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MULTISCALE FOURTH-ORDER MODELS FOR IMAGE

RESTORATION, INPAINTING AND LOW-DIMENSIONAL SETS

RECOVERY

ZAKARIA BELHACHMI∗, MOEZ KALLEL† , MAHER MOAKHER‡ , AND ANIS THELJANI§

Abstract. We consider a fourth-order variational model for solving image inpainting and restora-
tion problems, with emphasis on the recovery of low-order sets (edges, corners) and the curvature.
The approach consists of constructing a family of regularized functionals and to select, locally and
in an adaptive way, the regularization parameters which control the diffusion of the reconstruction
operator. Unlike the usual methods which optimize the parameters a priori and lead, in general, to
complex systems of PDEs, our approach is based on a continuous, linear, high-order diffusion model
dynamically adjusted at the discrete level. We analyze the method in the framework of the calculus
of variations and with the Γ-convergence tools and we show that it yields results that might be ex-
pected from more complex systems of PDEs. We obtain simple discrete algorithms based on mixed
finite elements. We also consider a new model which couples second and fourth order derivatives,
in analogy with the Euler’s elastica functional and we show that our simple model performs as well.
We present several numerical examples to test our approach and to make some comparisons with
existing methods.

Key words. Image inpainting - Inverse problems - Regularization procedures - Mixed finite
elements.

AMS subject classifications. 65M32 - 65M50 - 65M22- 94A08 - 65N22 - 35G15- 35Q68

1. Introduction. Digital image inpainting started with the works of engineers
and computer scientists in the mid-nineties of last century. It refers to restoring a
damaged image with missing information. This type of image processing task is very
important and has many applications in various fields (painted canvas and movies
restoration, augmented reality, . . . ). In fact, many images are often scratched or
damaged. Let Ω ⊂ R

d (d = 2, 3) denotes the entire image domain. The basic idea
is to fill-in an incomplete/damaged region D ⊂ Ω based upon the image information
available outside D (i.e., in Ω\D) in such a manner, that a viewer can not detect
the restored parts. Different techniques have been applied to solve this problem. The
early works were based on statistical and algorithmic approaches. Afterward, this kind
of problems has drawn a growing attention from the mathematics community. They
exploited the well-established theory of Partial Differential Equations (PDE) in image
processing problems. Nowadays, PDE models are widely used and are proven to be
efficient for solving several image processing problems [7, 8, 11, 19, 20, 23, 29, 34, 35].

The image inpainting, like the image restoration problem, consists in recovering
an original image u from an observed one f which is degraded and contaminated with
noise. We assume that

(1.1) f = Tu+ η,

where η stands for an additive white Gaussian noise and T is a linear degradation
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operator, generally compact (or non invertible). The operator T in the inpainting task
is taken to be the indicator function of D. Given f , the problem is then to reconstruct
u obeying the model (1.1). The mathematical formulation consists in approximating
u by the solution of the following minimization problem:

(1.2) min
u∈X

‖Tu− f‖2X ,

where X is a Hilbert or a Banach space. One of the major issues of the problem (1.2)
is its ill-posedness. In fact, it is unstable with respect to perturbation of the initial
data: small changes in the measurements f can result in large changes in the solution
u. A classical way to overcome ill-posedness is to add a regularization term [42], i.e.,
a priori information on u. The regularized problem is formulated as

(1.3) min
u∈Y

{

G(u) + ‖λ(u− f)‖2X
}

,

where Y ⊂ X and G : Y −→ R represents the smoothing effect of the regularization.
The Lagrange multiplier λ is such that λ = λ0 >> 1 in Ω\D (Full attachment outside
inpainting area) and 0 in D (No attachment to the input image f within inpainting
area). The first part of (1.3) encodes the image model (smoothing term) and the
second is called the fidelity part.

Various types of regularization have been proposed in the literature [11, 20, 23,
34, 35, 38]. The most natural way is to regularize by G1(∇u), where ∇ denotes
the gradient operator [20]. This leads to a second-order diffusion equations which
are generally unable to connect the edges over large distances (TV model) or they
smoothly propagate level lines (harmonic model). They are also unable to reconstruct
and keep the curvature because of its higher-order nature. These shortcomings gave
rise to a new class of functionals based on high-order derivatives leading to various
(higher-order) diffusion models which in general perform better. In fact, such models
damp the oscillations and high frequencies (noise) faster than second-order based
diffusion models. Moreover, the use of boundary conditions for both the solution u(x)
and its derivatives gives a supplementary information on the isoline directions and
allows matching edges across large distances.

Overview on higher-order PDE models. Many examples of functionals in-
cluding higher-order derivatives were proposed. These functionals are focusing on
regularization techniques by incorporating second-order derivatives or a sophisticated
combination of first- and second-order derivatives. In the pioneering article of A.
Chambolle and P.-L. Lions [17], the authors proposed a higher-order method for both
image decomposition and restoration. They considered a functional which couples
the first- and second-order derivatives by taking into account the Hessian ∇2u in
the minimization problem. Since then, similar approaches were widely used in image
restoration and inpainting, (see, e.g., [28, 31, 32, 40]), which constitute a straight-
forward convex combination of first- and second- derivatives in the following general
form:

(1.4) ‖u− f‖L2(Ω) +

∫

Ω

G1(∇u) dx+

∫

Ω

G2(∇
2u) dx,

where G1(·) and G2(·) are given functions.
Recently, the authors in [38] introduced a new non-linear model by the higher-

order extension of the well-known Ruden-Osher-Fatemi functional [39] (total variation
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minimization). Inspired by the work of Nitzberg et al. in [36], T. Chan et al. proposed
in [41] a slightly different model for the Euler-elastica functional. They considered
the following functional

(1.5) ‖u− f‖L2(Ω) +

∫

K

(a+ bκ2) dH1(x),

where H1 is the Hausdorff measure, K is a closed regular subset of Ω and κ =
∇ · (∇u/|∇u|) is the curvature of level sets γr : {x ∈ K | u(x) = r}, and a, b
are two positive constant weights. It is a higher-order variational method where
the regularization term combines the total variation, sensitive to the length of the
isolines, and the square of the curvature, which favors curves rather than straight
lines. Minimizing the energy (1.5) leads to a highly nonlinear PDE and therefore its
numerical solution is a non trivial task and was the subject of many investigations
[2, 21, 23, 33].

