Maxime Lenormand
email: maxime.lenormand@irstea.fr

Franck Jabot •
email: franck.jabot@irstea.fr

Guillaume Deffuant
email: guillaume.deffuant@irstea.fr

F Jabot

Adaptive approximate Bayesian computation for complex models

Keywords: ABC, Population Monte Carlo, Sequential Monte Carlo

Adaptive approximate Bayesian computation for complex models

Introduction

Approximate Bayesian computation (ABC) techniques appear particularly relevant for calibrating stochastic models because they are easy to implement and applicable to any model. They generate a sample of model parameter values (θ i) i=1,..,N (often also called particles) from the prior distribution π(θ) and select the θ i values leading to model outputs x ∼ f (x|θ i) satisfying a proximity criterion with the target data y (ρ(x, y) ≤ ε, ρ expressing a distance, ε being a tolerance level). The selected sample of parameter values approximates the posterior distribution of parameters, leading to model outputs with the expected quality of approximation. However, in practise, running these techniques is very demanding computationally because sampling the whole space of parameters requires a number of simulations which grows exponentially with the number of parameters to identify. This tends to limit the application of these techniques to easily computable models [START_REF] Beaumont | Approximate Bayesian computation in evolution and ecology[END_REF]. In this paper, our goal is minimizing the number of model runs for reaching a given quality of posterior approximation, and thus to make the approach applicable to a larger set of models.

ABC is the subject of intense scientific researches and several improved versions of the original scheme are available, such as using local regressions to improve parameter inference [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF][START_REF] Blum | Non-linear regression models for approximate Bayesian computation[END_REF], automatically selecting informative summary statistics [START_REF] Joyce | Approximately sufficient statistics and Bayesian computation[END_REF][START_REF] Fearnhead | Constructing summary statistics for approximate Bayesian computation: Semi-automatic ABC[END_REF], coupling to Markov chain Monte Carlo [START_REF] Marjoram | Markov chain Monte Carlo without likelihoods[END_REF][START_REF] Wegmann | Efficient approximate bayesian computation coupled with markov chain monte carlo without likelihood[END_REF] or improving sequentially the posterior distributions with sequential Monte Carlo methods [START_REF] Sisson | Sequential Monte Carlo without likelihoods[END_REF][START_REF] Toni | Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems[END_REF][START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF]. This last class of methods approximates progressively the posterior, using sequential samples S (t) = (θ (t) i) i=1,..,N derived from sample S (t-1) , and using a decreasing set of tolerance levels {ε 1 , ..., ε T }. This strategy focuses the sampling effort in parts of the parameter space of high likelihood, avoiding to spend much computing time in systematically sampling the whole parameter space.

The first sequential method applied to ABC was proposed by [START_REF] Sisson | Sequential Monte Carlo without likelihoods[END_REF] with the ABC-PRC (Partial Rejection Control). This method is based on a theoretical work of Del [START_REF] Del Moral | Sequential Monte Carlo samplers[END_REF] to ABC. However, [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF] has shown that this method leads to a bias in the approximation of the posterior. [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF]; [START_REF] Toni | Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems[END_REF] proposed a new algorithm, called Population Monte Carlo ABC in [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF] and hereafter called PMC. This algorithm, corrects the bias by assigning to each particle a weight corresponding to the inverse of its importance in the sample. It is particularly interesting in our perspective because it provides with a rigorous framework to the sequential sample idea, which seems a good way for minimizing the number of runs. In this approach, the problem is then defining the sequence of tolerance levels {ε 1 , ..., ε T }. [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF] solve partly this problem by deriving the tolerance level at a given step from the previously selected sample. However, a difficulty remains: when to stop? If the final tolerance level ε T is too large, the final posterior will be of bad quality. Inversely, a too small ε T leads to a posterior that could have been obtained with less model runs.

In this paper, we propose a modification of the population Monte Carlo ABC algorithm proposed in [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF] that we call adaptive population Monte Carlo ABC (hereafter called APMC). This new algorithm determines by itself the sequence of tolerance levels as in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF], and it also provides a stopping criterion. Furthermore, our approach avoids the problem of duplications of particles due to the MCMC kernel used in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF]. We prove that the computation of the weights associated to the particles in this algorithm lead to the intended posterior distribution and we also prove that the algorithm stops whatever the chosen value of the stopping parameter. We show that our algorithm, applied to a toy example and to an individual-based social model, requires significantly less simulations to reach a given quality level of the posterior distribution than the population Monte Carlo ABC algorithm of [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF] (hereafter called PMC), the replenishment SMC ABC algorithm of [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF] (hereafter called RSMC) and the adaptive SMC ABC algorithm of Del [START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF] (hereafter called SMC). Our new algorithm has been implemented in the R package 'EasyABC' [START_REF] Jabot | Easyabc: performing efficient approximate bayesian computation sampling schemes using r[END_REF].

