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FREE DIVISORS IN A PENCIL OF CURVES

JEAN VALLÈS

Abstract. A plane curve D ⊂ P2(k) where k is a field of characteristic zero is free if
its associated sheaf TD of vector fields tangent to D is a free OP2(k)-module (see [6] or [5]
for a definition in a more general context). Relatively few free curves are known. Here
we prove that the union of all singular members of a pencil of plane projective curves
with the same degree and with a smooth base locus is a free divisor.

1. Introduction

Let k be a field of characteristic zero and let S = k[x, y, z] be the graded ring such that
P2 = Proj(S). We write ∂x := ∂

∂x , ∂y := ∂
∂y , ∂z := ∂

∂z and ∇F = (∂xF, ∂yF, ∂zF ) for a

homogenous polynomial F ∈ S.
Let D = {F = 0} be a reduced curve of degree n. The kernel TD of the map ∇F is a

rank two reflexive sheaf, hence a vector bundle on P2. It is the rank two vector bundle of
vector fields tangent along D, defined by the following exact sequence:

0 −−−−→ TD −−−−→ O
3
P2

∇F
−−−−→ J∇F (n− 1) −−−−→ 0,

where the sheaf J∇F (also denoted J∇D in this text) is the Jacobian ideal of F . Set
theoretically J∇F defines the singular points of the divisor D. For instance if D consists
of s distinct lines then J∇D defines the set of

(

s
2

)

vertices of D.

Remark 1.1. A non zero section s ∈ H0(TD(a)), for some shift a ∈ N, corresponds to a
derivation δ = Pa∂x+Qa∂y +Ra∂z verifying δ(F ) = 0, where (Pa, Qa, Ra) ∈ H0(OP2(a))3.

In some particular cases that can be found in [5], TD is a free OP2-module; it means
that there are two vector fields of degrees a and b that form a basis of

⊕

nH
0(TD(n)) (D

is said to be free with exponents (a, b)); it arises, for instance, when D is the union of the
nine inflection lines of a smooth cubic curve. The notion of free divisor was introduced by
Saito [6] for reduced divisors and studied by Terao [9] for hyperplane arrangements. Here
we recall a definition of freeness for projective curves. For a more general definition we
refer to Saito [6].

Definition 1.2. A reduced curve D ⊂ P2 is free with exponents (a, b) ∈ N2 if

TD ≃ OP2(−a)⊕ OP2(−b).

A smooth curve of degree ≥ 2 is not free, an irreducible curve of degree ≥ 3 with only
nodes and cusps as singularities is not free (see [1, Example 4.5]). Actually few examples
of free curves are known and of course very few families of free curves are known. One
such family can be found in [8, Prop. 2.2].
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In a personal communication it was conjectured by E. Artal and J.I. Cogolludo that the
union of all the singular members of a pencil of plane curves (assuming that the general
one is smooth) should be free. Three different cases occur:

• the base locus is smooth (for instance the union of six lines in a pencil of conics
passing through four distinct points);

• the base locus is not smooth but every curve in the pencil is reduced (for instance
the four lines in a pencil of conics where two of the base points are infinitely near
points);

• the base locus is not smooth and there exists exactly one non reduced curve in the
pencil (for instance three lines in a pencil of bitangent conics).

In the third case the divisor of singular members is not reduced but its reduced structure
is expected to be free.

We point out that if two distinct curves of the pencil are not reduced then all curves will
be singular. Even in this case, we believe that a free divisor can be obtained by chosing a
finite number of reduced components through all the singular points.

In this paper we prove that the the union of all the singular members of a pencil of
degree n plane curves with a smooth base locus (i.e. the base locus consists of n2 distinct
points) is a free divisor and we give its exponents (see theorem 2.7). More generally, we
describe the vector bundle of logarithmic vector fields tangent to any union of curves of
the pencil (see theorem 2.8) by studying one particular vector field “canonically tangent”
to the pencil, that is introduced in the key lemma 2.1.

This gives already a new and easy method to produce free divisors.

I thank J. I. Cogolludo for his useful comments.