S. Esedoglu and J. Shen proposed in [23] the Mumford-Shah-Euler image in-
painting model. It is a high order correction of the Mumford-Shah model by the
minimization of the following energy:

(1.6) F (u,Γ) =
γ

2

∫

Ω\Γ

|∇u|2 dx+
1

2

∫

Ω

λ(x)(u− f)2 dx+

∫

Γ

(a+ bκ2) dH1(x).

where Γ denotes the set of edges. They gave an efficient numerical realization based
on the convergence approximations of Ambrosio and Tortorelli [3, 4], and De Giorgi
[26].

Bertozzi, Esedoglu and Gillette proposed in [9, 10] another approach, in the class
of fourth-order inpainting algorithms, for binary images using the modified Cahn-
Hilliard equation

(1.7) ∂tu−∆(∆u−
1

ǫ2
W ′(u)) + λ(f − u) = 0, in Ω.

where W (u) = u2(1 − u)2 is a double-well potential and ǫ is a positive parameter
that is intended to go to zero. This nonlinear fourth-order PDE, which originated
in material sciences [15], describes the evolution of an interface separating two stable
states.

A generalization of this Cahn-Hilliard equation, to gray-scale images, was consid-
ered in [14]. It is based on H−1-regularization methods which have drawn a growing
interest over the last few years. We refer to [11, 30, 37] for more details on this regu-
larization and its impact within image processing problems. The work in [14] consists
in a model for inpainting, called TV −H−1, where one seeks to minimize an energy
that couples the total variation of the image with an H−1-fidelity term. Using the
Γ-convergence theory, it was proven that the solution of this TV −H−1 model is the
L1-limit of the solution of the Cahn-Hilliard equation when ǫ goes to 0.

The multiscale approach. Most high-order approaches to the restoration or
the inpainting problems, make the use of the minimization of an energy of Willmore
type, i.e., (1.5). The models obtained this way are generally highly nonlinear and
difficult to solve numerically. In another hand, the easiest way to obtain a fourth-
order PDE is to minimize

∫

D
|∆u|2 dx which leads to the following Euler-Lagrange

equation:

(1.8) ∆2u = 0, in D, u = f, on ∂D + another boundary condition on ∂D.
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This isotropic fourth-order (stationary) diffusion equation has the benefits of connect-
ing isolines of the image across (large) missing parts while preserving the curvature,
however, because of its strong smoothing effect, it cannot capture important features
of the image like corners, edges, etc.

In this article, we consider a multiscale approach to construct functionals based
on fourth-order PDEs (1.8). More precisely, we consider the following equation:

(1.9)

{

∆(∆αu) + λ(u− f) = 0, in Ω,

u = f and ∆αu = 0, on ∂Ω,

where ∆αu = ∇(α(x)∇u). The values of the diffusion function α, which encodes
different scales in the image, are dynamically and locally chosen in order to control
the amount of smoothing of the operator.

It is known that linear diffusion models are not well-suited for capturing fine ge-
ometric structures of an image (edges, corners). However, we prove in this article
that our approach allows us to restore such fine features. The reason of this “ap-
parent paradox”, is that the adaptive process which is the key of the method, is in
fact nonlinear. Loosely speaking, we construct a nonlinear discrete approximation to a
continuous linear model, this allows for a dynamical “adaptation of the model” during
the processes to make it sensitive to low-order sets and fine features. In addition, the
process turns to be convergent, in the Γ-convergence sense, to a Willmore-like func-
tional. Thus, with this approach, we combine at the same framework the simplicity
of the linear diffusion models for the image inpainting and, the necessary, nonlinear
process for the selection of the diffusion coefficient to capture the singularities.

Organization of the paper. The remainder of this paper is organized as follows:
In Section 2, we prove by standard variational techniques the existence and uniqueness
of H1-solution for the image restoration problem. We obtain our equation from a
minimization problem −of the regularized functional− based on an H−1-fidelity term.
In Section 3, we apply the proposed fourth-order model to image inpainting and we
prove the existence of H1-solutions by means of a fixed point approach. In Section 4,
we present the adaptive strategy in details. In particular, we show that it is a two-
steps approach where, a mesh-adaptation based on metric error indicator is used to fit
the geometry of the computed solution, second, a residual type error indicator is used
to locally select the value of α. We perform a Γ-convergence analysis of this process
and we show that the solution u generated by the adaptive strategy approximates a
solution of a new model which combines the Mumford-Shah functional and the H−1-
fidelity term. In Section 5, we consider a new model coupling second and fourth-order
derivatives, in analogy with the Euler’s elastica model, to improve the overall approach
by enforcing both the curvature and the length of the isolines. Finally, we implement
our approach in Section 6 and treat several numerical examples to test its efficiency
and robustness.

2. Image restoration. We consider in this section the image restoration prob-
lem. In this case, the function λ in (1.9) is taken to be a large constant λ0 >> 1 in
the image domain Ω.

2.1. Existence and uniqueness of H1-weak solutions. We recall that the
operator ∆−1 is the inverse of the negative operator −∆ with zero Dirichlet boundary
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conditions, i.e., u = ∆−1g is the unique solution of

(2.1)

{

−∆u = g, in Ω,

u = 0, on ∂Ω.

We defineH−1(Ω) the dual space ofH1
0 (Ω) with corresponding norm ‖·‖−1 = ‖∇∆−1 ·

‖2 and inner product 〈·, ·〉−1 = 〈∇∆−1·,∇∆−1·〉2.
The domain Ω is partitioned into N disjoint sub-domains (Ωℓ)ℓ such that α is

given by the piecewise constant scalar function:

α = αℓ, in Ωℓ.

We denote αm = min
1≤ℓ≤N

αℓ > 0 and αM = max
1≤ℓ≤N

αℓ. We mention that in the restora-

tion case, the function λ is equal to the constant λ0 in all the domain Ω.
Applying the operator ∆−1 to (1.9), we obtain the following problem:

(2.2)

{

−∆αu+∆−1(λ0(u− f)) = 0, in Ω,

u = f and ∆αu = 0, on ∂Ω.

An H1-weak solution of the problem (2.2) is defined as a function u in the space
V = {u ∈ H1(Ω), u|∂Ω = f |∂Ω}, that fulfills

(2.3) 〈α(x)∇u,∇φ〉2 − 〈λ(f − u), φ〉−1 = 0, ∀φ ∈ H1
0 (Ω).