Sequential Monte-Carlo methods in approximate Bayesian computation

In this section we present the three main sequential ABC algorithms currently available and their limitations. We present the Population Monte-Carlo ABC proposed in [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF] (hereafter called PMC), the Replenishment Sequential Monte-Carlo ABC proposed in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF] and the Sequential Monte-Carlo ABC proposed in Del [START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF]. These algorithms are detailed in Appendix A.

The PMC algorithm

This method consists in generating a sample S (t) = (θ (t) i) i=1,..,N at each iteration of the algorithm, 1 ≤ t ≤ T . Each particle of the sample S (t) satisfying the predefined tolerance level ε t where ε 1 ≥ ε t ≥ ε T . We say that a parameter value θ (t) i , satisfies the tolerance level ε t , if when running the model we get x ∼ f (x|θ (t) i), such that its distance ρ (t) i = ρ(x, y) to the target data y, is below ε t . At step t the sample S (t) is derived from sample S (t-1) using a particle filter methodology. The first sample S 1 is generated using a regular ABC step. At step

t a new particle θ (t) i is generated using a Markov transition kernel K t , θ (t) i ∼ K t (θ |θ *), until θ (t)
i satisfies ε t where θ * is randomly draw from S (t-1) with probability (w (t-1) i) i=1,..,N . The weight w (t-1) i is proportional to the inverse of its importance in the sample S (t-1) (Eq. 2). The kernel function K t is a Gaussian kernel with a variance equal to twice the weighted empirical variance of the set S (t-1) [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF]). The algorithm stops when the sample S (T) is generated i.e the target ε T is reached. See Algorithm 2 for details.

Weights correcting the kernel sampling bias

As pointed out by [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF], the newly generated particles θ (t) i in a sequential procedure are no more drawn from the prior distribution but from a specific probability density d (t) i that depends on the particles selected at the previous step and on the chosen kernel. This introduces a bias in the procedure. This bias should be corrected by attributing a weight equal to π(θ

(t) i)/d (t) i to each newly generated particle θ (t) i .
The density of probability d (t) i to generate particle θ (t) i at step t is given by the sum of the probabilities to reach θ (t) i from one of the N particles of the previous step times their respective weights:

d (t) i ∝ N ∑ j=1 w (t-1) j σ -1 t-1 ϕ σ -1 t-1 (θ (t) i -θ (t-1) j) (1)
where ϕ(x) = 1 √ 2π e -x 2 2 is the kernel function.

This yields the expression of the weight w

(t)
i to be attributed to the newly drawn particle θ (t) i :

w (t) i ∝ π(θ (t) i) ∑ N j=1 w (t-1) j σ -1 t-1 ϕ σ -1 t-1 (θ (t) i -θ (t-1) j) (2)

Limitations of the PMC algorithm

The major problem in the PMC algorithm is to define the decreasing sequence of tolerance levels {ε 1 , ..., ε T } to get close to an optimal gain in computing time. If the decrease in tolerance values is too sharp or too shallow, the benefits of the importance sampling procedure has good chance to be lower than what could be possible. In the following, we will indeed demonstrate that our algorithm leads to a sequence of tolerance levels which clearly outperforms an arbitrary choice for the sequence of tolerance levels.

2.2

The RSMC and the SMC algorithms [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF] proposed two methods to determine "on-line" the sequence of tolerance levels. The main idea is to define the ε t value with the previous sample S (t-1) . In the RSMC algorithm of [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF], ε t is defined as a quantile of the ρ(x, y) values of the previous sample S (t-1) (see Algorithm 3 for details). In the SMC algorithm of Del Moral et al. (2012), ε t is computed so that the effective sample size of the particles is reduced by a constant factor at each time step (see Algorithm 4 for details).

A second difference between the PMC and the RSMC/SMC algorithms concerns the proposal distribution. The RSMC and the SMC algorithms use a MCMC kernel to move the particles. At step t, a new particle θ (t) i is generated using a MCMC kernel θ (t) i ∼ K t (θ |θ *) where θ * is randomly draw from S (t-1) with probability (w (t-1) i) i=1,..,N . This weight (w (t) i) i=1,..,N is equal to 1 if the particle θ (t) i satisfies ε t , and to 0 otherwise. The jump is accepted with probability, p acc , based on the Metropolis-Hastings ratio (Eq. 3).

1 ∧ π(θ (t) i)K t (θ * |θ (t) i) π(θ *)K t (θ (t) i |θ *) 1 ρ(x,y)≤ε t (3)
where x ∧ y means the minimum of x and y.