2. Pencil of plane curves

2.1. Generalities and notations. Let {f = 0} and {g = 0} be two reduced curves of
degree n ≥ 1 with no common component. For any (α, β) ∈ P1 the curve Cα,β is defined
by the equation {αf + βg = 0} and C(f, g) = {Cα,β|(α, β) ∈ P1} is the pencil of all these
curves.

In section 2 we will assume that the general member of the pencil C(f, g) is a smooth
curve and that Cα,β is reduced for every (α, β) ∈ P1.

Under these assumptions there are finitely many singular curves in C(f, g) but also
finitely many singular points. We recall that the degree of the discriminant variety of
degree n curves is 3(n − 1)2. Since the general curve in the pencil is smooth, the line
defined by the pencil C(f, g) in the space of degree n curves meets the discriminant variety
along a finite scheme of length 3(n − 1)2 (not empty for n ≥ 2). The number of singular
points is of course related to the multiplicity of the singular curves in the pencil as we will
see below.

Let us fix some notation. The scheme defined by the ideal sheaf J∇Cαi,βi
is denoted by

Zαi,βi
. It is well known that this scheme is locally a complete intersection (for instance,

generalize to curves the lemma 2.4 in [7]). The union of all the singular members of the
pencil C(f, g) form a divisor Dsg. A union of k ≥ 2 distinct members of C(f, g) is denoted
by Dk.

2.2. Derivation tangent to a smooth pencil. Let us consider the following derivation,
associated “canonically” to the pencil:
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Lemma 2.1. For any union Dk of k ≥ 1 members of the pencil there exists a non zero

section sδ,k ∈ H0(TDk
(2n − 2) induced by the derivation

δ = (∇f ∧∇g).∇ = (∂yf∂zg − ∂yf∂zg)∂x + (∂zf∂xg − ∂xf∂zg)∂y + (∂xf∂yg − ∂yf∂xg)∂z .

Proof. Since δ(αf + βg) = det(∇f,∇g,∇(αf + βg)) = 0 we have for any k ≥ 1,

δ(f) = δ(g) = δ(αf + βg) = δ(

k
∏

i=1

(αif + βig)) = 0.

According to the remark 1.1 it gives the desired section. �

Let us introduce a rank two sheaf F defined by the following exact sequence:

0 −−−−→ OP2(2− 2n)
∇f∧∇g
−−−−−→ O

3
P2 −−−−→ F −−−−→ 0.

If we denote by sg(F) := {p ∈ P2|rank(F ⊗ Op) > 2} the set of singular points of F , we
have:

Lemma 2.2. A point p ∈ P2 belongs to sg(F) if and only if two smooth members of the

pencil share the same tangent line at p or one curve of the pencil is singular at p. Moreover

sg(F) is a finite closed scheme with length l(sg(F)) = 3(n − 1)2.

Remark 2.3. Let us precise that if two smooth members intersect then all the smooth
members of the pencil intersect with the same tangency.

Remark 2.4. If the base locus of C(f, g) consists of n2 distinct points then two curves of
the pencil meet transversaly at the base points and p ∈ sg(F) if and only if p is a singular
point for a unique curve Cα,β in the pencil and does not belong to the base locus. One can
assume that p ∈ sg(F) is singular for {f = 0}. Then, locally at p, the curve {g = 0} can
be assumed to be smooth and the local ideals (∇f ∧ ∇g)p and (∇f)p coincide. In other
words, when the base locus is smooth, we have

sg(F) = ⊔i=1,...,sZαi,βi
.

Proof. The singular locus of F is also defined by sg(F) := {p ∈ P2|(∇f ∧ ∇g)(p) = 0}.
The zero scheme defined by ∇f ∧∇g and ∇(αf +βg)∧∇g are clearly the same; it means
that the singular points of any member in the pencil is a singular point for F . One can
also obtain (∇f ∧ ∇g)(p) = 0 at a smooth point when the vectors (∇f)(p) and (∇g)(p)
are proportional i.e. when two smooth curves of the pencil share the same tangent line at
p.