Equation (2.3) is a weak formulation of (1.9). In fact, an integration by parts in (2.3)
gives:

{

−∆αu+∆−1(λ0(u− f)) = 0, in Ω,

∆α u = 0, on ∂Ω
.

By applying the negative Laplace operator −∆ in the previous system and using the
boundary condition u|∂Ω = f |∂Ω, we see that u solves problem (1.9).

Now, to prove the existence of an H1-weak solution of (1.9), we consider the
following minimization problem:

(2.4) min
u∈V

J(u),

where

J(u) := 1
2

∫

Ω

α(x)|∇u|2 dx+ λ0

2 ‖u− f‖2−1.

Proposition 2.1. Let f ∈ L2(Ω), the functional J(·) admits a unique minimizer
u ∈ H1(Ω) with |u(x)| ≤ 1 a.e. in Ω.

Proof. The functional J(·) is strictly convex. In fact, let u1 and u2 be two
functions in H1(Ω) such that u1 6= u2 and t ∈]0, 1[, we have:

tJ(u1) + (1− t)J(u2)− J(tu1 + (1− t)u2)

=
t(1− t)

2

{∫

Ω

α(x)|∇u1|
2 dx+

∫

Ω

α(x)|∇u2|
2 dx− 2

∫

Ω

α(x)∇u1 · ∇u2 dx

+ λ0

[

‖u1 − f‖2−1 + ‖u2 − f‖2−1 − 2

∫

Ω

∇∆−1(u1 − f) · ∇∆−1(u2 − f) dx

]}

=
t(1− t)

2

{∫

Ω

α(x)|∇(u1 − u2)|
2 dx+ λ0‖u1 − u2‖

2
−1

}

> 0.
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Furthermore, J(·) is weakly lower semi-continuous in H1(Ω). We consider a minimiz-
ing sequence (un)n∈N of J(·), i.e.,

J(un) −→
n→∞

inf
u∈V

J(u) = L.

Since
∫

Ω
α(x)|∇un|

2 dx ≤ J(un), |un(x)| ≤ 1 for almost every point x ∈ Ω and the
boundedness of α(x), the sequence (un)n∈N is then uniformly bounded in H1(Ω).
Therefore, there exists a subsequence, still denoted (un)n∈N, such that un ⇀

n→∞
u

weakly in H1(Ω) and un −→
n→∞

u in Lp(Ω), for 1 ≤ p ≤ ∞, such that |u| ≤ 1 a.e. in Ω.

Thanks to the continuity of the operator ∆−1 : H−1(Ω) −→ L2(Ω), we get:

J(u) ≤ lim inf
n→∞

J(un).

The limit u is then a minimizer for J(·). Since V is weakly closed, the minimizer u
fulfills the boundary condition u = f on ∂Ω. Uniqueness is guaranteed by the strict
convexity of J(·).

2.2. Remark on the choice of boundary conditions. Contrary to the ar-
bitrariness in the choice of the boundary conditions for the inpainting problem, the
Neumann boundary condition is most often used in the restoration of images. In order
to have a unified treatment for both problems and for the sake of brevity, we have
chosen here to use the Dirichlet conditions.

If we use Neumann conditions, we just have to consider the space

V0 =

{

h ∈ H1(Ω);

∫

Ω

h dx = 0

}

.

Then, in this case we have:
Theorem 2.2 ([22]). Let v ∈ L2(Ω),

∫

Ω
v dx = 0. The problem

{

−∆w = v, in Ω,
∂w
∂n = 0, on ∂Ω,

admits a unique solution in V0.
Thus, for each v ∈ L2(Ω),

∫

Ω
v dx = 0, we set w = ∆−1v, with w given by

Theorem 2.2. The restoration problem may now be expressed as a minimization
problem of the energy

min
u

∫

Ω

α|∇u|2 +
λ0
2
‖u− f‖−1,

and the first order optimality condition gives

(2.5)

{

−∆αu+∆−1(λ0(u− f)) = 0, in Ω,
∂u
∂n = 0, ∂(∆α u)

∂n = 0, on ∂Ω.

Applying the negative Laplacian to this problem, we can also write it as
{

∆(∆αu) + λ0(u− f) = 0, in R+ × Ω,
∂u
∂n = 0, ∂(∆α u)

∂n = 0, on R+ × ∂Ω.

Notice also that, with standard changes, we may consider the “mixed” problem as
well

(2.6)

{

−∆αu+∆−1(λ0(u− f)) = 0, in Ω,
∂u
∂n = 0, ∆α u = 0, on ∂Ω.
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2.3. Splitting into two second-order problems. For the sake of simplicity,
we assume here that

(2.7) u = 0 and ∆αu = 0, on ∂Ω.

The case u = f and ∆αu = 0, on ∂Ω can be treated in the same way by choosing a
lifting function u∗ such that:

u∗ = f and ∆αu
∗ = 0, on ∂Ω,

and the proof is not altered by these boundary conditions.

Problem (1.9), viewed as the stationary state of the associated flow, can be splitted
into two second-order equations by introducing an auxiliary function w such that:

(2.8)



















ut −∆w + λ0(u− f) = 0, in R+ × Ω,

−∆αu = w, in R+ × Ω,

u = w = 0, on R+ × ∂Ω,

u(0, x) = f(x), in Ω.

The weak formulation reads then: Find a pair (u,w) ∈ H1
0 (Ω)×H

1
0 (Ω), u(0, x) = f(x),

such that:

(2.9)

{

〈∂tu, φ〉2 + 〈∇w,∇φ〉2 + 〈λ0u, φ〉2 = 〈λ0f, φ〉2, ∀φ ∈ H1
0 (Ω),

〈α∇u,∇ψ〉2 − 〈w,ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

It is easy to verify that the pair (u,w = ∆αu) is a weak solution of (2.9) where u is the
solution for problem (1.9). To prove uniqueness, let the pair (u1, w1) ∈ H1

0 (Ω)×H
1
0 (Ω)

be another solution of the system (2.9), we then have:

{

〈∂t(u− u1), φ〉2 + 〈∇(w − w1),∇φ〉2 + 〈λ0(u− u1), φ〉2 = 0, ∀φ ∈ H1
0 (Ω),

〈α∇(u− u1),∇ψ〉2 − 〈(w − w1), ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

Picking ψ = (w − w1) in the second equation, we have the identity

(2.10) 〈w − w1, w − w1〉2 = 〈α∇(u− u1),∇(w − w1))〉2.