Limitations of the RSMC and the SMC algorithms

The MCMC kernel used in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF] to sample new values θ (t) j has a significant drawback in our view: it can lead to particle duplications. Indeed, each time the MCMC jumps from a particle to a new one which is not accepted, the initial particle is kept in the new sample of particles. When this occurs several times with the same initial particle, this particle appears several times in the new sample. The number of such "duplicated" particles can grow and strongly deteriorate the quality of the posterior, as illustrated below. To solve this problem, [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF] proposed to perform R MCMC jump trials instead of one. R evolves during the course of the algorithm (Eq. 4) since its value is chosen such that there is a probability of 1c that the particle gets moved at least once where c = 0.01 in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF]. To circumvent the problem of particle duplications Del [START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF] proposed to resample the parameter values when too many are duplicated. Del Moral et al. (2012) also proposed to run the model M times for each particle, in order to decrease the variance of the acceptance ratio of the MCMC jump. However, all these solutions increase the number of model runs, going against the initial benefit of using sequential samples.

R = log(c) log(1 -p acc) (4)
3 Adaptive population Monte-Carlo approximate Bayesian computation

Overview of the APMC algorithm

The APMC algorithm follows the main principles of the sequential ABC, and defines on-line the tolerance level at each step like in [START_REF] Wegmann | Abctoolbox: a versatile toolkit for approximate bayesian computations[END_REF], [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF][START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF].

For each tolerance level ε t , it generates a sample S (t) of particles and computes their associated weights. This weighted sample approximates the posterior distribution, with an increasing approximation quality as ε t decreases. Suppose the APMC reached step t -1, with a sample S (t-1) of N α = ⌊αN⌋ particles and their associated weights (θ

(t-1) i , w (t-1) i) i=1,.
.,N α , the main features of the APMC are (see Algorithm 5 for details):

-the algorithm generates N -N α particles (θ (t-1) j

) j=N α +1,..,N where θ

(t-1) j ∼ N (θ * j , σ 2 (t-1)), the seed θ * j is randomly drawn from the weighted set (θ (t-1) i , w (t-1) i) i=1,..,N α and the variance σ 2 (t-1) of the Gaus- sian kernel N (θ * j , σ 2 (t-1)
) is twice the empirical variance of the weighted set (θ [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF].

(t-1) i , w (t-1) i) i=1,..,N α , following
-the weights w (t-1) j of the new particles (θ (t-1) j

) j=N α +1,..,N are computed so that these new particles can be combined with the sample S (t-1) of the previous step without causing a bias in the posterior distribution. These weights are given by Eq. 6 (see below).

-the algorithm concatenates the N α previous particles (θ (t-1) i) i=1,..,N α with the N -N α new particles (θ (t-1) j

) j=N α +1,..,N , together with their associated weights and distances to the data. This constitutes a new set noted

S (t) temp = (θ (t) i , w (t) i , ρ (t) i) i=1,..,N .
-the next tolerance level ε t is determined as the first α-quantile of the (ρ

(t) i) i=1,..,N . -the new sample S (t) = (θ (t) i , w (t) i) i=1,..,N α is then constituted from the N α particles of S (t)
temp satisfying the tolerance level ε t .

-if the proportion p acc of particles satisfying the tolerance level ε t-1 among the N -N α newly generated particles is below a chosen value p acc min , the algorithm stops, and its result is (θ

(t) i) i=1,.
.,N α with their associated weights.

Note that in our algorithm, to get a number N α of retained particles for the next step, the choice of ε t is heavily constrained: it has to be at least equal to the first α-quantile of the (ρ (t) i) i=1,..,N and smaller than the immediately superior (ρ (t) i) value. We chose to fix it to the first α-quantile for simplicity. This choice also ensures that the tolerance level decreases from one iteration to the next: in the worst case where p acc = 0 (no newly simulated particles accepted), ε t = ε t-1 . Our algorithm does not use a MCMC kernel and avoids duplicating particles. It requires a reweighting step in O(N 2 α) instead of O(N α) in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF], but in our perspective, this computational cost is supposed negligible compared with the cost of running the model.

Weights correcting the kernel sampling bias

For the APMC algorithm the density of probability d (t) i to generate particle θ (t) i at step t is:

Author-produced version of the paper published in Computational Statistics, vol. 28, issue 6, 2013Statistics, vol. 28, issue 6, , p. 2777Statistics, vol. 28, issue 6, -2796. . Original publication available at http://link.springer.com/, DOI : 10.1007/s00180-013-0428-3

d (t) i = N α ∑ j=1 w (t-1) j ∑ N α k=1 w (t-1) k σ -1 t-1 ϕ σ -1 t-1 (θ (t) i -θ (t-1) j) (5)
where ϕ(x) =1 √ 2π e -x 2 2 is the kernel function.

