. The portions of unknown

pixels are 45%, 55% and 75%, respectively. From these experiments, we can see that

the proposed model can successfully recover the inpainting domain even when up

to 75% of pixels are unknown.

Comparison with the Cahn-Hilliard model. In Fig. 7, we have chosen

the same image presented by Bertozzi, Esedoglu and Gillette (see 14). We give the

result obtained by solving the Cahn-Hiliard equation and the one obtained using

our approach. We display the evolution of the restored image at iteration 1, 5 and

10 which show that the edges are progressively and sharply approximated and the

four corners are very accurately matched. Notice that the image for Cahn-Hilliard

equation is computed in a two-steps process. In the first step, the authors solved
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their equation with a large value of ε, e.g., ε = 0.1, until the numerical scheme is

close to a steady state. In this step, the level lines are continued into the missing

domain. In a second step, they used the previous result as an initial time condition

u0 for a smaller ε (e.g., ε = 0.01) in order to sharpen the contours. This is an

adaptive choice for ε, however, subjected to a hand tuning and being uniform in

the entire domain.

Broken three bars. In Fig. 8, we show the inpainting result for a synthetic

image which represents three broken bars forming a T -junction. We give the restored

images using total variation, harmonic and biharmonic models, respectively. As

excepted, total variation inpainting model is unable to connect the edges between

the three bars because it does not fulfill the connectivity principle. Harmonic and

biharmonic inpainting models produce a smooth solution u in D, blurring the edges.

However, the proposed approach is able to sharply connect the edges between three

bars while enforcing the curvature.

6. Conclusion

In this paper, we have investigated a multiscale fourth-order diffusion PDE for im-

age inpainting. The continuous model is linear and variational. We introduced an

adaptive approximation procedure which is nonlinear, but completely a posteriori

strategy, e.g. the selection of the diffusion coefficient is based upon information on

the computed solutions during the solution steps. We analyzed our approach from

the variational point of view and we established its connections with a Mumford-

Shah-like energy, in the sense of the Γ-convergence. We have implemented the con-

sidered model to test the method, we have also made some comparisons with existing

approaches to demonstrate its capabilities. We have underlined, in the presented

tests, the good quality in the recovery of low dimensional sets (edges, corners) and

curvature in the inpainted zone. We emphasize that in our approach the adaptive

selection of the diffusion coefficients is:

(i) Automatic, i.e., no external intervention on the algorithm.

(ii) Objective and a posteriori, i.e., the scale of α (the way to decrease its values)

is explicitly obtained from computable quantities (error indicators) which are

very sensitive to the singularities of the solution.

(iii) Local, i.e., at each location in the computation domain (finite-element cell, thus

the pixel scale).

(iv) Low cost, thanks to the coarsening of the mesh in the homogeneous parts of

the domain.

In addition, the method may be improved straightforwardly by considering α the

diffusion function as a matrix which introduces some anisotropy in the models and

the overall approach is easy to implement in the framework of variational methods

of approximation and remains compatible with most existing variational models.
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Fig. 1. Top row: Original and damaged images. Middle row: Restored image using the model (1.4)

and adaptation at iterations 1, 5 and 20, respectively. Bottom row: Mesh evolution at iterations

1, 5 and 20, respectively.

Fig. 2. Form left to right: Original, damaged and restored images using model (1.4) and adaptation.
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