By choosing the test function φ = u − u1 in the first equation and using (2.10) and
the positivity of α, we obtain:

〈∂t(u− u1), u− u1〉2 = −〈∇(u− u1),∇(w − w1))〉2 − 〈λ0(u− u1), (u− u1)〉2 ≤ 0.

So that

∂t(‖u(t)− u1(t)‖
2
2) = 2〈∂t(u− u1), u− u1〉2 ≥ 0.

It follows that the function t 7→ ‖u(t) − u1(t)‖
2
2 is decreasing on R+. Since u(0) =

u1(0), we get u = u1 which implies that w = w1.
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3. Image inpainting problem. We study in this section the image inpainting
problem by considering the following system:

(3.1)











∂tu+∆(∆αu) + λ(x)(u− f) = 0, in R+ × Ω,

u = f and ∆αu = 0, on R+ × ∂Ω,

u(0, x) = f, in Ω.

The only difference here is the Lagrange multiplier λ which takes the value 0 in D and
λ0 >> 0 in Ω\D. Solving the minimization problem (2.4) by means of Euler-Lagrange
equation for such choice of λ does not give the fourth-order PDE (3.1). In fact, this
minimization problem exhibits the following optimality condition:

(3.2) −∆αu+ λ(x)∆−1(λ(x)(u− f)) = 0.

3.1. Existence of H1-weak solution of the stationary equation. Following
the methodology used in [14] to prove the existence of H1-weak solution by means of
Schauder’s fixed-point theorem

Proposition 3.1 (Schauder’s fixed-point theorem [24]). Assume that K ⊂ X
is a compact and convex set and that A : K −→ K is continuous. Then A admits a
fixed point.

Consider the following intermediate minimization problem:

(3.3) min
u∈V

F (u, v),

where

(3.4) F (u, v) = H(u) + 1
2‖λ0u− λf − (λ0 − λ)v‖2−1,

where f and v ∈ L2(Ω) and H(u) =
∫

Ω
α(x)
2 |∇u|2 dx. The Euler-Lagrange equation

corresponding to (3.3) writes:

(3.5)

{

−∆αu−∆−1(λ(f − u) + (λ0 − λ)(v − u)) = 0, in Ω,

u = f and ∆−1(λ(f − u) + (λ0 − λ)(v − u)) = 0, on ∂Ω.

Its weak formulation is: Find u ∈ H1
0 (Ω) such that:

(3.6) 〈α∇u,∇φ〉2 − 〈(λ(f − u) + (λ0 − λ)(v − u)), φ〉−1 = 0, ∀φ ∈ H1
0 (Ω).

Proposition 3.2. Let f and v ∈ L2(Ω), the functional F (·, v) admits a unique
minimizer u ∈ H1(Ω) with |u(x)| ≤ 1 a.e. in Ω.

Proof. For a fixed v ∈ L2(Ω), the existence and uniqueness of the minimizer u can
be obtained by the same technique used in the restoration case in Proposition 2.1.

Let A : L2(Ω) −→ L2(Ω) be the operator such that A(v) = u is the unique
solution of (3.6). Therefore, a fixed point of the operator A, i.e., a solution u = v, is
then a solution of the equation (3.1).

Proposition 3.3. Let f ∈ L2(Ω), the operator A admits a fixed point u ∈ H1(Ω)
with |u(x)| ≤ 1 a.e. in Ω. Moreover, u is H1-weak solution of the stationary equation
of (3.1).

Proof. Let R = |Ω|1/2 and a function v ∈ B(0, R) (where B(0, R) denotes the
ball in L2(Ω) with center 0 and radius R). From Proposition 3.2, the minimization
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problem (3.4) admits a unique minimizer u = A(v) in the space H1(Ω) such that
|u(x)| ≤ 1 a.e. in Ω. Then, it is an element of B(0, R). Furthermore, it is well known
that the mapping H1(Ω) →֒ L2(Ω) is a compact embedding. The operator A then
maps L2(Ω) → K, where K is a compact subset of L2(Ω). Thus we have:

A : B(0, R) −→ B(0, R) ∩K = K̃,

where K̃ is a compact and convex subset of L2(Ω). To apply Schauder’s fixed-point
theorem, it remains to prove that A is continuous in B(0, R). Let (vk)k≥0 be a
sequence which converges to v ∈ L2(Ω) and A(vk) = uk. The function uk is then the
unique minimizer of (3.4) associated with vk, and we have: F (uk, vk) ≤ F (0, vk), i.e.,

F (uk, vk) ≤
1
2‖λf + (λ0 − λ)vk‖

2
−1.

Since L2(Ω) →֒ H−1(Ω), we get ‖vk‖−1 ≤ C‖vk‖L2(Ω) ≤ CR and also ‖λvk‖−1 ≤ C ′

for some given constants C,C ′ > 0. Accordingly, we obtain the following estimate:

F (uk, vk) ≤ Cλ0(|Ω|+ |D|), C > 0.

and then (uk)k≥0 is uniformly bounded in H1(Ω). Thus, we can consider a convergent
subsequence ukj

⇀
j→∞

u ∈ H1(Ω) and ukj
−→
j→∞

u in L2(Ω). Hence, the unique (weak)

solution A(vk) = uk of (3.6) weakly converges to the unique weak solution u of

∆αu+∆−1(λ(f − u) + (λ0 − λ)(v − u)) = 0.

From the uniqueness of the minimizers of (3.4), we obtain u = A(v). We then deduce
that A is continuous in L2(Ω) and the existence of a stationary solution u follows
from Schauder’s fixed-point theorem. In addition, this solution verifies:

{

∆αu+∆−1(λ(f − u)) = 0, in Ω,

u = f and ∆α u = 0, on ∂Ω,

or equivalently, the system (1.9).

3.2. Decoupling into two Poisson equations. Like for the restoration case,
we shall use the boundary conditions

u = 0 and ∆αu = 0, on ∂Ω.

We split the fourth-order equation (3.1) into two Poisson equations by introducing
the auxiliary function w such that:











∂tu−∆w + λ(u− f) = 0, in R+ × Ω,

−∆αu = w, in R+ × Ω,

u = w = 0, on R+ × ∂Ω.