This yields the expression of the weight w (t)

i to be attributed to the newly drawn particle θ (t) i :

w (t) i = π(θ (t) i) ∑ N α j=1 w (t-1) j / ∑ N α k=1 w (t-1) k σ -1 t-1 ϕ σ -1 t-1 (θ (t) i -θ (t-1) j) (6)
This formula differs from the scheme of [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF] where the weights need only to be proportional to Eq. 6 at each step. Since we want to concatenate particles obtained at different steps of the algorithm (while [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF] generate the sample at step t from scratch), we need the scaling of weights to be consistent across the different steps of the algorithm. Using the weight of Eq. 6 guarantees the correction of the sampling bias throughout the APMC procedure and ensures that the N α weighted particles θ (t) i produced at the t-th iteration follow the posterior distribution π (θ |ρ(x, y) < ε t).

The stopping criterion

We stop the algorithm when the proportion of "accepted" particles (Eq. 7) among the N -N α new particles is below a predetermined threshold p acc min . This choice of stopping rule ensures that additional simulations would only marginally change the posterior distribution. Note that this stopping criterion will be achieved even if p acc min = 0, this ensures that the algorithm converges. We present a formal proof of this assertion in Appendix B.

p acc (t) = 1 N -N α N ∑ k=N α +1 1 ρ (t-1) k <ε t-1 (7)

Experiments on a toy example

We consider four algorithms: APMC, PMC, the SMC and the RSMC. Their implementations in R (R Development Core Team 2011) are available 1 . We compare them on the toy example studied in [START_REF] Sisson | Sequential Monte Carlo without likelihoods[END_REF] where π(θ) = U [-10,10] and f (x|θ) ∼ 1 2 φ θ , 1 100 + 1 2 φ (θ , 1) where φ µ, σ 2 is the normal density of mean µ and variance σ 2 . In this example, we consider that y = 0 is observed, so that the posterior density of interest is proportional to φ 0, 1 100 + φ (0, 1) π(θ). We structure the comparisons on two indicators: the number of simulations performed during the application of the algorithms, and the L 2 distance between the exact posterior density and the histogram of particle values obtained with the algorithms. This L 2 distance is computed on the 300-tuple obtained by dividing the support [-10, 10] into 300 equally-sized bins. We choose the L 2 distance to compare the sample to the true posterior because it is a well-known accuracy measure easy to compute and a good indicator to compare different methods.

We choose N = 5000 particles and a target tolerance level equal to 0.01. For the PMC algorithm we use a decreasing sequence of tolerance levels from ε 1 = 2 down to ε 11 = 0.01. For the SMC algorithm, we use 3 different values for α: {0.9, 0.95, 0.99} and M = 1 as in Del [START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF]. For the RSMC algorithm we use α = 0.5 as in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF]. To explore our algorithm, we test 9 different values for α: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and 4 different values for p acc min : {0.01, 0.05, 0.1, 0.2}. In each case, we perform 50 times the algorithm, and compute the average and standard deviation of the two indicators: the total number of simulations and the L 2 distance between the exact posterior density and the histogram of particle values. We used as kernel transition a normal distribution parameterized with twice the weighted variance of the previous sample, as in [START_REF] Beaumont | Adaptive approximate Bayesian computation[END_REF].

We report below the effects of varying α and p acc min on the performance of our algorithm, and compare it with the PMC, SMC and RSMC algorithms.

Particle duplication in SMC and RSMC

The number of distinct particles decreases during the course of the SMC algorithm whatever the value of α, as shown on Fig. 1a-b. The oscillations of the number of distinct particles are caused by the resampling step in the SMC algorithm (see Del [START_REF] Del Moral | An adaptive sequential Monte Carlo method for approximate Bayesian computation[END_REF]), but they are not sufficient to counterbalance the overall decrease. This decrease deteriorates the posterior approximation as shown on Fig. 2. For the RSMC algorithm, the initial oscillation of the number of particles is due to the initial value of R, initially set to 1, but which quickly evolves towards a value ensuring a relatively constant number of distinct particles. This number of distinct particles is maintained at a reasonably high level (Fig. 1c), but this has a cost in terms of the number of required model runs (see Fig. 2). Note that the APMC and the PMC algorithms keep N distinct particles.

Influence of parameters on APMC

The values of α and p acc min have an impact on the studied indicators. We find that smaller α and p acc min improve the quality of the approximation (smaller L 2 distance), and increase the total number of model runs, with p acc min having the largest effect (Fig. 2). With a large α, the tolerance levels decrease slowly and there are numerous steps before the algorithm stops. In this toy example, our simulations show that all explored sets of (α , p acc min) such that p acc min < 0.1 give good results for the criterion Number of simulations × L 2 2 (Fig. 3b). Large α provide slightly better results for small p acc min while small α provide slightly better results for large p acc min (Fig. 3b). On this toy example it appears that intermediate values of α and p acc min (0.3 ≤ α ≤ 0.7 and 0.01 ≤ p acc min ≤ 0.05), present a good compromise between number of model runs and the quality of the posterior approximation.