Since the pencil is reduced sg(F) is finite, its length can be computed by writing the
resolution of the ideal Jsg(F) (for a sheaf of ideal JZ defining a finite scheme Z of length
l(Z), we have c2(JZ) = l(Z)). Indeed, if we dualize the following exact sequence

0 −−−−→ OP2(2− 2n)
∇f∧∇g
−−−−−→ O

3
P2 −−−−→ F −−−−→ 0

we find, according to Hilbert-Burch theorem

0 −−−−→ F∨ (∇f,∇g)
−−−−−→ O

3
P2

∇f∧∇g
−−−−−→ OP2(2n − 2).

It proves that F∨ = OP2(1− n)2 and that the image of last map is Jsg(F)(2n− 2).

Then l(sg(F)) = 3(n− 1)2. We point out that this number is the degree of the discrim-
inant variety of degree n curves. �
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Now let us call Dk the divisor defined by k ≥ 2 members of the pencil and let us consider
the section sδ,k ∈ H0(TDk

(2n− 2)) corresponding (see remark 1.1) to the derivation δ. Let
Zk := Z(sδ,k) be the zero locus of sδ,k.

Lemma 2.5. The section sδ,k vanishes in codimension at least two.

Proof. Let us consider the following commutative diagram

0 0




y





y

0 −−−−→ OP2(2 − 2n)
sδ,k

−−−−→ TDk
−−−−→ Q −−−−→ 0

∥

∥

∥





y





y

0 −−−−→ OP2(2 − 2n)
∇f∧∇g
−−−−−→ O

3
P2 −−−−→ F −−−−→ 0




y





y

J∇Dk
(nk − 1) J∇Dk

(nk − 1)




y





y

0 0

where Q = coker(sδ,k). Assume that Zk contains a divisor H. Tensor now the last
vertical exact sequence of the above diagram by Op for a general point p ∈ H. Since
p does not belong to the Jacobian scheme defined by J∇Dk

we have J∇Dk
⊗ Op = Op

and Tor1(J∇Dk
,Op) = 0. Since p ∈ H ⊂ Zk we have rank(Q ⊗ Op) ≥ 2; it implies

rank(F ⊗ Op) ≥ 3 in other words that p ∈ sg(F); this contradicts codim(sg(F),P2) = 2,
proved in lemma 2.2.

Then Q is the ideal sheaf of the codimension two scheme Zk, i.e. Q = JZk
(n(k−2)−1)

and we have an exact sequence

0 −−−−→ JZk
(n(k − 2)− 1) −−−−→ F −−−−→ J∇Dk

(nk − 1) −−−−→ 0.

�

From this commutative diagram we obtain the following lemma.

Lemma 2.6. Let Dk be a union of k ≥ 2 members in C(f, g). Then

c2(J∇Dk
) + c2(JZk

) = 3(n − 1)2 + n2(k − 1)2.

Proof. According to the above commutative diagram we compute c2(F) in two different
ways. The horizontal exact sequence gives c2(F) = 4(n − 1)2 when the vertical one gives
c2(F) = c2(J∇Dk

) + c2(JZk
) + (n− 1)2 − n2(k− 1)2. The lemma is proved by eliminating

c2(F). �

2.3. Free divisors in the pencil. When Dk contains all the singular members of the
pencil we show now that it is free with exponents (2n − 2, n(k − 2) + 1).

Theorem 2.7. Assume that the base locus of the pencil C(f, g) is smooth. Then,

Dk ⊇ Dsg ⇔ TDk
= OP2(2− 2n)⊕ OP2(n(2− k)− 1).
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Proof. Assume first that Dk ⊇ Dsg. Then the singular locus of Dk defined by the Jacobian
ideal consists of the base points of the k curves in the pencil and, since it contains all the
singular members, of the whole set of singularities of the curves in the pencil. This last
set has length 3(n−1)2 by lemma 2.2 and remark 2.4. Moreover the subscheme supported
by the base points in the scheme defined by J∇Dk

has length n2(k − 1)2 since at each
point among the n2 points of the base locus of the pencil, the k curves meet transversaly
and define k different directions (i.e. the local ring at the point (0, 0, 1) is isomorphic to
k[x, y]/(xk−1, yk−1)). Then

c2(J∇Dk
) = 3(n − 1)2 + n2(k − 1)2,

which implies that Zk = ∅. In other words there is an exact sequence

0 −−−−→ OP2(2− 2n)
sδ,k

−−−−→ TDk
−−−−→ OP2(n(2− k)− 1) −−−−→ 0.