The weak formulation reads: Find the pair (u,w) ∈ H1
0 (Ω) ×H1

0 (Ω), u(0) = f , such
that:

(3.7)

{

〈∂tu, φ〉2 + 〈∇w,∇φ〉2 + 〈λu, φ〉 = 〈λf, v〉2, ∀φ ∈ H1
0 (Ω),

〈α∇u,∇ψ〉2 − 〈w,ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).
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3.3. Time-discretization. We use the semi-implicit Euler scheme. We denote

by
u− uold

dt
an approximation of ∂tu, where u

old and u are the solutions at time told

and t = told + dt, respectively. We obtain the following semi discrete problem:

(3.8)







〈
u− uold

dt
, φ〉2 + 〈∇w,∇φ〉2 + 〈λu, φ〉 = 〈λf, v〉2, ∀φ ∈ H1

0 (Ω),

〈α∇u,∇ψ〉2 − 〈w,ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

Proposition 3.4. For a fixed uold ∈ H1
0 (Ω), the problem (3.8) admits a solution

(u,w) ∈ H1
0 (Ω)×H1

0 (Ω).
Proof. For a given v ∈ L2(Ω), uold ∈ H1

0 (Ω) and dt > 0, we define the following
energy

(3.9) F (u, v) +
1

2
‖
u− uold

dt
‖2−1.

Thus, the same arguments as in the proof of Theorem 3.3 yield the existence and
uniqueness of the minimizer u ∈ H1(Ω) and we prove, thanks to the properties of the
operator A : L2(Ω) −→ L2(Ω), that the fixed point u is given by:







u− uold

dt
+∆(∆αu) + λ(f − u) = 0, in Ω,

u = 0 and ∆αu = 0, on ∂Ω.

The pair (u,w = ∆αu) then satisfies the system (3.8).

4. Discrete problem and adaptive strategy. We assume that the domain
Ω is polygonal. We consider a regular family of triangulations Th made of element
which are triangles (or quadrilaterals) with a maximum size h, satisfying the usual
admissibility assumptions, i.e., the intersection of two different elements is either
empty, a vertex, or a whole edge. For h > 0, we introduce the following discrete
space:

Xh =
{

vh ∈ C(Ω)|∀K ∈ Th, vh|K ∈ P1(K)
}

∩H1
0 (Ω).

In the same way as the continuous case, we can easily prove that in both the inpainting
and the restoration cases, the discrete version admits a solution (uh, wh) ∈ Xh ×Xh.
This unique solution solves the same system (3.8) where the space H1

0 (Ω) is replaced
by Xh.

4.1. Adaptive procedure. For each element K ∈ Th, the following local dis-
crete energy

(4.1) ηK = α
1

2

K‖∇uα,h‖L2(K),

contains some information on the error distribution of the computed solution uα,h. In
fact, the discontinuities (edges) are contained in regions where the brightness changes
sharply and consequently where this error indicator is large. Moreover, it may be
proved that the gradient of uα,h captures this change in brightness and its magnitude
provides an information about the “strength” of the edges (see [6]). Thus, the quantity
(4.1) acts as an edge detector and locates such regions. This particularity makes it
well suited to control and locally select the diffusion coefficient α using the following
algorithm:
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Algorithm 1

1. Start with the initial grid T
0
h corresponding to the image.

2. Adaptive steps:

• Compute uα0,h on T
0
h with a large constant α = α0.

• Build an adapted mesh T
1
h (in the sense of the finite element method,

i.e., with respect to the parameter h) with a metric error indicator.
• In the locations where ηK is large (with respect to its mean value),
we perform a local choice of α(x) on T

1
h to obtain a new function

α1(x).
3. Go to steps 1. and 2. and compute uα1,h on T

1
h.

During the adaptation, we use the following formula for each triangle K;

αk+1
K = max











αk
K

1 + κ ∗

((

ηK
‖η‖∞

)

− 0.1

)+ , αtrh











,

where αtrh is a threshold parameter and κ is a coefficient chosen to control the
rate of decrease in α, (u+) = max(u, 0).

Remark 4.1. There are other possible choices for this formula as it will appears
in the Γ-convergence analysis. The one given here is that implemented for the nu-
merical computations. Loosely speaking, it may be viewed as follows: in the regions
of high gradients, it decreases the values of α when the error indicator deviates more
then 10% from its mean value. α decreases nearly as a geometric sequence with the
iteration number, until a given threshold is attained.

Let us give more details on the implementation of this algorithm. First, we build
an adapted mesh T

1
h (in the sense of finite-element method, i.e., with respect to the

parameter h). The description of the adapted triangulation is the following: close to
the jump sets of uα,h, the error is large, we then cut the elementK into a finite number
of smaller elements to decrease such an error and to fit the edges, while, far from these
jump sets, there is no restriction on how to choose the triangles and the initial grid
is coarsened. This produce meshes with small number of degrees of freedom in the
homogeneous area. Second, we make an “optimal” choice of the function α, following
the map furnished by the error indicator (ηK)K∈Th

, on each element K. Thus, we
may decrease the value of α in order to correctly approximate the edges.

Remark 4.2. It is easily seen that if u wants to jump across a triangle K then
ηK tends to +∞ and thus αK is chosen such that it tends to 0, otherwise ηK tends
to 0 and αK remains constant. The overall decrease of the global error is guaranteed
by a balance between the energy in these two parts of the domain. Chosen this way,
the function α plays in the present context a role similar to that of the z-field in the
Ambrosio-Tortorelli approximation for the Mumford-Shah energy.

4.2. Γ-convergence analysis for the adaptive algorithm. In this section,
we motivate our approach by analyzing the limit behavior of the solution generated
by the adaptive algorithm. More precisely, we want to prove that this approach allows
to approximate, in the Γ-convergence sense, a new model that couples a Mumford-
Shah function with an H−1-term, which we will call MS−H−1. Before starting our
discussion, let us recall the definition of the Γ-convergence and its impact within the
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study of optimization problems. For more details on Γ-convergence we refer the reader
to [12].

Definition 4.3. Let X = (X, d) be a metric space and (Gǫ)ǫ>0 be family of
functions Gǫ : X −→ [0,+∞). We say that the function (Gǫ) Γ-converges to the
function G : X −→ [0,+∞) on X as ǫ −→ 0 if ∀x ∈ X we have:

i) For every sequence (xǫ)ǫ such that d(xǫ, x) −→ 0 we have

Gǫ(x) ≤ lim inf Gǫ(xǫ)

ii) There exists a sequence (xǫ)ǫ such that d(xǫ, x) −→ 0 and

Gǫ(x) = limGǫ(xǫ).