Comparing performances

Whatever the value of α and p acc min , the APMC algorithm always yields better results than the other three algorithms. It requires between 2 and 8 times less simulations to reach a given posterior quality L 2 (Fig. 2). Furthermore, good approximate posterior distributions are very quickly obtained (Fig. 2). The compromise between simulation speed and convergence level can also be illustrated using the criterion Number of simulations × L 2 2 [START_REF] Glynn | The asymptotic effciency of simulation estimators[END_REF]. This criterion is smaller for the APMC algorithm (Fig. 3a).

Author-produced version of the paper published in Computational Statistics, vol. 28, issue 6, 2013Statistics, vol. 28, issue 6, , p. 2777Statistics, vol. 28, issue 6, -2796. . Original

Application to the model SimVillages

In this section, we check if our algorithm still performs better than the PMC, the RSMC and the SMC when applied to an individual-based social model developed during the European project PRIMA2 . The aim of the model is to simulate the effect of a scenario of job creation (or destruction) on the evolution of the population and activities in a network of municipalities.

Model and data

The model simulates the dynamics of virtual individuals living in 7 interconnected villages in a rural area of Auvergne (a region of Central France). A single run of the model SimVillages with seven rural municipalities takes about 1.4 seconds on a desktop machine (PC Intel 2.83 GHz). The dynamics include demographic change (aging, marriage, divorce, births and deaths), activity change (change of jobs, unemployment, inactivity, retirement), and movings from one municipality to another or outside of the set. The model also includes a dynamics of creation / destruction of jobs of proximity services, derived from the size of the local population. More details on the model can be found in [START_REF] Huet | Common framework for the microsimulation model in prima project[END_REF]. The individuals (about 3000) are initially generated using the 1990 census data of the National Institute of Statistics and Economic Studies (INSEE), some of them are given a job type and a location for this job (in a municipality of the set or outside), they are organised in households living in a municipality of the set. The model dynamics is mostly data driven, but four parameters cannot be directly derived from the available data. They are noted θ p for 1 ≤ p ≤ 4, described in Table 1.

We use our algorithm to identify the distribution of the four parameters for which the simulations, initialized with the 1990 census data, satisfy matching criteria with the data of the 1999 and 2006 census. The set of summary statistics {S m } 1≤m≤M and the associated discrepancy measure used ρ m are described in Table 2. We note S m the simulated summary statistics and S ′ m the observed statistics. The eight summary statistics are normalized (variance equalization) and they are combined using the infinity norm (Eq. 8):

(ρ m (S m , S ′ m)) 1≤m≤M ∞ = sup 1≤m≤M ρ m (S m , S ′ m) (8)
We first generate a sample of length N from the prior U [a,b] , where [a, b] is available for each parameter in Table 1, with a Latin hypercube [START_REF] Carnell | lhs: Latin hypercube samples. R package version 0[END_REF]) and we select the best N α particles. To move the particles, we use as kernel transition a multivariate normal distribution parameterized with twice the weighted variancecovariance matrix of the previous sample [START_REF] Filippi | On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo[END_REF]).

As in the section 4, we perform a parameter study and compare APMC with its three competitors. For APMC, α varies in ({0.3, 0.5, 0.7}) and p acc min in ({0.01, 0.05, 0.1, 0.2}), and we set N α = 5000 particles. For the PMC, SMC and RSMC we also set N = 5000 particles and a tolerance level target equal to 1.4. The tolerance value ε = 1.4 corresponds to the average final tolerance value we obtain with APMC for p acc min = 0.01. Note that otherwise this final tolerance is difficult to set properly and a worse choice for this value would have lead to worse performances of these algorithms. For the PMC algorithm, we use the decreasing sequence of tolerance levels {3, 2.5, 2, 1.7, 1.4}. For the SMC algorithm, we use 3 different values for the couple (α, M): {(0.9, 1), (0.99, 1) , (0.9, 15)}. For the RSMC algorithm we use α = 0.5, as in [START_REF] Drovandi | Estimation of parameters for macroparasite population evolution using approximate Bayesian computation[END_REF]. For each algorithm and parameter setting, we perform 5 replicates.

We approximated posterior density (unknown in this case) with the original rejection-based ABC algorithm, starting with N = 10, 000, 000, selecting 7890 particles below the tolerance level ε = 1.4.