And such an exact sequence splits.

Conversely, assume that there is a singular member C that does not belong to Dk.
Let p ∈ C be one of its singular point. Since p /∈ Dk we have J∇Dk

⊗ Op = Op and
Tor1(J∇Dk

,Op) = 0. Consider the following exact sequence that comes from the commu-
tative diagram above Zk = ∅:

0 −−−−→ OP2(n(k − 2)− 1) −−−−→ F −−−−→ J∇Dk
(nk − 1) −−−−→ 0.

If we tensor this exact sequence by Op we find rank(F ⊗ Op) = 2. This contradicts
p ∈ sg(F). �

2.4. Singular members ommitted. When Dk ⊃ Dsg we have seen in theorem 2.7 that
Zk = ∅ by computing the length of the scheme defined by the Jacobian ideal of Dk. More
generally we can describe, at least when the base locus is smooth, the scheme Zk for any
union of curves of the pencil.

Theorem 2.8. Assume that the base locus of the pencil C(f, g) is smooth. Assume also

that Dk ⊃ Dsg \
⋃

i=1,...,r Cαi,βi
, Cαi,βi

* Dk and Cαi,βi
is a singular curve for i = 1, . . . , r.

Then,

JZk
= J∇Cα1,β1

⊗ · · · ⊗ J∇Cαr,βr
.

Remark 2.9. When r = 0 we obtain the freeness again.

Proof. Since the set of singular points of two disctinct curves are disjoint, it is enough to
prove it for r = 1 (i.e. Dk ⊃ Dsg \ Cα1,β1 and Cα1,β1 * Dk). Recall that Ext

1(JZ ,OP2) =
ωZ where Z is a finite scheme and ωZ its dualizing sheaf (see [2, Chapter III, section 7]);
it is well known that, since the finite scheme Z is locally complete intersection, ωZ = OZ .

Then the dual exact sequence of

0 −−−−→ JZk
(n(k − 2) + 1) −−−−→ F −−−−→ J∇Dk

(nk − 1) −−−−→ 0

is the long exact sequence

0 −−−−→ OP2(1− nk) −−−−→ OP2(1− n)2 −−−−→ OP2(n(2− k)− 1) −−−−→

−−−−→ ω∇Dk
−−−−→ Osg(F) −−−−→ ωZk

−−−−→ 0.

The map F −−−−→ J∇Dk
(nk − 1) can be described by composition; indeed it is given by

two polynomials (U, V ) such that

(U, V ).(∇f,∇g) = ∇(
∏

i

αif + βig)).
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We find, U =
∑

i αi
∏

j 6=i(αjf +βjg) and V =
∑

i βi
∏

j 6=i(αjf +βjg). If a point p belongs

to one curve Cα1,β1 in Dk and does not belong to the base locus, then U(p) 6= 0 and
V (p) 6= 0. It shows that these two polynomials vanish simultaneously and precisely along
the base locus. Then the complete intersection T = {U = 0}∩{V = 0} of length n2(k−1)2

is supported exactly by the base points. We have

0 −−−−→ ω∇Dk
/OT −−−−→ Osg(F) −−−−→ ωZk

−−−−→ 0.

We have already seen that the subscheme supported by the base points in the scheme
defined by J∇Dk

has length n2(k − 1)2. It implies that ω∇Dk
/OT = ⊕i=2,...,sOZαi,βi

.
According to remark 2.4, Osg(F) = ⊕i=1,...,sOZαi,βi

. This proves ωZk
= OZα1,β1

.
�

There are exact sequences relating the vector bundles TDk
and TDk\C when C ⊂ Dk.

Proposition 2.10. We assume that the base locus of the pencil C(f, g) is smooth and that

Dk contains Dsg. Let C be a singular member in C(f, g) and Z its scheme of singular

points. Then there is an exact sequence

0 −−−−→ TDk
−−−−→ TDk\C −−−−→ JZ/C(n(3− k)− 1) −−−−→ 0,

where JZ/C ⊂ OC defines Z into C.