Then, G is the Γ-limit of Gǫ in X and we write: G(x) = Γ− limǫGǫ(x), x ∈ X.
Proposition 4.4. Assume (Gǫ)ǫ Γ-converges to G, and for every ǫ > 0, let uǫ

be a minimizer of Gǫ over X. Then, if a (sub)sequence of (xǫ)ǫ converges to x ∈ X,
we have u is a minimizer of G and (G(xǫ))ǫ converges to G(x).

Remark 4.5. If F : X −→ [−∞,+∞] is continuous and (Gǫ)ǫ Γ-converges to G
then (F +Gǫ)ǫ Γ-converges to F +G.

Γ-convergence analysis. A Γ-convergence study of this adaptive strategy was pre-
sented in [5] for optic flow estimation. The authors proved that this algorithm is equiv-
alent to the adaptive one introduced by Chambolle-Dal Maso [18] and Chambolle-
Bourdin [16]. The last authors introduced an implementation of a approximation
of Mumford-Shah functional that makes an extensive use of the mesh adaptation
techniques. The numerical implementation and the mathematical properties of this
method were proposed and detailed in [18].

We briefly recall the results and the numerical approximation of this method.
For a fixed angle 0 < θ0 ≤ 2π/3, a constant c ≥ 6, and for ǫ > 0, we set Tǫ(Ω) =
Tǫ(Ω; θ0; c) be the set of all triangulations of Ω whose triangles K have the following
characteristics:

i) The length of all three edges of K is between ǫ and ǫc.
ii) The three angles of K are greater than or equal to θ0.

Let Vǫ(Ω) the set of all continuous functions u : Ω −→ R such that u is affine on any
triangle K of a triangulation T ∈ Tǫ(Ω) and for a given u, Tǫ(u) ⊂ Tǫ(Ω) is the set of
all triangulations adapted to the function u, i.e., such that u is piecewise affine on T.
They introduce a non-decreasing continuous function g : [0,+∞) −→ [0,+∞) such
that:

lim
t→0

g(t)

t
= 1, lim

t→+∞
g(t) = g∞.

For any u ∈ Lp(Ω), (p ≥ 1) and T ∈ Tǫ(Ω), the authors in [18] introduced the following
minimization problem:

(4.2) Gǫ(u) = min
T∈Tǫ(Ω)

G̃ǫ(u,T),

where

G̃ǫ(u,T) =







∑

K∈T
|K ∩ Ω|

1

hK
g(hK |∇u|2), u ∈ Vǫ(Ω),T ∈ Tǫ(Ω),

+∞, Otherwise.
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For ǫ going to zero and provided θ0 is less than some Θ > 0, they proved that the
energy Gǫ Γ-converges to the Mumford-Shah functional:

G(u) =

{

∫

Ω
|∇u(x)|2 dx+ g∞H1(Su), u ∈ L2(Ω) ∩GSBV (Ω)

+∞, u ∈ L2(Ω)\GSBV (Ω).

where is GSBV (Ω) the generalized special function of bounded variation (see [1]).
It follows from the result of the Γ-convergence of Gǫ to G, see [18, Theorem 2], the

continuity of the second term of the functional in L2(Ω) (follows from the continuity
of ∆−1, i.e., the stability in the elliptic problems) and the Remark 4.2.

Proposition 4.6. Let f and v in L2(Ω) be two given functions and ǫ > 0 be a
positive parameter. Therefore we have:

i) The sequence of functionals

Gǫ(u) +
λ0
2
‖u− f‖2−1,

Γ-converges for ǫ −→ 0 in the topology of L2(Ω) to

G(u) +
λ0
2
‖u− f‖2−1,

and uǫj converges strongly to u in the topology of L2(Ω).
ii) The sequence of functionals

Gǫ(u) +
1
2‖λ0u− λf − (λ0 − λ)v‖2−1,

Γ-converges for ǫ −→ 0 in the topology of L2(Ω) to

G(u) + 1
2‖λ0u− λf − (λ0 − λ)v‖2−1.

Let ψ be the Legendre-Fenchel transform of g. For a given triangulation Tǫ, it
was proven in [18] that the minimization of Gǫ is equivalent to the minimization of
the following functional:

G′
ǫ(u, v,Tǫ) =

∑

K∈Tǫ

|K ∩ Ω|
1

hK
(vK |∇u|2 +

ψ(vK)

hK
),

over all u ∈ Vǫ(Ω) and v = (vK)K∈Tǫ
, piecewise constant on each K ∈ Tǫ. For a fixed

u, the minimizer over each v is explicitly given by:

(4.3) vK = g′(hK |∇u|2).

The iterative method used in [18] is then similar to the adaptive strategy presented
in this paper and the local choice of α using the error indicator η2K is similar of the
choice of vK in (4.3) with v = α.

Remark 4.7. The analysis presented here is carried out with the Neumann
boundary conditions on u (e.g. problem (2.6) or (2.5)), which is the framework used
in [5, 16, 18] for a denoising problem or optic flow estimation. The application to the
Dirichlet case requires some (tedious but non-essential) modifications and the result
still holds.

Remark 4.8. Note that, like for second-order models, different PDE-based ap-
proaches might yield a Γ-limit approximation of the Mumford-Shah model. Given a
function α, the computation of the solution u is simple and fast. In fact, after each
adaptation step the number of nodes of the adapted mesh can be reduced.
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5. Coupled fourth- and second-order derivatives. In this section, we give
a sophisticated combination of first and second-order derivatives and we apply the
adaptive strategy without giving a Γ-convergence analysis. We prove the existence of
stationary solution of the following equation:

(5.1)











∂tu+ a∆β(∆αu)− b∆βu+ λ(u− f) = 0, in R+ × Ω,

u = f and ∆αu = 0, on R+ × ∂Ω,

u(0, x) = f, in Ω.

where a, b > 0 are two weighting constant parameters. We have set β as diffusion
coefficient in the second-order term in the system (5.1). This choice allows us to
provide the existence of a H1-weak solution for (5.1) when dealing with boundary
condition u = f and ∆αu = 0, on ∂Ω.