To compute the L 2 distance between posterior densities, we divided each parameter support into 4 equally sized bins, leading to a grid of 4 4 = 256 cells, and we computed on this grid the sum of the squared differences between histogram values. Probability to split for a couple in a year [0, 0.5]

Study of APMC result

APMC yields a unimodal approximate posterior distribution for the model SimVillages (Fig. 4). Interestingly, parameters θ 1 and θ 4 are slightly correlated (Fig. 4c). This is logical since they have contradictory

Influence of parameters on APMC

As for the toy example, we find that the intermediate values of (α, p acc min) that we used lead to similar results (Fig. 5c). In practice, we therefore recommend to use α = 0.5 and p acc min between 0.01 and 0.05 depending on the wished level of convergence.

Comparing performances

APMC requires between 2 and 7 times less simulations to reach a given posterior quality than the other algorithms L 2 (Fig. 5a). Again, the gain in simulation number is progressive during the course of the algorithm. The Number of simulations × L 2 2 criterion is again smaller for the APMC algorithm (Fig. 5b). 2}. Blue circles are used for p acc min = 0.01, orange triangles for p acc min = 0.05, green squares for p acc min = 0.1, and purple diamonds for p acc min = 0.2. PMC: red plain triangles for a sequence of tolerance levels from ε 1 = 3 to ε 5 = 1.4. SMC: grey plain square for (α, M) in {(0.9, 1), (0.99, 1)}, grey star for (α, M) = (0.9, 15) and a ε target equal to 1.4. RSMC: brown plain diamond for α = 0.5 and a ε target equal to 1.4. Results obtained with a standard rejection-based ABC algorithm are depicted with black plain circles. (b) Boxplot of the criterion "squared L 2 distance times the number of simulations" for the different algorithms. APMC: for α in {0.3, 0.5, 0.7} and p acc min = 0.01; SMC: for (α, M) in {(0.9, 1), (0.99, 1), (0.9, 15)} and a ε target equal to 0.01; RSMC: for α = 0.5 and a ε target equal to 0.01; ABC: for a ε target equal to 1.4; PMC: for a sequence of tolerance levels from ε 1 = 3 to ε 5 = 1.4. (c) Criterion "squared L 2 distance times the number of simulations" in the APMC algorithm for the different values of α and p acc min . Each cell depicts the average of the criterion over the 5 performed replicates of the APMC.

Author-produced version of the paper published in Computational Statistics, vol. 28, issue 6, 2013Statistics, vol. 28, issue 6, , p. 2777Statistics, vol. 28, issue 6, -2796. . Original publication available at http://link.springer.com/, DOI : 10.1007/s00180-013-0428-3

Discussion

The good performances of APMC should of course be confirmed on other examples. Nevertheless we argue that they are due to the main assets of our approach:

-We choose an appropriate reweighting process instead of a MCMC kernel, which corrects the sampling bias without duplicating particles; -We define an easy to interpret stopping criterion that automatically defines the number of sequential steps.

Therefore, we can have some confidence in the good performances of APMC on other examples.

In the future, it would be interesting to evaluate this algorithm on models involving a larger number of parameters and/or multi-modal posterior distributions. Moreover, APMC could benefit from other improvements, in particular by performing a semi-automatic selection of informative summary statistics after the first ABC step [START_REF] Joyce | Approximately sufficient statistics and Bayesian computation[END_REF][START_REF] Fearnhead | Constructing summary statistics for approximate Bayesian computation: Semi-automatic ABC[END_REF] and by using local regressions for post-processing the final posterior distribution [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF][START_REF] Blum | Non-linear regression models for approximate Bayesian computation[END_REF]. We did not perform such combinations in the present contribution, so that our algorithm is directly comparable with the three other sequential algorithms we looked at. However, they would be straightforward, because the different improvements concern different steps of the ABC procedure.

Appendix A: Description of the algorithms

Algorithm 1 Likelihood-free rejection sampler (ABC)

Given N the number of particles

for i = 1 to N do repeat Generate θ * ∼ π(θ) Simulate x ∼ f (x|θ *) until ρ(S(x), S(y)) < ε Set θ i = θ * end for Algorithm 2 Population Monte Carlo Approximate Bayesian Computation (PMC)
Given N the number of particles and a decreasing sequence of tolerance level ε

1 ≥ ... ≥ ε T , For t = 1, for i = 1 N do repeat Simulate θ (1) i ∼ π(θ) and x ∼ f (x|θ (1) i) until ρ(S(x), S(y)) < ε 1 Set w (1) i = 1 N end for Take σ 2
2 as twice the weighted empirical variance of (θ)) end for Take σ 2 t+1 as twice the weighted empirical variance of (θ Author-produced version of the paper published in Computational Statistics, vol. 28, issue 6, 2013Statistics, vol. 28, issue 6, , p. 2777Statistics, vol. 28, issue 6, -2796. . Original publication available at http://link.springer.com/, DOI : 10.1007/s00180-013-0428-3 Where ∀u ∈ [0, 1] and X = {x 1 , ..., x n }, Q X (u) = inf{x ∈ X|F X (x) ≥ u} and F X (x) = 1 n ∑ n k=1 1 x k ≤x . Where ϕ(x) = 1 √ 2π e -x 2 2