Proof. The derivation (∇f ∧ ∇g).∇ is tangent to Dk then also to Dk \ C. It induces the
following commutative diagram which proves the proposition:

0 0




y





y

0 −−−−→ OP2(2− 2n) −−−−→ TDk
−−−−→ OP2(n(2− k)− 1) −−−−→ 0

∥

∥

∥





y





y

0 −−−−→ OP2(2− 2n) −−−−→ TDk\C −−−−→ JZ(n(3− k)− 1) −−−−→ 0




y





y

JZ/C(n(3− k)− 1) JZ/C(n(3− k)− 1)




y





y

0 0

�

3. The pencil is not reduced

When the pencil C(f, g) is not reduced, the arguments used in the previous sections
are not valid since the scheme defined by the jacobian ideal contains a divisor. We have
to remove this divisor somehow. Remember that if two curves of the pencil are multiple
then the general curve is singular. So let us consider that there is only one curve that is
not reduced. Let hhr11 · · · hrss = 0 be the equation of this unique non reduced curve where
h = 0 is reduced, deg(hi) = mi ≥ 1 and ri ≥ 2. Since the derivation 1∏

i h
ri
i

(∇f ∧∇g).∇ is

still tangent to all curves of the pencil, we believe that the following statement is true:
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Conjecture. Let hhr11 · · · hrss = 0 be the equation of the unique non reduced curve where

{h = 0} is reduced, deg(hi) = mi ≥ 1 and ri ≥ 2. Then,

Dk ⊇ Dsg ⇔ TDk
= OP2(2− 2n+

i=s
∑

i=1

(ri − 1)mi)⊕ OP2(n(2− k)− 1).

4. Examples

Let us call Σ3 ⊂ P9 = P(H0(OP2(3))) the hypersurface of singular cubics. It is well
known that its degree is 12 (see [3], for instance).

• Pappus arrangement completed: Let us consider the divisor of the nine lines
appearing in the Pappus arrangement; this divisor is the union of three triangles
T1, T2, T3 with nine base points. The pencil generated by T1 and T2 contains 3
triangles (each one represents a triple point in Σ3); since 9 < 12, singular cubics
are missing in the pencil. There is no other triangle and no smoth conic+line in
the Pappus pencil, when it is general enough. We can conclude that the missing
cubics are, in general, nodal cubics C1, C2, C3.

Let D = T1 ∪ T2 ∪ T3 ∪ C1 ∪ C2 ∪ C3 be the union of all singular fibers in the
pencil generated by T1 and T2. Then, according to theorem 2.7 we have

TD = OP2(−4)⊕ OP2(−13).

• Pappus arrangement: Let T1∪T2∪T3 be the divisor consisting of the nine lines
of the projective Pappus arrangement and D = T1 ∪ T2 ∪ T3 ∪ C1 ∪ C2 ∪ C3 be
the union of all singular fibers in the pencil generated by two triangles among the
Ti’s. Let us call K := C1 ∪ C2 ∪ C3 the union of the nodal cubics and z1, z2, z3
their nodes. Then we have, according to theorem 2.8, TD = OP2(−4) ⊕ OP2(−13)
and an exact sequence

0 −−−−→ OP2(−4) −−−−→ TD\K −−−−→ Iz1,z2,z3(−4) −−−−→ 0.

The logarithmic bundle TD\K associated to the Pappus configuration is semi-stable

and its divisor of jumping lines is the triangle z∨1 ∪z
∨
2 ∪z

∨
3 as it is proved by retricting

the above exact sequence to any line through one of the zeroes.

•

•

•

•

•

•

•

•

•

Figure 1. Pappus arrangement
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• Hesse arrangement: Let us consider the pencil generated by a smooth cubic C
and its hessian Hess(C). The pencil contains 4 triangles T1, T2, T3, T4 and since
the degree of Σ3 is 12, no other singular cubic can be present. Let us call D the
union of these four triangles. Then, according to theorem 2.7 we have

TD = OP2(−4)⊕ OP2(−7).
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