This model might be considered as a simplified version of the Euler’s elastica
model, where the curvature and the length terms are replaced by the fourth- and
second-order derivatives, respectively. The parameters a and b are used to control the
trade off between the length and curvature in analogy with Euler’s elastica model.
Various works were interested with the elastica equation and its numerical solution.
Esedoglu and Shen [23] proposed the Mumford-Shah-Euler inpainting model, based
on the Γ-convergence approximations of Ambrosio & Tortorelli [3, 4] and De Giorgi
[25]. We emphasize that in our approach, the computation of numerical solutions is
relatively simple contrary to the elastica model where the numerics is difficult and
the algorithms are very slow (see [13, 21]).

Let the operator ∆−1
β be the inverse of the negative operator −∆β with zero

Dirichlet boundary conditions, i.e., u = ∆−1
β g is the unique solution of

(5.2)

{

−∆βu = g, in Ω,

u = 0, on ∂Ω.

We set 〈·, ·〉−1,β = 〈β
1

2∇∆−1
β ·, β

1

2∇∆−1
β ·〉2 the inner product in H−1(Ω) the dual

space of H1
0 (Ω) with corresponding norm ‖ · ‖−1,β = ‖β

1

2∇∆−1
β · ‖2.

5.1. Existence of H1-weak solution of the stationary equation. We shall
prove the existence of a H1-weak solution for the model (5.1) using the same tech-
niques for the equation (3.1).

The theoretical study in this case is valid only for the boundary conditions

u = ∆αu = 0, on ∂Ω.

If not, we take a lifting function u∗ which verifies (2.7) and the proof remains valid
for w = u− u∗. By applying the operator ∆−1

β , the system (5.1) can be equivalently
rewritten as:

(5.3)

{

−a∆αu+ bu+∆−1
β (λ(u− f)) = 0, in Ω,

u = 0 and ∆α u = 0, on ∂Ω.

For a given τ > 0 and v ∈ L2(Ω), we define the following energy

(5.4) Jβ(u, v) = aG(u) +
b

2
‖u‖22 +

1

2
‖λ0u− λf − (λ0 − λ)v‖2−1,β .
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The functional Jβ(·, v) admits a unique minimizer u ∈ H1(Ω) with |u(x)| ≤ 1 a.e. in
Ω and which verifies the following weak formulation:

(5.5) b〈u, φ〉2 + a〈α∇u,∇φ〉2 − 〈(λ(f − u) + (λ0 − λ)(v − u)), φ〉−1,β = 0.

Let A : L2(Ω) −→ L2(Ω) such that for a given v ∈ L2(Ω), we associate A(v) = u the
unique solution of the weak problem (5.5). Therefore, it is easy to verify that a fixed
point of A is a solution for (5.1). Following the same lines of the analysis carried out
for the previous model we have:

Proposition 5.1. The operator A admits a fixed point u ∈ H1(Ω) with |u(x)| ≤ 1
a.e. in Ω. Moreover, u is H1-weak stationary solution of the equation (5.1).

Proposition 5.2. Let f and v in L2(Ω) be two given functions and ǫ > 0 be a
positive parameter. We have:

i) The sequence of functionals

aGǫ(uǫ) +
b

2
‖uǫ‖

2
2 +

λ0
2
‖uǫ − f‖2−1,

Γ-converges for ǫ −→ 0 in the topology of L2(Ω) to

aG(u) +
b

2
‖u‖22 +

λ0
2
‖u− f‖2−1,

and uǫ converges strongly to u in the topology of L2(Ω).
ii) The sequence of functionals

aGǫ(uǫ) +
b

2
‖uǫ‖

2
2 +

1
2‖λ0uǫ − λf − (λ0 − λ)v‖2−1,

Γ-converges for ǫ −→ 0 in the topology of L2(Ω) to

aG(u) +
b

2
‖u‖22 +

b

2
‖uǫ‖

2
2 +

1

2
‖λ0uǫ − λf − (λ0 − λ)v‖2−1.

5.2. Splitting into two Poisson equations. We assume here that

u = 0 and ∆αu = 0, on ∂Ω,

and we split the fourth-order equation (5.1) into two second-order equations as follows:



















∂tu− a∆βw − b∆βu+ λ(u− f) = 0, in R+ × Ω,

−∆αu = w, in R+ × Ω,

u = w = 0, on R+ × ∂Ω,

u0 = f, in Ω.

The weak formulation is to find a pair (u,w) ∈ H1
0 (Ω)×H1

0 (Ω), u(0) = f , such that:
(5.6)

{

〈∂tu, φ〉2 + b〈β∇u,∇φ〉2 + a〈β∇w,∇φ〉2 + 〈λu, φ〉2 = 〈λf, v〉2, ∀φ ∈ H1
0 (Ω),

〈α∇u,∇ψ〉2 − 〈w,ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).
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5.3. Time-discretization. We consider the following semi-implicit Euler scheme:

(5.7)






〈
u− uold

dt
, φ〉2 + b〈β∇u,∇φ〉2 + a〈β∇w,∇φ〉2 + 〈λu, φ〉2 = 〈λf, v〉2, ∀φ ∈ H1

0 (Ω),

〈α∇u,∇ψ〉2 − 〈w,ψ〉2 = 0, ∀ψ ∈ H1
0 (Ω).

Proposition 5.3. For a fixed uold ∈ H1
0 (Ω), the problem (3.7) admits a solution

(u,w) ∈ H1
0 (Ω)×H1

0 (Ω).
Proof. For a given v ∈ L2(Ω), uold ∈ H1

0 (Ω) and dt > 0, we define the following
energy

(5.8) Jβ(u, v) + ‖
u− uold

dt
‖2−1,β .

By the same techniques as in Theorem 2.2, we can prove the existence and uniqueness
of a minimizer u ∈ H1(Ω) and we can prove that the operator, A : L2(Ω) −→ L2(Ω)
such that for a given v ∈ L2(Ω), we associate A(v) = u the unique minimizer of (5.8),
admits a fixed point u which verifies:

(5.9)

{

u−uold

dt + a∆β(∆αu)− b∆βu+ λ(u− f) = 0, in Ω,

u = 0 and ∆αu = 0, on ∂Ω

By operator splitting, it is easy to verify that (u,w = ∆αu) is a weak solution to
(5.7).

6. Numerical examples. In this work, all the PDEs are solved with the open
source software FreeFem++ [27]. In all examples, the damaged/missed regions are
delimited by the red contour.