(1) i) 1≤i≤N for t = 2 to T do for i = 1 to N do repeat Sample θ * i from θ (t-1) j with probabilities w (t-1) j Generate θ (t) i |θ * i ∼ N (θ * i , σ 2

Fig. 1

 1 Fig.1Number of distinct particles in a sample of N = 5000 particles during the course of the SMC and RSMC algorithms applied to the toy example; In all three panels we plot the results obtained for 50 executions of the algorithm. (a) SMC with α = 0.9 and M = 1; (b) SMC with α = 0.99 and M = 1; (c) RSMC with α = 0.5. In all three panels, the tolerance target is equal to 0.001.

Fig. 2 Fig. 3

 23 Fig.2Posterior quality (L 2) versus computing cost (number of simulations) averaged over 50 replicates. Vertical and horizontal bars represent the standard deviations among replicates. Algorithm parameters used for APMC: α in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and p acc min in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for p acc min = 0.01, orange triangles for p acc min = 0.05, green squares for p acc min = 0.1, and purple diamonds for p acc min = 0.2. PMC: red plain triangles for a sequence of tolerance levels from ε 1 = 2 down to ε 11 = 0.01. SMC: grey plain square for α in {0.9, 0.95, 0.99} (from left to right), M = 1 and a ε target equal to 0.01. RSMC: brown plain diamond for α = 0.5 and a ε target equal to 0.01. Results obtained with a standard rejection-based ABC algorithm are depicted with black plain circles.

Fig. 4

 4 Fig.4Contour plot of the bivariate joint densities of θ i and θ j obtained with our algorithm, and with α = 0.5 and p acc min = 0.01; (a) θ 1 and θ 2 ; (b) θ 1 and θ 3 ; (c) θ 1 and θ 4 ; (d) θ 2 and θ 3 ; (e) θ 2 and θ 4 ; (f) θ 3 and θ 4 .

Fig. 5 (

 5 Fig.5 (a) Posterior quality (L 2) versus computing cost (number of simulations) averaged over 5 replicates. Vertical and horizontal bars represent the standard deviations among replicates. Algorithm parameters used for APMC: α in {0.3, 0.5, 0.7} and p acc min in {0.01, 0.05, 0.1, 0.2}. Blue circles are used for p acc min = 0.01, orange triangles for p acc min = 0.05, green squares for p acc min = 0.1, and purple diamonds for p acc min = 0.2. PMC: red plain triangles for a sequence of tolerance levels from ε 1 = 3 to ε 5 = 1.4. SMC: grey plain square for (α, M) in {(0.9, 1), (0.99, 1)}, grey star for (α, M) = (0.9, 15) and a ε target equal to 1.4. RSMC: brown plain diamond for α = 0.5 and a ε target equal to 1.4. Results obtained with a standard rejection-based ABC algorithm are depicted with black plain circles. (b) Boxplot of the criterion "squared L 2 distance times the number of simulations" for the different algorithms. APMC: for α in {0.3, 0.5, 0.7} and p acc min = 0.01; SMC: for (α, M) in {(0.9, 1), (0.99, 1), (0.9, 15)} and a ε target equal to 0.01; RSMC: for α = 0.5 and a ε target equal to 0.01; ABC: for a ε target equal to 1.4; PMC: for a sequence of tolerance levels from ε 1 = 3 to ε 5 = 1.4. (c) Criterion "squared L 2 distance times the number of simulations" in the APMC algorithm for the different values of α and p acc min . Each cell depicts the average of the criterion over the 5 performed replicates of the APMC.

Algorithm 3

 3 Sequential Monte Carlo Approximate Bayesian Computation Replenishment (RSMC) Given N, ε 1 , ε T , c, α ∈ [0, 1] and N α = ⌊αN⌋, for i = 1 to N do repeat Simulate θ i ∼ π(θ) and x ∼ f (x|θ i) ρ i = ρ(S(x), S(y)) until ρ i ≤ ε 1 end for Sort (θ i , ρ i) by ρ i Set ε MAX = ρ N while ε MAX > ε T doRemove the N α particles with largest ρ Set ε NEXT = ρ N-Nα Set i acc = 0 Compute the parameters of the proposal MCMC q(•, •) with the N -N α particles.for j = 1 to N α do Simulate θ N-Nα + j ∼ (θ i) 1≤i≤N-Nα for k = 1 R do Generate θ * ∼ q(θ * , θ N-Nα + j) et x * ∼ f (x * |θ *) Generate u < U [0,1] if u ≤ 1 ∧ π(θ *)q(θ N-Nα + j , θ *) π(θ N-Nα + j)q(θ * , θ N-Nα + j) 1 ρ(S(x *),S(y))≤ε NEXT thenSet θ N-Nα + j = θ * Set ρ N-Nα + j = ρ(S(x *), S(y)) i acc ← i acc + 1

Algorithm 5 i

 5 Adaptive Population Monte Carlo Approximate Bayesian ComputationGiven N, N α = ⌊αN⌋ the number of particles to keep at each iteration among the N particles (α ∈ [0, 1]) and p acc min the minimal acceptance rate.for t = 1 do for i = 1 to N do Simulate θ Let ε 1 = Q ρ (0) (α) the first α-quantile of ρ (0) where ρ (0) = ρ ≤ ε 1 , 1 ≤ i ≤ N Take σ 21 as twice the weighted empirical variance of {(θ

 publication available at http://link.springer.com/, DOI : 10.1007/s00180-013-0428-3

	0.20				
	0.15				
	L 2				
	0.10				
	0.05				
	0.25	0.5	Number of simulations (x10 5) 1 2 4 8	16	32

Table 1

 1 SimVillages parameter descriptions

	Parameters	Description	Range
	θ 1 θ 2 θ 3 θ 4	Average number of children per woman Probability to accept a new residence for a household Probability to make couple for two individuals	[0, 4] [0, 1] [0, 1]

Table 2

 2 Summary statistic descriptions on the number of children in the population. What is less straightforward is that we are able to partly tease apart these two effects with the available census data, since we get a peak in the approximate posterior distribution instead of a ridge.

					Summary statistic			Description		Measure of discrepancy
						S 1 S 2 S 3		Number of inhabitants in 1999 Age distribution in 1999 Household type distribution in 1999	L 1 distance χ 2 distance χ 2 distance
						S 4			Net migration in 1999		L 1 distance
						S 5 S 6 S 7		Number of inhabitants in 2006 Age distribution in 2006 Household type distribution in 2006	L 1 distance χ 2 distance χ 2 distance
						S 8			Net migration in 2006		L 1 distance
		0.8				(a)		0.8				(b)		0.12 0.14	(c)
														0.10
	θ 2	0.6					θ 3	0.6					θ 4	0.08
		0.4						0.4						0.06
														0.04
		0.2						0.2						0.02
		1.5	2.0	2.5	3.0	3.5	1.5	2.0	2.5	3.0	3.5	1.5	2.0	2.5	3.0
					θ 1						θ 1				θ 1
		0.8	(d)				0.12 0.14	(e)				0.12 0.14
								0.10						0.10
	θ 3	0.6					θ 4	0.08						0.08
		0.4						0.06						0.06
								0.04						0.04
		0.2						0.02						0.02
		0.2		0.4	0.6	0.8		0.2		0.4	0.6	0.8		0.2	0.4	0.6	0.8
					θ 2						θ 2			

effects

http://motive.cemagref.fr/people/maxime.lenormand/script_r_toyex

PRototypical policy Impacts on Multifunctional Activities in rural municipalities -EU 7th Framework Research Programme; 2008-2011; https://prima.cemagref.fr/the-project

Author-produced version of the paper published in ComputationalStatistics, vol. 28, issue 6, 2013Statistics, vol. 28, issue 6, , p. 2777Statistics, vol. 28, issue 6, -2796. . Original publication available at http://link.springer.com/, DOI : 10.1007/s00180-013-0428-3

Acknowledgement

This publication has been funded by the Prototypical policy impacts on multifunctional activities in rural municipalities collaborative project, European Union 7th Framework Programme (ENV 2007-1), contract no. 212345. The work of the first author has been funded by the Auvergne region.

Algorithm 4 Adaptive Sequential Monte Carlo Approximate Bayesian Computation (SMC)

Given N, M, α ∈ [0, 1], ε 0 = ∞, ε and N T , For t = 0, for i = 1 to N do Simulate θ

, X

(t-1) (i,1:M)) end if end if end for end while

Appendix B: Proof that the algorithm stops

We know that there exists ε ∞ > 0 such that ε t -→ t→+∞ ε ∞ because, by construction of the algorithm (ε t) is a positive decreasing sequence and it is bounded by 0. For each θ ∈ Θ , we consider the distance (ρ(x, y)|θ) as a random variable ρ(θ). Let f ρ(θ) be the probability density function of ρ(θ). The probability P[ρ(θ) ≥ ε t] that the drawn distance associated to parameter θ is higher than the current tolerance ε t satisfies:

We define:

We have:

The N -N α particles are independent and identically distributed from π t+1 the density defined by the algorithm, hence the probability P[p acc (t + 1) = 0] that no particle is accepted at step t + 1 is such that:

t→+∞ 0, we have:

We can conclude that p acc (t) converges in probability towards 0 if P max < +∞. This ensures that the algorithm stops, whatever the chosen value of p acc min .