6.1. Image restoration. We begin by testing our approach for an image de-
noising problem. In the left-hand plot of Fig. 1, we display the original (binary) image
with a squared domain (120×120 pixels). In the middle, we display the noisy image f ,
obtained by adding a Gaussian noise, whereas the right-hand plot shows the restored
one obtained by using our approach (1.9).

We initialized the algorithm with a large value of α = 50 and we performed 20
iterations of the adaptive algorithm. We plot in Fig. 2 the mesh, the function α and
the error indicator at convergence. The latter indicates the regions where we have
edges whereas αK plays in the present context a role similar to that of the z-field
in the Ambrosio-Tortorelli approximation method for the Mumford-Shah energy. We
can also see the “sparsification” effect on the mesh in the left-hand plot of Fig. 2,
which emphasizes the low cost of the method.

We tested our model on gray-scale image (200 × 200 pixels) in Fig. 3 where we
displayed the original (noisy) image and the restored one.

6.2. Image inpainting. We give some examples for the application of our pro-
posed approach to image inpainting. The goal is to reconstruct the missing informa-
tion in the red parts, i.e.,D, by the diffusion of the information from the intact part,
i.e, Ω\D.

6.2.1. Curvature inpainting. We give in the following the numerical results
for the two adaptive inpainting approaches (3.1) and (5.1). For the model (5.1), we
took α = β and both of them were updated simultaneously (with the same formula
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Fig. 1. Original, noisy and restored images, respectively.

Fig. 2. The function α, the mesh and η at convergence.

Fig. 3. The noisy and the restored images.

of Algorithm 1). In Fig. 5, we present the reconstruction of quarter of a circle using
the model (3.1). We display the evolution of the restored image for iterations 1, 5
and 20. In the first iteration (α is constant), we solved a biharmonic equation which
gives a curved, but a very smooth (blurred), edge in D. We can see the efficiency of
the adaptation process in the damaged region where the edge was inpainted sharply
by simultaneously keeping its curvature.

In Fig. 6, we tested the adaptive algorithm for different values of the ratio b
a in

equation (5.1), in order to show the effects of each term (the fourth- and second-order
one). We plot in Fig. 6 the restored images at the end of algorithm. It appears that
if more weight is set on the second-order derivatives in (5.1), then the inpainted edge
tends to be a straight line as expected (the length term is enforced). In fact, if we
consider equation (5.1) without the fourth order derivatives, the adaptive algorithm
gives a solution u that converges to that given by the Mumford-Shah model in the
sense of the Γ-convergence [5, 18]. It is well know that the preferable edge curves
in the Mumford-Shah model are those which have the shortest length because the
penalization term acts on the length of the edge only. Therefore, promoting the
second term allows the model to favors straight edges to commit the connectivity
principle in perception [20].
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Other examples are presented in Fig. 7 and Fig. 9 in order to illustrate the effec-
tiveness of the proposed algorithm for the inpainting of curvature. The curvature in
Fig. 7 is well inpainted which proves that our approach, based on fourth order linear
diffusion models, allows us to obtain a very interesting result that one might expect
by solving some sophisticated models like the Euler’s elastica [41], which is highly
nonlinear and numerically difficult to solve. We give in Fig. 10 a zoom caption in the
damaged region 2 which proves that the missing part is well restored and is very close
to the original one.

6.2.2. “Real world”-image inpainting. The experiment in Fig. 11 shows the
efficiency of the proposed method in a real image inpainting. The portion of unknown
pixels is 45%, 55% and 75%, respectively. From these experiments, we can see that
the proposed model can successfully recover the inpainting domain even when up to
75% of pixels are unknown.

6.2.3. Comparison with the Cahn-Hilliard model. In Fig. 12, we have
chosen the same image presented by Bertozzi, Esedoglu and Gillette (2006). We
give their result which was obtained by solving the Cahn-Hiliard equation and the
one obtained using our approach (5.1) for α = β. We display the evolution of the
restored image at iteration 1, 5 and 10 which shows that the edges are progressively
and sharply approximated and the four corners are very accurately matched. In
fact, the combination of (square) curvature and length terms is the right strategy for
such inpainting and restoration problems. The only, difficult, thing to manage in the
modeling process is the balance between them. We give an answer to this question
with our approach. Notice that the image for Cahn-Hilliard equation (right-hand plot
of Fig. 12) is computed in a two steps process. In the first step, the authors solved
their equation with a large value of ǫ, e.g., ǫ = 0.1, until the numerical scheme is close
to a steady state. In this step, the level lines are continued into the missing domain.
In a second step, they used the previous result as an initial time condition u0 for a
smaller ǫ (e.g., ǫ = 0.01) in order to sharpen the contours. This is an adaptive choice
for ǫ, however, subjected to a hand tuning and being uniform in the entire domain.

7. Conclusion. In this article, we have investigated some multiscale fourth-
order diffusion PDEs for image restoration and inpainting. The continuous models
are linear and variational. We introduced an adaptive approximation procedure which
is nonlinear, but completely a posteriori strategy, e.g. the selection of the diffusion
coefficients is based upon information on the computed solutions during the solution
steps. We analyzed our approach from the variational point of view and we established
its connections with a Mumford-Shah-like energy, in the sense of the Γ-convergence.
We have implemented the considered models to test the method, we have also made
some comparisons with existing approaches to demonstrate its capabilities. We have
underlined, in the presented tests, the good quality in the recovery of low dimensional
sets (edges, corners) and curvature in the inpainted zone. We emphasize that in our
approach the adaptive selection of the diffusion coefficients is:

i) Automatic, i.e., no external intervention on the algorithm.
ii) Objective and a posteriori, i.e., the scale of α (the way to decrease its values)

is explicitly obtained from computable quantities (error indicators) which are
very sensitive to the singularities of the solution.

iii) Local, i.e., at each location in the computation domain (finite-element cell,
thus the pixel scale).

iv) Low cost, thanks to the coarsening of the mesh in the homogeneous parts of
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the domain.
In addition, the method may be improved straightforwardly by taking α the

diffusion function as a matrix which introduces some anisotropy in the models and
the overall approach is easy to implement in the framework of variational methods of
approximation and remains compatible with most existing variational models.

Fig. 4. Damaged and original images

Fig. 5. Top row: Restored image using the model (1.9) and adaptation at iterations 1, 5 and
20, respectively. Bottom row: Mesh evolution at iterations 1, 5 and 20, respectively

Fig. 6. Model (5.1) and adaptation: the ratio a

b
= 0.2, 1, 5 and 10, respectively.
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